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1 Introduction

The field of reinforcement learning (RL) addresses a fundamental challenge in artificial intelligence:
how can an agent learn to make effective decisions through interaction with its environment? In re-
inforcement learning, an agent learns by taking actions, observing their consequences, and receiving
rewards, gradually improving its decision-making policy through experience [75]. While this approach
has achieved remarkable successes in domains like game playing and robotics, many real-world ap-
plications involve multiple agents that must learn and act together, leading to the development of
multi-agent reinforcement learning (MARL).

MARL extends reinforcement learning to scenarios where multiple agents interact within a shared
environment. These agents must not only learn effective individual policies but also develop sophis-
ticated coordination strategies. Common applications include autonomous vehicles navigating traffic
[66], cooperative robots in warehouse management [31], and gaming agents cooperating or competing
in strategic scenarios [83]. However, MARL faces significant challenges including non-stationarity (as
agents’ policies change during learning), exponentially growing state-action spaces, and the need for
effective communication between agents.

Recent advances in transformer architectures have opened new possibilities for addressing these
MARL challenges. Transformers, initially developed for natural language processing [82], excel at
modeling complex relationships in sequential data through their attention mechanisms. This capability
proves particularly valuable in MARL, where agents must reason about the temporal evolution of other
agents’ behaviors and the environment state. For instance, transformer-based architectures enable
more flexible value function decomposition in cooperative scenarios [37] and allow for policies that can
generalize across varying numbers and types of agents [29].

The emergence of large language models (LLMs) has further expanded the potential of MARL
systems. LLMs trained on vast text corpora demonstrate sophisticated reasoning capabilities and
can follow complex instructions. When integrated into MARL frameworks, LLMs enhance agent
coordination through natural language communication [45], improve task planning capabilities [28],
and enable more robust consensus-seeking behaviors [10]. For example, warehouse robots equipped
with LLM capabilities can discuss task allocation strategies, negotiate resource conflicts, and adapt
their behaviors based on natural language feedback.

This paper provides a comprehensive examination of how transformers and LLMs are reshaping
MARL. We begin by establishing the foundational concepts of reinforcement learning, MARL, and
transformer architectures. This background provides essential context for understanding how these
technologies intersect. We then analyze specific advances in applying transformers to reinforcement
learning, including stabilization techniques and the emerging perspective of treating RL as a sequence
modeling problem.

The core of our analysis focuses on three key areas where transformers and LLMs have signifi-
cantly impacted MARL. First, we examine transformer-based architectures for multi-agent systems,
analyzing approaches like transformer-based value function decomposition and universal policy decou-
pling. Second, we investigate how LLMs serve as knowledge sources for RL agents, enhancing their
decision-making capabilities. Third, we explore frameworks for multi-agent collaboration using LLMs,
including both theoretical approaches and practical implementations in robotics.

Throughout this examination, we maintain a critical perspective, analyzing both the advantages
and limitations of different approaches. We support our analysis with empirical results from stan-
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dard benchmarks and real-world applications, providing concrete evidence of where these technologies
excel and where challenges remain. This systematic review aims to equip readers with a clear under-
standing of the current state of research at the intersection of transformers, LLMs, and MARL, while
highlighting promising directions for future investigation.

2 Foundations

2.1 Reinforcement Learning Basics

Reinforcement Learning (RL) represents a paradigm in machine learning where an agent learns to
make decisions through interactions with an environment. This section introduces the fundamental
concepts and terminology of RL, providing a solid foundation for understanding more advanced topics
in multi-agent systems and the application of transformers to RL.

2.1.1 Key Concepts and Terminology

At the core of RL is the concept of an agent interacting with an environment. The agent, serving as
the learner and decision-maker, operates within the environment, which encompasses everything the
agent interacts with [75]. This interaction is typically modeled as a discrete-time process. At each
time step t, the agent receives a representation of the environment’s state St, takes an action At, and
subsequently receives a scalar reward Rt+1.

Figure 2.1: The agent–environment interaction in reinforcement learning [75].

Figure 2.1 illustrates this fundamental interaction loop in reinforcement learning. The agent ob-
serves the state of the environment, takes an action based on its policy, and receives a reward and a
new state as a result of that action. This process continues iteratively as the agent learns to improve
its policy over time.

To concretely illustrate these concepts, let’s consider a simple Gridworld environment in figure 2.2.
In this 4x4 Gridworld (left), each cell represents a state. The agent can move up, down, left, or right,
corresponding to the available actions. The green cell (G) represents a goal state with a high reward,
while red cells (X) are obstacles with negative rewards. This environment provides a tangible example
of states, actions, and rewards in RL.

The RL problem is often formalized using Markov Decision Processes (MDPs), which provide a
mathematical framework for modeling decision-making in situations where outcomes are partly random

4



Figure 2.2: Gridworld environment, value function, and optimal policy visualization.

and partly under the control of the decision-maker [4]. An MDP is defined by a tuple (S,A, P,R, γ),
where S represents the set of states, A the set of actions, P the state transition probability function,
R the reward function, and γ the discount factor, with γ ∈ [0, 1].

The state transition probability function P is crucial in defining the dynamics of the environment.
It is expressed as:

P (s′|s, a) = Pr(St+1 = s′|St = s,At = a) (2.1)

This equation represents the probability of transitioning to state s′ given that the agent is in state
s and takes action a. In our Gridworld example, these transitions are deterministic: moving right from
S0 always leads to S1, unless blocked by an obstacle or the grid’s edge.

The reward function R is another critical component of the MDP framework. It defines the
immediate, scalar feedback that the agent receives after each action. Formally, it can be expressed as:

R(s, a, s′) = E[Rt+1|St = s,At = a, St+1 = s′] (2.2)

In Gridworld, this might be represented as a high positive reward for reaching the goal state (G),
negative rewards for obstacle states (X), and small negative rewards for other states to encourage
efficient paths.

The primary objective of an RL agent is to maximize the cumulative reward over time, often
expressed as the expected return:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =

∞∑
k=0

γkRt+k+1 (2.3)

Here, γ serves as the discount factor, balancing the importance of immediate and future rewards.
The agent’s behavior is defined by its policy π, a mapping from states to probabilities of selecting each
possible action. If the agent is following policy π at time t, then π(a|s) represents the probability that
At = a if St = s. In the Gridworld example, the optimal policy is visualized in the rightmost grid of
Figure 2.2, where arrows indicate the best action in each state.

Two crucial value functions in RL are the state-value function and the action-value function. The
state-value function Vπ(s) represents the expected return when starting in state s and following policy
π thereafter:

Vπ(s) = Eπ[Gt|St = s] = Eπ

[ ∞∑
k=0

γkRt+k+1|St = s

]
(2.4)
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The middle grid in Figure 2.2 visualizes this concept, showing the value of each state under the opti-
mal policy. Higher values (brighter colors) indicate states that are expected to yield higher cumulative
rewards.

The action-value function Qπ(s, a), on the other hand, represents the expected return starting from
state s, taking action a, and thereafter following policy π:

Qπ(s, a) = Eπ[Gt|St = s,At = a] = Eπ

[ ∞∑
k=0

γkRt+k+1|St = s,At = a

]
(2.5)

A fundamental concept in RL is the Bellman equation, which expresses the relationship between
the value of a state and the values of its successor states. For the state-value function, the Bellman
equation is:

Vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γVπ(s
′)] (2.6)

And for the action-value function:

Qπ(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γ
∑
a′

π(a′|s′)Qπ(s
′, a′)] (2.7)

These equations form the basis for many RL algorithms, as they allow for iterative improvement of
value estimates [6]. In our Gridworld example, these equations would be used to compute the values
shown in the middle grid of Figure 2.2.

A key challenge in RL is balancing exploration (trying new actions to potentially find better
strategies) and exploitation (using known good strategies). This exploration-exploitation dilemma is
a fundamental issue in RL and has been extensively studied [79]. Common approaches to address this
include ϵ-greedy methods, softmax exploration, and Upper Confidence Bound (UCB) algorithms [2].

Algorithm 1 ϵ-greedy Exploration Strategy – Balances exploration and exploitation in reinforcement
learning
Require: ϵ ∈ [0, 1], Q(s, a) for all s ∈ S, a ∈ A ▷ ϵ controls exploration rate, Q(s, a) stores action

values
1: function ChooseAction(s) ▷ Takes current state s as input
2: p← UniformRandom(0, 1) ▷ Generate random number to decide between exploration and

exploitation
3: if p < ϵ then ▷ With probability ϵ, explore randomly
4: return RandomAction(A) ▷ Choose a random action from action space A for exploration
5: else ▷ With probability 1− ϵ, exploit current knowledge
6: return argmaxaQ(s, a) ▷ Choose action with highest estimated value in current state
7: end if
8: end function

The ϵ-greedy strategy, as shown in Algorithm 1, provides a simple yet effective approach to balanc-
ing exploration and exploitation. With probability ϵ, the agent chooses a random action (exploration),
and with probability 1-ϵ, it chooses the action with the highest estimated value (exploitation). This
method ensures that the agent continues to explore the environment, potentially discovering better
strategies, while also taking advantage of its current knowledge.

In our Gridworld example, an ϵ-greedy strategy would allow the agent to occasionally take random
actions, helping it discover the high reward of the goal state or learn to avoid obstacle states, while
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generally following the optimal policy shown in the rightmost grid of Figure 2.2.
These concepts form the foundation of reinforcement learning and are essential for understanding

more advanced topics such as function approximation [81], policy gradient methods [76], and the
integration of deep learning techniques with RL, leading to the field of deep reinforcement learning
[50].

As we progress to later sections, these fundamental ideas will be crucial in exploring multi-agent
reinforcement learning systems and the application of transformer architectures to RL problems. The
interplay between these basic concepts and more advanced techniques continues to drive innovation in
the field of reinforcement learning.

2.1.2 Classic RL Algorithms

The field of reinforcement learning (RL) has been shaped by several seminal algorithms that have
laid the foundation for modern RL techniques. This section explores these classic algorithms, their
underlying principles, and their significance in the development of RL.

Dynamic Programming

Dynamic Programming (DP) methods [3] represent foundational approaches to solving reinforcement
learning problems, particularly in scenarios where the environment dynamics, including transition
probabilities and reward functions, are known a priori. While their computational complexity often
precludes their direct application to large-scale reinforcement learning problems, DP methods provide
critical theoretical underpinnings that inform many modern algorithms.

At the heart of dynamic programming lie two fundamental algorithmic approaches: policy iteration
and value iteration. Policy iteration employs an alternating optimization strategy, iteratively evalu-
ating the value function for the current policy before improving that policy based on the computed
values. This process continues until convergence, with each iteration refining both the value estimates
and the resulting policy. In contrast, value iteration takes a more direct approach by computing the
optimal value function through repeated application of the Bellman optimality equation, from which
an optimal policy can be derived [59].

The mathematics underlying policy iteration reveals its elegant structure. The algorithm alternates
between policy evaluation:

V πk(s) =
∑
s′

P (s′|s, πk(s))[R(s, πk(s), s
′) + γV πk(s′)] (2.8)

and policy improvement:

πk+1(s) =a

∑
s′

P (s′|s, a)[R(s, a, s′) + γV πk(s′)] (2.9)

where V πk represents the value function under policy πk, and γ denotes the discount factor. This
process continues until the policy stabilizes, at which point the algorithm has converged to an optimal
solution.

Algorithm 2 formalizes this iterative process, demonstrating how policy evaluation and improve-
ment phases interleave to progressively refine the solution. While both policy iteration and value
iteration converge to optimal policies, they exhibit different computational trade-offs and generate
distinct sequences of intermediate policies during optimization [59]. Understanding these trade-offs
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proves crucial when applying dynamic programming principles to practical reinforcement learning
problems.

Algorithm 2 Policy Iteration – Iteratively computes optimal policy through alternating evaluation
and improvement phases
1: Initialize π0 arbitrarily ▷ Start with any valid policy mapping states to actions
2: for k = 0, 1, 2, . . . do ▷ Main iteration loop
3: // Policy Evaluation Phase: Compute value function for current policy πk
4: repeat
5: for each s ∈ S do ▷ Update values for all states
6: vk+1(s)←

∑
s′ P (s′|s, πk(s))[R(s, πk(s), s

′) + γvk(s
′)] ▷ Bellman update: sum over next

states (s′), using transition probability P , immediate reward R, and discounted future value γvk
7: end for
8: until vk converges ▷ Continue until value estimates stabilize Copy
9: // Policy Improvement Phase: Find better policy using updated values

10: policy_stable ← true ▷ Flag to check if policy has converged
11: for each s ∈ S do ▷ Update policy for all states
12: old_action ← πk(s) ▷ Store current action for comparison
13: πk+1(s)←a

∑
s′ P (s′|s, a)[R(s, a, s′) + γvk(s

′)] ▷ Select action maximizing expected value
using current value estimates

14: if old_action ̸= πk+1(s) then ▷ Check if policy changed
15: policy_stable ← false
16: end if
17: end for
18: if policy_stable then ▷ If no changes in policy, we’ve found optimal solution
19: return vk, πk ▷ Return converged value function and optimal policy
20: end if
21: end for

Monte Carlo Methods

Monte Carlo (MC) methods learn from complete episodes of experience, without requiring knowledge
of the environment dynamics [75]. These methods are particularly useful in episodic tasks and can
learn directly from interaction with the environment.

The key idea in MC methods is to estimate the value of a state by averaging the returns observed
after visits to that state. This approach can be used for both prediction (evaluating a given policy)
and control (finding an optimal policy).

One of the advantages of MC methods is their ability to focus on relevant parts of the state space,
as they only update values for states that are actually visited. However, they can be slow to converge
and are not suitable for continuing (non-episodic) tasks [72].

The Monte Carlo estimation process can be expressed as:

V (s) ≈ 1

N

N∑
i=1

Gi(s) (2.10)

Where V (s) is the estimated value of state s, N is the number of visits to state s, and Gi(s) is the
return from the i-th visit to state s.

Figure 2.3 illustrates the iterative process of policy iteration, where the algorithm alternates be-
tween policy evaluation and policy improvement until convergence.
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Figure 2.3: Policy iteration process. Adapted from Sutton and Barto [75].

Temporal Difference Learning

Temporal Difference (TD) learning, introduced by Sutton [74], combines ideas from DP and MC
methods. Like MC methods, TD learning can learn directly from experience without a model of
the environment. However, TD methods update estimates based on other learned estimates, without
waiting for a final outcome (bootstrapping).

The simplest TD prediction algorithm, known as TD(0), updates the value function as follows:

V (St)← V (St) + α[Rt+1 + γV (St+1)− V (St)] (2.11)

where α is the learning rate and γ is the discount factor.
TD methods generally converge faster than MC methods and can be applied to continuing tasks.

However, they can be more sensitive to initial value estimates [75]. Table 2.1 provides a comparison
between TD and MC methods.

Aspect Temporal Difference Monte Carlo

Update Frequency Every step End of episode
Bias Biased (due to bootstrapping) Unbiased
Variance Lower variance Higher variance
Online Learning Suitable Not suitable
Continuing Tasks Applicable Not applicable
Convergence Speed Faster Slower

Table 2.1: Comparison of Temporal Difference and Monte Carlo methods

Q-Learning

Q-learning, introduced by Watkins and Dayan [84], represents a fundamental advancement in rein-
forcement learning through its ability to learn optimal behavior while following an exploratory policy.
This off-policy temporal difference control algorithm directly learns the optimal action-value func-
tion Q∗(s, a), which represents the expected cumulative reward when taking action a in state s and
following the optimal policy thereafter.

The Q-learning update rule encapsulates this learning process:

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)] (2.12)
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This equation merits careful examination. The term Rt+1 + γmaxaQ(St+1, a) represents the
target value, combining the immediate reward Rt+1 with the discounted estimate of optimal future
value γmaxaQ(St+1, a). The learning rate α controls how much the current estimate is updated
based on the difference between this target and the current estimate Q(St, At). Crucially, by taking
the maximum over all possible actions in the next state (maxaQ(St+1, a)), Q-learning learns about
the optimal policy regardless of the actions actually taken during exploration.

The complete Q-learning algorithm implements this update rule within an episodic learning frame-
work:

Algorithm 3 Q-Learning – Learning optimal action-values through off-policy updates
1: Initialize Q(s, a) arbitrarily ▷ Initialize action-value estimates
2: for each episode do ▷ Loop through training episodes
3: Initialize S ▷ Set initial state for episode
4: for each step of episode do ▷ Continue until episode termination
5: Choose A from S using policy derived from Q (e.g., ϵ-greedy) ▷ Select action balancing

exploration and exploitation
6: Take action A, observe reward R and next state S′

7: Q(S,A)← Q(S,A) + α[R+ γmaxaQ(S′, a)−Q(S,A)] ▷ Update Q-value using observed
transition

8: S ← S′ ▷ Transition to next state
9: end for

10: end for

SARSA: On-Policy Learning

SARSA (State-Action-Reward-State-Action), introduced by Rummery and Niranjan [63], provides an
alternative approach to Q-learning through on-policy learning. Unlike Q-learning, SARSA learns the
value of the actual policy being followed, including exploratory actions. This characteristic leads to
fundamentally different learning dynamics and policy behaviors.

The SARSA update rule reveals its on-policy nature:

Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)] (2.13)

The key distinction from Q-learning lies in how future value is estimated. Instead of using the
maximum Q-value in the next state (maxaQ(St+1, a)), SARSA uses the Q-value of the actual next
action At+1 that will be taken (Q(St+1, At+1)). This means SARSA learns values that reflect the
outcomes of the exploration policy being followed, leading to more conservative behavior in scenarios
where exploration carries risk [75].

Table 2.2 summarizes these algorithmic differences and their implications. These algorithmic dif-
ferences make each method suitable for different scenarios. Q-learning’s off-policy nature makes it
particularly valuable for learning from stored experience (replay buffers) and forms the foundation for
modern deep reinforcement learning algorithms like DQN [50]. SARSA’s on-policy updates make it
more appropriate for scenarios where safe exploration is crucial, as it learns values that reflect the
risks inherent in the exploration process.
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Characteristic Q-Learning SARSA

Policy Type Off-policy: Learns optimal policy
independent of exploration

On-policy: Learns policy that in-
cludes exploration behavior

Value Updates Uses maxaQ(S′, a): Assumes opti-
mal future actions

Uses Q(S′, A′): Accounts for actual
exploratory actions

Risk Handling May learn policies that are optimal
but risky during learning

Learns policies that are safer during
the learning process

Convergence Properties Converges to optimal policy with
sufficient exploration

Convergence depends on explo-
ration schedule and policy

Table 2.2: Comparative analysis of Q-Learning and SARSA algorithms

Policy Gradient Methods

Policy gradient methods embody a fundamentally different approach to reinforcement learning by
directly optimizing the policy parameters without explicitly maintaining value function estimates.
First introduced through the REINFORCE algorithm by Williams [87], these methods have evolved
into sophisticated approaches that underpin many modern reinforcement learning systems.

At their core, policy gradient methods operate by adjusting policy parameters θ to maximize the
expected return J(θ). This objective leads to the foundational update rule:

θ ← θ + α∇θJ(θ) (2.14)

where α represents the learning rate. The gradient ∇θJ(θ) captures how small changes in policy
parameters affect the expected return, providing a direction for policy improvement. This direct
parameter optimization stands in contrast to value-based methods, offering particular advantages in
continuous action spaces and stochastic policies.

The REINFORCE algorithm implements this concept through a theoretically elegant Monte Carlo
approach:

Algorithm 4 REINFORCE – Monte Carlo Policy Gradient
1: Initialize policy parameters θ arbitrarily ▷ Begin with random policy
2: for each episode {st, at, rt}Tt=0 ∼ πθ do ▷ Sample trajectory
3: for t = 0 to T do
4: Gt ←

∑T
k=t γ

k−trk ▷ Compute discounted return
5: end for
6: for t = 0 to T do
7: θ ← θ + αGt∇θ log πθ(at|st) ▷ Update policy using likelihood ratio gradient
8: end for
9: end for

The algorithm’s elegant simplicity belies its theoretical significance. The term ∇θ log πθ(at|st)
represents the gradient of the log probability of taking action at in state st, while Gt serves as an
unbiased estimate of the expected return. This formulation provides unbiased gradient estimates but
often exhibits high variance, necessitating substantial sample sizes for reliable learning [75].
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Proximal Policy Optimization (PPO)

Building upon these foundations, Proximal Policy Optimization (PPO) [65] introduces crucial inno-
vations to enhance learning stability and efficiency. PPO’s primary contribution lies in its carefully
constructed objective function that prevents destructively large policy updates while maintaining the
benefits of policy gradient methods.

The PPO objective employs a clipped surrogate function:

LCLIP (θ) = Et[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)] (2.15)

Here, rt(θ) =
πθ(at|st)

πθold
(at|st) measures the ratio between new and old policy probabilities. When this

ratio strays too far from 1 (controlled by ϵ), the clipping function curtails the objective, effectively
constraining the policy update magnitude. The advantage estimate Ât provides a learned baseline for
variance reduction, improving upon REINFORCE’s pure Monte Carlo returns.

The complete PPO algorithm orchestrates these components into a robust learning procedure:

Algorithm 5 Proximal Policy Optimization (PPO) – Stable Policy Learning through Conservative
Updates
1: Initialize policy (θ0) and value function (ϕ) parameters ▷ Prepare neural networks
2: Set hyperparameters: learning rate α, clip ratio ϵ, epochs K, minibatch size M
3: for iteration = 1, 2, ... do ▷ Main training loop
4: Collect trajectories Di = {τj} using πθi−1

▷ Environment interaction
5: Compute rewards-to-go R̂t ▷ Monte Carlo returns
6: Compute advantages Ât using GAE-λ ▷ Advantage estimation
7: for epoch = 1, 2, ..., K do ▷ Multiple passes over data
8: Shuffle Di into M minibatches ▷ Randomize learning order
9: for each minibatch B do ▷ Process data in small batches

10: rt(θ) =
πθ(at|st)

πθi−1
(at|st) ▷ Policy probability ratio

11: LCLIP (θ) = Et[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)]
12: LV F (ϕ) = Et[(Vϕ(st)− R̂t)

2] ▷ Value function loss
13: S[πθ](st) ▷ Policy entropy for exploration
14: L(θ, ϕ) = −LCLIP (θ) + c1L

V F (ϕ)− c2S[πθ](st) ▷ Combined loss
15: Update θ, ϕ using optimizer ▷ Gradient-based optimization
16: end for
17: end for
18: θi ← θ ▷ Store updated policy
19: end for

PPO’s effectiveness stems from several key design choices. The multiple epochs of updates (K)
enable efficient use of collected data, while minibatching provides stable gradient estimates. The
clipped objective ensures policy updates remain conservative, preventing the performance collapses
that often plague other policy gradient methods. Additionally, the inclusion of a value function
baseline and entropy bonus helps balance exploitation with exploration [65].

These innovations have established PPO as a remarkably robust algorithm, demonstrating strong
performance across diverse domains from robotics to game playing [5]. Its success has inspired various
extensions, such as PPO with Adaptive KL Penalty for dynamic constraint adjustment and Recurrent
PPO for partially observable environments [93]. The algorithm’s combination of theoretical soundness,
implementation simplicity, and empirical effectiveness has made it a cornerstone of modern reinforce-
ment learning research and applications.
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2.2 Multi-Agent Reinforcement Learning (MARL)

Multi-Agent Reinforcement Learning (MARL) studies how multiple agents can learn effective decision-
making policies through interaction with a shared environment and each other. Unlike single-agent
reinforcement learning, where one agent learns to maximize its own rewards, MARL must address the
interactions between multiple learning agents whose actions affect each other’s rewards and environ-
ment dynamics. This creates several technical challenges - the environment becomes non-stationary
from each agent’s perspective, the joint state-action space grows exponentially with the number of
agents, and agents must learn to coordinate or compete effectively. MARL has proven particularly
useful for developing autonomous driving systems [66], coordinated robot teams [31], and game-playing
agents [83].

2.2.1 From Single-Agent to Multi-Agent Systems

Multi-agent reinforcement learning (MARL) extends single-agent methods to handle scenarios where
multiple agents learn simultaneously. Real-world applications include autonomous vehicles coordinat-
ing in traffic [66] and agents competing in strategic games [7]. The core objective in MARL is to
develop agents that can learn effective policies while interacting with other learning agents.

Single-agent reinforcement learning assumes a stationary environment with fixed transition prob-
abilities and reward functions. Adding multiple learning agents changes this assumption, as shown by
Hernandez-Leal et al. [26]. When multiple agents learn concurrently, each agent’s policy updates alter
the environment dynamics for all other agents. This non-stationarity appears in the joint state-action
value function:

Qπ1,...,πN
i (s, a1, ..., aN ) = E[

∞∑
t=0

γtrti |s0 = s, {πj}Nj=1] (2.16)

where agent i’s value depends on the changing policies πj of all agents.
The computational requirements grow exponentially with the number of agents [8]. With N agents,

each having state space S and action space A, the joint space becomes SN × AN . This exponential
scaling makes direct applications of single-agent methods impractical for many multi-agent problems.

(a) Markov decision process (b) Markov game (c) Extensive-form game

Figure 2.4: System evolution diagrams showing: (a) single-agent RL as a Markov decision process,
where one agent interacts with a stationary environment, (b) simultaneous multi-agent RL as a Markov
game, where agents act concurrently, and (c) sequential multi-agent RL as an extensive-form game,
where agents act in order with access to previous actions [96].

Figure 2.4 shows three key frameworks in reinforcement learning. The Markov Decision Process
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(Figure 2.4a) models single-agent learning with direct environment interaction. The Markov game
(Figure 2.4b) extends this to multiple agents acting simultaneously. The extensive-form game (Figure
2.4c) adds sequential dependencies between agent actions.

Oliehoek et al. [52] analyze how partial observability affects multi-agent systems. Agents typically
cannot observe the complete state of the system, requiring them to act based on limited local infor-
mation. This creates a need for effective communication protocols and methods to handle uncertainty.

In cooperative settings, determining each agent’s contribution to team success poses technical
challenges. Foerster et al. [20] address this through counterfactual multi-agent policy gradients,
providing a way to estimate individual agent contributions to overall performance.

Competitive settings require different optimization criteria than single-agent learning. As analyzed
by Shoham and Leyton-Brown [69], agents must find stable strategies rather than simply maximizing
individual rewards. This changes the learning problem from policy improvement to finding Nash
equilibria or other game-theoretic solution concepts.

Claus and Boutilier [16] describe two main approaches to multi-agent learning: independent learn-
ers and joint action learners. Independent learners scale well but struggle with convergence in non-
stationary environments. Joint action learners model other agents explicitly but become computation-
ally expensive as the number of agents increases.

Deep learning methods have improved how MARL handles complex state and action spaces.
Vinyals et al. [83] show how deep neural networks can process high-dimensional inputs in multi-
agent settings. Iqbal and Sha [32] demonstrate attention mechanisms for modeling agent interactions,
while Jiang et al. [34] use graph neural networks to capture relationships between agents.

These technical advances have enabled new applications. Multi-agent systems can now coordinate
effectively in tasks like multiplayer games [5] and robotic control [31]. Morihiro et al. [51] show how
groups of agents can learn behaviors more sophisticated than individual agents could achieve alone.

2.2.2 Cooperation and Competition in MARL

Multi-agent reinforcement learning (MARL) systems can involve agents working together, competing
against each other, or a mix of both. Consider a team of warehouse robots coordinating to move
packages efficiently - this represents cooperation. In contrast, autonomous trading agents competing
in a market represent a competitive scenario. Most real-world applications, like autonomous vehicles
navigating traffic, involve both cooperation (avoiding collisions) and competition (reaching destinations
quickly) [46].

Game theory provides the mathematical tools to analyze these interactions [68]. In cooperative
settings, agents work to maximize a shared team objective. We can write this mathematically as
finding the best joint policy π that maximizes the expected sum of rewards:

V ∗(s) = max
π

E

[ ∞∑
t=0

γtRt|s0 = s, π

]
(2.17)

To understand this equation concretely, consider a two-robot warehouse scenario. The state s might
represent the positions of robots and packages, while Rt represents the number of packages successfully
delivered at time t. The discount factor γ (typically 0.9 to 0.99) makes future rewards worth less than
immediate ones, encouraging efficient delivery. The joint policy π specifies what actions each robot
should take in any given state - for example, which package to pick up or where to move next. The
equation finds the policy that leads to the highest expected number of deliveries over time.
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In competitive settings, agents try to find strategies that work well regardless of what other agents
do. This leads to the concept of Nash equilibrium - a set of strategies where no agent can benefit by
changing their strategy alone. For a two-player competitive game, this can be written as:

max
π1

min
π2

V π1,π2(s) = min
π2

max
π1

V π1,π2(s) (2.18)

Consider a simplified autonomous driving scenario where two vehicles approach an intersection.
Each vehicle’s policy πi determines whether to slow down or maintain speed. The value function
V π1,π2(s) might represent the trade-off between travel time and safety. The equation finds policies
where neither vehicle can improve its outcome by changing strategy alone - if one vehicle chooses to
slow down, the other’s best response might be to maintain speed, and vice versa.

Cooperative MARL faces technical challenges that become clear through mathematical analysis.
The credit assignment problem arises because the team reward Rt doesn’t directly indicate individual
contributions. In the warehouse example, if ten packages are delivered by five robots, determining
each robot’s contribution requires additional mechanisms. The QMIX algorithm [61] addresses this by
learning a decomposition of the team value function:

Qtot(s,a) = f(Q1(s, a1), ..., Qn(s, an)) (2.19)

where f is a mixing function that ensures individual agent values Qi combine monotonically to
the team value Qtot. This allows each agent to learn its contribution while maintaining coordinated
behavior.

The CTDE paradigm, implemented in methods like MAVEN [48], enables agents to share infor-
mation during training while acting independently during deployment. These methods have enabled
successful applications in complex tasks like controlling multiple units in StarCraft [64] and coordi-
nating traffic lights [15].

In competitive settings, algorithms extend traditional Q-learning to handle adversarial scenarios.
Minimax Q-learning [44] modifies the standard Q-learning update to account for opposing agents:

Q(s, a)← (1− α)Q(s, a) + α(r + γmax
a′

min
o′

Q(s′, a′, o′)) (2.20)

where a and o represent the agent’s and opponent’s actions respectively. This update rule allows
agents to learn robust strategies by assuming opponents will choose actions that minimize the agent’s
value.

Aspect Cooperative MARL Competitive MARL

Objective Maximize team reward Maximize individual reward
Key Challenges Credit assignment, scalability Finding equilibria, non-stationarity
Common Approaches Value decomposition, CTDE Minimax Q-learning, PSRO
Evaluation Metrics Team performance Individual performance, exploitability
Example Applications Traffic control, robot swarms Poker, strategy games

Table 2.3: Key differences between cooperative and competitive MARL approaches

Methods like AWESOME [17] and LOLA [21] extend this idea by explicitly modeling opponent
strategies. These approaches have achieved impressive results in complex games like poker [7] and
StarCraft [83]. The MADDPG algorithm [46] handles mixed cooperative-competitive scenarios by
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allowing agents to maintain separate policies for cooperation and competition.
Current challenges in MARL stem from computational complexity. The joint action space grows

exponentially with the number of agents - for n agents each with m possible actions, the space be-
comes mn [27]. This scaling makes many current approaches impractical for large-scale applications.
Additionally, partial observability in real environments [52] and the need for transfer learning across
tasks [71] remain active areas of research.

2.3 Transformers and Sequence Models

The emergence of transformer models in 2017 marked a significant advancement in machine learning,
fundamentally changing how we process sequential data [82]. These models introduced a novel ap-
proach to handling sequences by focusing entirely on attention mechanisms, moving away from the
traditional recurrent architectures that had dominated the field. This shift proved revolutionary, as
transformers could process entire sequences simultaneously rather than step-by-step, leading to more
efficient training and better handling of long-range dependencies.

2.3.1 Architecture and Attention Mechanism

At its core, the transformer architecture introduces a mechanism called self-attention, which allows the
model to weigh the importance of different elements in a sequence when processing each component.
This approach differs fundamentally from previous methods that relied on recurrent neural networks
(RNNs) or long short-term memory networks (LSTMs), which processed sequences one element at a
time. To understand this mechanism, consider how humans read text: when interpreting a word, we
naturally pay attention to other relevant words in the sentence, regardless of their distance from the
current word. The self-attention mechanism mathematically formalizes this intuitive process.

The basic attention computation takes three inputs: queries, keys, and values, all represented as
vectors. For a given query q, the mechanism computes its compatibility with a set of keys K, using
these compatibility scores to create a weighted sum of the values V. This process is captured in the
attention equation:

Attention(q,K,V) = softmax
(
qKT

√
dk

)
V (2.21)

Here, dk represents the dimension of the keys, and the scaling factor 1√
dk

prevents the dot products
from growing too large in magnitude, which could lead to extremely small gradients during training.

The transformer architecture extends this basic attention mechanism through multi-head attention,
where multiple attention functions operate in parallel. This parallel processing allows the model
to capture different types of relationships within the same sequence. Mathematically, multi-head
attention combines several attention outputs:

MultiHead(Q,K,V) = Concat(head1, ..., headh)W
O (2.22)

Each head processes the input differently:

headi = Attention(QWQ
i ,KWK

i ,VWV
i ) (2.23)
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The matrices WQ
i , WK

i , WV
i , and WO are learned during training, allowing each attention head

to specialize in detecting different types of patterns.

Figure 2.5: The Transformer architecture, showing the encoder-decoder structure with multi-head
attention mechanisms. The encoder processes the input sequence, while the decoder generates the
output sequence [82].

As shown in Figure 2.5, the complete transformer architecture consists of an encoder and decoder,
each containing multiple layers. The encoder processes the input sequence through alternating self-
attention and feed-forward layers, while the decoder generates outputs using both self-attention and
attention over the encoder’s output. This structure enables the model to capture complex relationships
within the input sequence while generating contextually appropriate outputs.

2.3.2 Applications and Impact

The transformer architecture has proven remarkably versatile, finding applications far beyond its
original purpose in machine translation. In natural language processing, models like BERT [18] and
GPT [60] have demonstrated unprecedented performance in understanding and generating human
language. BERT’s bidirectional approach to language understanding has particularly revolutionized
how machines process text, enabling more nuanced comprehension of context and meaning.

The architecture’s success has sparked innovation across numerous scientific domains. In computer
vision, the Vision Transformer (ViT) [19] demonstrated that images could be effectively processed by
treating them as sequences of patches, challenging the long-held assumption that convolutional neural
networks were essential for image processing. This approach has led to significant improvements in
tasks such as object detection and image segmentation.

The impact of transformers extends into the biological sciences, where models like AlphaFold 2
[35] have achieved breakthrough results in protein structure prediction. By adapting the attention
mechanism to process amino acid sequences, these models have solved one of biology’s grand chal-
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lenges, demonstrating the architecture’s ability to capture complex spatial relationships in molecular
structures.

In reinforcement learning, transformers have enabled new approaches to decision-making problems.
The Decision Transformer [11] reconceptualizes reinforcement learning as a sequence modeling task,
allowing for more effective learning from historical data. Similarly, the Trajectory Transformer [33] ap-
plies sequence modeling principles to planning and control problems, demonstrating the architecture’s
utility in sequential decision-making contexts.

Despite these successes, transformers face significant challenges. The computational complexity of
self-attention scales quadratically with sequence length, limiting the model’s ability to process very
long sequences. Research efforts like the Reformer [38] and Performer [13] architectures address this
limitation by proposing more efficient attention mechanisms, though the fundamental challenge of
balancing computational efficiency with model capacity remains an active area of research.

As transformer architectures continue to evolve, their application to reinforcement learning, par-
ticularly in multi-agent settings, represents a promising frontier. The ability to model complex depen-
dencies and process multiple streams of information simultaneously makes transformers particularly
well-suited for coordinating multiple agents. The following sections will explore how these capabilities
translate into practical advantages in multi-agent reinforcement learning systems.

3 Transformers in Reinforcement Learning

The integration of transformer architectures into reinforcement learning (RL) represents a significant
advancement in the field of artificial intelligence. This chapter explores the application of transformers
to RL, addressing the challenges encountered in this fusion and examining the innovative approaches
that have emerged as a result. We begin by discussing the methods used to stabilize transformers for
RL applications, followed by an in-depth look at decision transformers, which have revolutionized how
we approach RL problems.

3.1 Stabilizing Transformers for Reinforcement Learning

While transformers have shown impressive results in processing human language, adapting them for
reinforcement learning introduces new challenges that require careful consideration. To understand
these challenges, let’s first consider what makes reinforcement learning different from language pro-
cessing. In reinforcement learning, an agent learns by interacting with an environment and receiving
feedback in the form of rewards. Unlike language tasks where the rules of grammar remain constant,
the environment in reinforcement learning keeps changing as the agent learns - what worked well
early in training might become suboptimal later. This changing nature of the environment is called
non-stationarity, and it poses a significant challenge for transformer models [55].

Think of it like learning to play chess: at first, simple strategies might work against a beginner, but
as your opponent improves, those same strategies become less effective, forcing you to adapt contin-
uously. Similarly, in reinforcement learning, the agent’s experiences (called trajectories) evolve from
random exploration in the beginning to more strategic behavior later. This evolution can destabilize
the learning process of transformer models, which were originally designed for more stable tasks like
language processing.

18



Figure 3.1: Three generations of transformer architectures for reinforcement learning. The original
Transformer-XL design (left) serves as the starting point. The TrXL-I version (center) improves
stability by changing how it normalizes data. The GTrXL version (right) adds controls to better
manage information flow through the network [55].

As shown in Figure 3.1, researchers have developed several improvements to make transformers
work better for reinforcement learning. Let’s walk through these improvements step by step, under-
standing why each one matters.

The first crucial improvement involves how the model handles numerical stability through a process
called layer normalization. In any deep learning model, numbers flowing through the network can grow
very large or very small, making it difficult for the model to learn effectively. Layer normalization
helps prevent this by adjusting these numbers to a consistent scale. Mathematically, for any set of
numbers x flowing through the network, normalization adjusts them using this formula:

x̂ =
x− E[x]√
Var[x] + ϵ

(3.1)

Here, E[x] represents the average value of x, and Var[x] represents how much these values vary
from their average. The small number ϵ (epsilon) is added to prevent division by zero. Think of this
like adjusting the volume levels in a music recording - if some parts are too loud and others too quiet,
we normalize them to a consistent volume that works better for listeners.

The second major improvement involves controlling how information flows through the network
using what’s called a gating mechanism. In the GTrXL architecture (shown on the right in Figure
3.1), this gating works like a series of adjustable filters that can emphasize or de-emphasize different
pieces of information. Mathematically, this filtering process works as:

y = x+ g ⊙ F (x) (3.2)

In this equation, x represents the input information, F (x) represents how that information has
been processed by the network, and g is a learned set of numbers between 0 and 1 that control how
much of the processed information to use. The symbol ⊙ means we multiply these numbers together
element by element.

Another important improvement deals with how the model keeps track of position in a sequence.
Earlier transformer models used fixed position markers, like numbering words in a sentence from 1 to

19



n. However, in reinforcement learning, sequences can be different lengths - one game might take 100
moves while another takes 500. The solution, called relative positional encoding, only keeps track of
how far apart things are rather than their absolute positions. This is like remembering that one event
happened three steps after another, rather than trying to remember exactly when each event occurred.

These improvements work together with careful training procedures. Just as you might start
exercise gradually to avoid injury, the model uses a "warm-up" period where it starts learning slowly
and gradually increases its learning rate. This careful approach, combined with proper initialization
of the model’s parameters, helps ensure stable learning from the beginning.

The effectiveness of these modifications becomes clear in practice. When testing these improved
transformers on complex tasks like playing Atari games, where rewards might come long after the
actions that earned them, the stabilized models learn much more reliably than their predecessors.
For example, in games requiring long-term strategy, the GTrXL architecture can maintain stable
performance while simpler models often fail to learn effectively.

These advances in stabilizing transformers have opened the door to new applications in reinforce-
ment learning. In particular, they have enabled the development of Decision Transformers, which we’ll
explore in the next section. Decision Transformers take advantage of these stability improvements to
create a novel approach to reinforcement learning, treating the learning process as a type of sequence
prediction problem.

3.2 Decision Transformers

The introduction of Decision Transformers by Chen et al. [11] represents a fundamental rethinking
of how reinforcement learning problems can be solved. To understand this innovation, consider how
a human might learn from watching an expert play a video game. Rather than just trying random
actions and learning from rewards, we observe sequences of successful gameplay, noticing how different
actions in different situations lead to higher scores. Decision Transformers formalize this intuitive
process, treating reinforcement learning as a type of sequence prediction problem.

Traditional reinforcement learning approaches typically learn through trial and error, gradually
building up a policy (a strategy for choosing actions) through direct interaction with an environment.
Decision Transformers take a different approach. Instead of learning through active experimentation,
they learn from existing recordings of behavior, much like how a student might learn from watching
recorded lectures. This approach, known as offline reinforcement learning, offers particular advantages
in situations where experimenting with a real system might be costly or dangerous, such as in robotics
or healthcare applications.

At its core, the Decision Transformer works by processing three types of information: states (what
the agent observes), actions (what the agent does), and returns-to-go (how well the agent expects to
perform from that point onward). Think of returns-to-go as a running score prediction - if you’re
playing a game and typically score 1000 points from your current position, that would be your return-
to-go. Mathematically, we can express this relationship as:

p(at|s1, a1, R1, ..., st, Rt) = Transformer(s1, a1, R1, ..., st, Rt) (3.3)

This equation might look complex, but it’s expressing a simple idea: given a history of states (s),
actions (a), and expected returns (R), what action should we take next? The transformer processes
this history using attention mechanisms that help it identify which past experiences are most relevant
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Figure 3.2: The Decision Transformer architecture processes sequences of states, actions, and expected
returns to predict future actions. The model uses attention mechanisms to identify relevant patterns
in past behavior, enabling it to generate appropriate actions for achieving desired outcomes [11].

for the current decision.
As shown in Figure 3.2, the architecture processes this information through several stages. First,

the raw inputs are transformed into a format the model can work with through an embedding process:

E(xt) = Wext + Pt (3.4)

Here, We transforms the input into a higher-dimensional representation (think of this as giving
the model more room to capture subtle patterns), and Pt adds information about when each event
occurred in the sequence. This is similar to how we might remember not just what happened in a
game, but also the order in which events occurred.

The embedded information then flows through a series of attention layers based on the GPT
architecture [60]. These layers allow the model to focus on relevant parts of the history when making
decisions. For example, if the current state looks similar to a situation seen earlier in the sequence,
the model can pay special attention to what actions worked well in that similar situation.

What makes Decision Transformers particularly innovative is their ability to condition behavior
on desired outcomes. By adjusting the return-to-go values during inference, we can guide the model
toward more or less ambitious behavior. This is analogous to telling a human player whether to play
conservatively for a steady score or aggressively for a high score - the same basic skills are applied
differently depending on the goal.

The effectiveness of this approach has been demonstrated across a range of challenging tasks.
Consider the results from testing Decision Transformers on the OpenAI Gym environments, a standard
set of benchmarks for reinforcement learning:

Environment Dataset DT CQL

HalfCheetah-v2 Medium-Expert 86.8 ± 1.3 62.4
Walker2d-v2 Medium-Expert 108.1 ± 0.2 98.7
Hopper-v2 Medium 67.6 ± 1.0 58.0

Table 3.1: Performance comparison between Decision Transformers (DT) and Conservative Q-Learning
(CQL) on standard reinforcement learning benchmarks. Scores are normalized, with higher values
indicating better performance.

These results in Table 3.1 show that Decision Transformers often outperform traditional approaches
like Conservative Q-Learning (CQL). In the HalfCheetah-v2 environment, for example, Decision Trans-
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formers achieve a normalized score of 86.8, substantially higher than CQL’s 62.4. These environments
involve complex physical simulations where an agent must learn to control a robotic system - no small
feat for a model that never actively experiments with the environment.

Even more impressive are the results from Atari game experiments, where Decision Transformers
learned to play games like Breakout effectively just from watching previous gameplay. Using only 1%
of the data typically needed for traditional methods, Decision Transformers achieved a normalized
score of 267.5 on Breakout, significantly outperforming other approaches.

The success of Decision Transformers suggests a promising direction for reinforcement learning
research. By recasting the problem of learning behavior as one of sequence modeling, they open up
new possibilities for leveraging advances in transformer architectures and large-scale sequence models.
This connection between sequence modeling and reinforcement learning, which we’ll explore further
in the next section, may provide a bridge between the powerful pattern-recognition capabilities of
modern language models and the challenges of learning complex behaviors.

3.3 Offline RL as Sequence Modeling

The field of offline reinforcement learning faces a fundamental challenge: how can an agent learn
optimal behavior from pre-recorded data without actively interacting with its environment? While
traditional approaches focus on directly estimating value functions or policies from static datasets,
recent work by Janner et al. [33] has introduced an elegant alternative - treating reinforcement learning
as a sequence modeling problem. This perspective builds upon our earlier discussion of Decision
Transformers, extending the application of sequence modeling techniques to address broader challenges
in offline RL.

To understand this approach, consider how we might view a recorded gameplay session. Rather
than seeing it as a collection of isolated state-action pairs, we can view it as a coherent sequence of
events, much like a story. Mathematically, we represent this sequence as:

p(s1, a1, r1, . . . , sT , aT , rT ) (3.5)

Here, at each timestep t, we record the state of the environment (st), the action taken (at), and the
reward received (rt). This format allows us to capture not just what happened at each moment, but
how events unfold and influence each other over time - crucial information that might be lost when
treating experiences as independent samples.

The Trajectory Transformer, introduced by Janner et al. [33], implements this sequence modeling
perspective using transformer architecture. Just as a language model learns to predict the next word
in a sentence by understanding the context of previous words, the Trajectory Transformer learns to
predict appropriate actions by understanding the context of previous states, actions, and rewards.
This model processes sequences of the form:

(s1, a1, r1, s2, a2, r2, . . . , sT , aT , rT ) (3.6)

What makes this approach particularly powerful is how it handles the temporal relationships
between events. Traditional reinforcement learning methods often struggle with credit assignment -
determining which past actions were responsible for current outcomes. The transformer’s attention
mechanism addresses this challenge naturally by learning to focus on relevant past experiences when
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making decisions, regardless of how far back they occurred.

Trajectory Transformer

Figure 3.3: The Trajectory Transformer architecture processes states, actions, and rewards as a se-
quence. The attention mechanism allows the model to identify and utilize relevant past experiences
when making decisions, enabling effective learning from offline data [33].

This sequence modeling perspective offers several practical advantages beyond those discussed in
our earlier examination of Decision Transformers. Kumar et al. [40] demonstrated that the proba-
bilistic nature of sequence generation enables natural uncertainty estimation - the model can express
varying degrees of confidence in its decisions, crucial for safe deployment in real-world applications.
Additionally, Parisotto et al. [55] showed how the attention mechanism provides an implicit form
of credit assignment, helping the model focus on truly relevant historical information when making
decisions.

The approach particularly shines in environments with sparse rewards, where feedback is infrequent.
Traditional methods might struggle in such scenarios because they rely heavily on immediate reward
signals. In contrast, sequence modeling can learn from entire trajectories, understanding how sequences
of actions eventually lead to delayed rewards. This capability proves especially valuable in real-world
applications where reward signals might be rare or delayed.

Building on these advantages, Reed et al. [62] demonstrated how this sequence modeling approach
enables more efficient learning from limited data. Their work on the Gato architecture showed that
by treating reinforcement learning as sequence modeling, they could leverage techniques from natural
language processing to extract more information from available data, leading to better performance
even with limited task-specific examples.

This conceptual shift from traditional offline RL to sequence modeling represents more than just
a technical innovation - it provides a new way of thinking about how agents can learn from recorded
experiences. By treating an agent’s experience as a coherent sequence rather than isolated events,
we can better capture the temporal dynamics and long-term dependencies that characterize complex
tasks. This perspective continues to inspire new approaches in reinforcement learning, pushing the
boundaries of what’s possible in offline learning scenarios.

4 Transformers in Multi-Agent Reinforcement Learning

As we’ve seen in previous sections, transformer architectures excel at modeling relationships between
sequences of information. This capability becomes particularly valuable in multi-agent reinforcement
learning (MARL), where agents must coordinate their actions based on observations of each other’s
behavior. Traditional MARL approaches often struggle with three key challenges: how to effectively
share information between agents, how to scale to larger numbers of agents, and how to generalize
across different team compositions. This chapter examines how transformers can address each of
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these challenges through three innovative approaches: transformer-based value function decomposition,
universal policy decoupling, and sequence modeling for MARL.

5 Transformers in Multi-Agent Reinforcement Learning

The coordination of multiple learning agents presents unique challenges beyond those faced in single-
agent reinforcement learning. A critical challenge is credit assignment - determining how each agent’s
individual actions contribute to the team’s success. As we saw in previous chapters, transformer ar-
chitectures excel at modeling relationships between sequences and capturing long-range dependencies.
This chapter examines how these capabilities can be leveraged to address fundamental challenges in
multi-agent reinforcement learning (MARL).

5.1 Transformer-based Value Function Decomposition

Consider the challenge faced by a team of robots coordinating to defeat opponents in a real-time
strategy game. Each robot needs to make individual tactical decisions, but these decisions must be
coordinated to achieve victory. This scenario raises a fundamental question: how can we enable agents
to make independent decisions while ensuring their actions combine effectively toward the team’s
goals?

Value function decomposition provides a solution by breaking down the team’s overall value func-
tion into individual components that can guide each agent’s decisions. Traditional approaches like
QMIX [61] use fixed architectures with strict monotonicity constraints - ensuring that an improve-
ment in any agent’s individual value estimate leads to an improvement in the team’s value. However,
this constraint can be overly restrictive, preventing the representation of more complex coordination
patterns.

TransMix, introduced by Khan et al. [37], provides a more flexible approach using transformers.
At its core, TransMix learns a mixing function that combines individual agent values (Q1, Q2, ..., Qn)
into a team value (Qtot):

Qtot = f(Q1, Q2, ..., Qn) (5.1)

The innovation lies in how this mixing function f is implemented. Rather than using a fixed
monotonic network, TransMix employs a stack of transformer encoder layers that process individual
agent Q-values along with their action-observation histories (hti) and global state information (St).
This allows the model to learn rich patterns of agent interaction that adapt to the current situation.

As shown in Figure 5.1, TransMix first processes the global state through self-attention to identify
important state features. These are then combined with individual agent values and histories through
a series of additive attention operations:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (5.2)

The use of additive attention, rather than the standard scaled dot-product attention, provides
both computational efficiency and improved training stability. The model uses 4 attention heads with
embedding dimension 512 and hidden dimension 2048, allowing it to capture different aspects of agent
coordination while maintaining reasonable computational requirements.
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Figure 5.1: The TransMix architecture consists of three main components: (a) a transformer encoder
that processes agent values and states, (b) the overall mixing framework that combines individual
contributions, and (c) GRU-based networks that compute individual agent values. The transformer’s
ability to model relationships between all inputs enables more sophisticated coordination than fixed
mixing networks. Adapted from Khan et al. [37].

Khan et al. [37] demonstrated TransMix’s effectiveness on the StarCraft Multi-Agent Challenge
(SMAC), where teams of units must coordinate to defeat opposing forces. In complex scenarios like
3s5z_vs_3s6z (3 Stalkers and 5 Zealots vs 3 Stalkers and 6 Zealots), TransMix achieved a 96.9%
win rate compared to QMIX’s 83.7%. This improvement stems from TransMix’s ability to learn
sophisticated coordination strategies that adapt based on unit types, positions, and the evolving
battle situation.

Notably, TransMix also showed superior robustness to noisy state information. When global states
were corrupted with Gaussian noise to simulate imperfect information, TransMix maintained higher
performance than both QMIX and QPLEX across multiple scenarios. For example, in the 3s5z scenario,
TransMix achieved an 84.2% win rate under noise compared to QMIX’s 65.8%, demonstrating its ability
to maintain effective coordination even with degraded information.

The success of TransMix highlights several key advantages of transformer-based approaches in
MARL. First, the attention mechanism’s ability to dynamically weight different sources of information
allows for more nuanced credit assignment than fixed mixing architectures. Second, the model’s
permutation invariance means it doesn’t depend on specific agent orderings, making it more flexible
than previous approaches. Finally, the transformer’s ability to process multiple input types (Q-values,
histories, and states) in a unified way enables it to learn rich patterns of agent interaction that would
be difficult to capture with simpler architectures.

5.2 Universal Policy Decoupling with Transformers (UPDeT)

One of the key challenges in multi-agent reinforcement learning is developing policies that can adapt to
varying numbers and types of agents without requiring retraining. The Universal Policy Decoupling
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Transformer (UPDeT) approach, introduced by Hu et al. [29], addresses this challenge through an
innovative architecture that separates agent-specific processing from shared coordination mechanisms.
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Figure 5.2: Overview of the UPDeT framework. The model replaces the commonly used GRU/LSTM-
based individual value function with a transformer-based function. Actions are separated into action
groups according to observations, allowing the model to scale flexibly with different team sizes. [29]

As illustrated in Figure 5.2, UPDeT consists of three main components that work together: individ-
ual encoders that process each agent’s observations, a shared transformer that enables coordination,
and a flexible policy head that generates actions. This architecture allows UPDeT to handle het-
erogeneous teams where agents may have different capabilities or roles. The figure shows how the
transformer processes observations and generates appropriate actions by separating them into groups,
enabling flexible scaling with team size.

The key innovation lies in how UPDeT processes information from multiple agents. Rather than
treating all agent observations as a single input, it uses agent-specific encoders that transform each
agent’s observations into a suitable representation:

π(ai|oi,o−i) = PolicyHead(Transformer(Encoderi(oi), {Encoderj(oj)}j ̸=i)) (5.3)

Here, oi represents agent i’s observations, o−i captures the observations of all other agents, and
ai is agent i’s action. This formulation allows each agent to maintain its individual perspective while
still coordinating with teammates.

The transformer component employs a modified attention mechanism that explicitly differentiates
between an agent’s own information and that of others:

Attention(Qi,K, V ) = softmax
(
QiK

T

√
dk

+Mi

)
V (5.4)

where Mi represents an agent-specific mask. This masking mechanism helps the model distinguish
between self-attention and attention to other agents’ information, enabling more nuanced coordination
strategies.

Looking at the architecture in Figure 5.2, we can see how UPDeT’s transformer backbone allows
the model to identify relevant relationships between agents, while the decoupled structure ensures that
adding or removing agents doesn’t require architectural changes. This design directly addresses the
scalability challenges faced by traditional approaches that rely on fixed network architectures.

Empirical evaluations demonstrate UPDeT’s effectiveness across diverse scenarios. In the Multi-
Agent Particle Environment (MAPE) cooperative navigation task, UPDeT achieved significantly better
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performance than baseline approaches like MADDPG and QMIX, even when tested with different
numbers of agents than it was trained on. For instance, when trained with 3 agents and tested with
5, UPDeT maintained substantially higher average rewards than previous methods.

More impressively, in StarCraft II micromanagement scenarios, UPDeT exhibited strong zero-
shot generalization capabilities. Models trained on 5v5 unit configurations maintained over 90% win
rates when tested on 10v10 scenarios - a significant achievement given the increased complexity of
coordinating larger teams.

This generalization capability stems from UPDeT’s decoupled architecture, which allows it to pro-
cess information from each agent independently while still maintaining coordinated behavior through
the shared transformer. The attention mechanisms provide insights into how agents prioritize infor-
mation, making the system more interpretable than traditional approaches.

These results suggest that UPDeT represents a significant step toward more flexible and scalable
multi-agent systems. Its ability to handle teams of varying sizes and compositions without retrain-
ing makes it particularly valuable for real-world applications where agent configurations may change
dynamically.

5.3 MARL as a Sequence Modeling Problem

While TransMix and UPDeT demonstrate the benefits of transformer architectures for value decom-
position and policy generalization respectively, Wen et al. [86] propose a more fundamental reconcep-
tualization: treating the entire MARL problem as sequence prediction. This perspective shifts focus
from learning value functions or policies directly to learning the underlying patterns in successful
multi-agent trajectories.

The key insight lies in recognizing that effective coordination requires understanding both the
temporal structure of interactions and the causal relationships between agent actions. While previous
approaches handle these aspects separately - with recurrent networks for temporal dependencies and
attention mechanisms for agent relationships - sequence modeling provides a unified framework for
both.

Consider a team of N agents operating over T timesteps. Traditional MARL approaches would
attempt to learn a policy πθ(a

i
t|oit) for each agent i, potentially with some communication mechanism.

In contrast, the sequence modeling perspective treats the entire interaction history as a sequence to
be modeled and extended:

τ = [(s1, {oi1}Ni=1, {ai1}Ni=1, r1), ..., (sT , {oiT }Ni=1, {aiT }Ni=1, rT )] (5.5)

This representation captures not just the states, observations, and actions, but their evolution over
time. The learning objective becomes predicting future elements of this sequence conditioned on past
elements:

p(τt+1:T |τ1:t) =
T∏

k=t+1

p(sk, {oik}, {aik}, rk|τ1:k−1) (5.6)

This formulation reveals a crucial difference from previous transformer-based approaches. Rather
than using attention merely as a mechanism for information aggregation, here it serves to identify
predictive patterns across both time and agents. The attention computation at each layer l and
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position t becomes:

hlt =
∑
k≤t

αl
tkW

l
V h

l−1
k , αl

tk = softmax

(
(W l

Qh
l−1
t )T (W l

Khl−1
k )

√
d

)
(5.7)

where W l
Q, W l

K , and W l
V are learned parameters, and hlt represents the hidden state at position

t and layer l. The crucial innovation is that ht can represent any element of the trajectory - a state,
an observation, an action, or a reward - allowing the model to learn arbitrary predictive relationships
between these elements.

Figure 5.3: The MAT architecture processes trajectories through an encoder-decoder structure. The
encoder builds representations that capture both temporal and inter-agent dependencies, while the
decoder generates future trajectory elements through masked attention. This unified treatment of
temporal and agent relationships enables more sophisticated coordination strategies [86].

To implement this approach effectively, Wen et al. [86] introduced the Multi-Agent Transformer
(MAT) architecture shown in Figure 5.3. MAT consists of an encoder that processes past trajectory
elements and a decoder that generates future elements. The encoder employs bidirectional attention
to build rich representations of the interaction history:

zt = Encoder(τ1:t) = MultiHead(LayerNorm(ht + MLP(ht))) (5.8)

The decoder then generates future trajectory elements autoregressively, using masked attention to
maintain causality:

p(τt|τ1:t−1) = Decoder(z1:t−1) = softmax(WoMultiHead(Mask(z1:t−1))) (5.9)

This architecture offers several theoretical advantages over previous approaches. First, it naturally
handles partial observability by allowing attention to span the entire interaction history. Second, it
provides a principled way to incorporate demonstrations or prior experiences through pre-training on
trajectory data. Finally, it enables more sophisticated reward prediction and planning by explicitly
modeling the relationship between actions and future rewards.
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The training process introduces unique challenges not present in previous transformer-based MARL
approaches. The model must learn to predict not just actions but entire trajectory segments, requiring
careful handling of the different element types and their relationships. Wen et al. [86] address this
through a hierarchical loss function:

L = λsLstate + λoLobs + λaLaction + λrLreward (5.10)

where each component focuses on predicting its respective element type, and the λ coefficients
balance their contributions.

Empirical evaluations demonstrate the benefits of this unified approach. In the StarCraft II
3s5z_vs_3s6z scenario, MAT achieved a 98.7% win rate compared to 96.9

The sequence modeling perspective also enables new theoretical analyses. Wen et al. [86] prove that
under certain regularity conditions, the model’s predictive accuracy bounds its policy performance:

J(πθ) ≥ J∗ − 2
√
2RmaxT

√
Eτ∼π∗ [− log pθ(τ)] (5.11)

where J(πθ) is the expected return of the learned policy, J∗ is the optimal return, and Rmax is the
maximum possible reward. This provides theoretical justification for using sequence prediction as a
training objective.

These results suggest that treating MARL as sequence modeling offers more than just an alternative
training approach - it provides a fundamentally different way of understanding and implementing multi-
agent coordination. By unifying temporal and agent-wise relationships in a single predictive framework,
it enables more sophisticated coordination strategies while maintaining theoretical guarantees.

6 Advanced Applications and Techniques

6.1 Transformer World Models in RL (TransDreamer)

The integration of transformer architectures into reinforcement learning (RL) has led to significant
advancements in the field, particularly in the domain of model-based RL. One notable example of this
integration is TransDreamer, introduced by Chen et al. [9]. This model builds upon the success of the
Dreamer framework [22, 23] by incorporating transformer-based world models to enhance long-term
dependency modeling and complex reasoning in RL tasks.

TransDreamer’s key innovation lies in its use of a Transformer State-Space Model (TSSM), which
replaces the Recurrent State-Space Model (RSSM) used in the original Dreamer. The TSSM leverages
the power of transformer architectures to model the dynamics of the environment more effectively,
particularly in scenarios requiring long-term memory and complex temporal dependencies.

The TSSM consists of several components that work in concert to create a powerful world model:

ht = ftransformer(z1:t−1, a1:t−1) (6.1)

Here, ht represents the deterministic state at time t, computed by applying a transformer function
to the sequence of past stochastic states z1:t−1 and actions a1:t−1. This allows the model to directly
access and reason about past states and actions, unlike recurrent models which compress all past
information into a single hidden state.
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The stochastic state zt is modeled using a representation model and a transition model:

zt ∼ q(zt|xt) (Representation Model) (6.2)

ẑt ∼ p(ẑt|ht) (Transition Model) (6.3)

Where xt is the observation at time t. The representation model infers the current stochastic state
given the current observation, while the transition model predicts the next stochastic state given the
current deterministic state.

One of the key differences between TSSM and RSSM is in the representation model. TSSM uses
a "myopic" representation model that depends only on the current observation xt, rather than on
both xt and ht as in RSSM. This design choice allows for parallel computation of stochastic states,
significantly improving computational efficiency.

TransDreamer also includes observation and reward prediction models:

x̂t ∼ p(x̂t|ht, zt) (Observation Model) (6.4)

r̂t ∼ p(r̂t|ht, zt) (Reward Model) (6.5)

These models allow TransDreamer to imagine future trajectories, a crucial capability for model-
based RL.

The training of TransDreamer follows a similar pattern to Dreamer, alternating between world
model learning and policy learning. The world model is trained by maximizing the evidence lower
bound (ELBO), while the policy is trained on imagined trajectories generated by the world model.

One of the key advantages of TransDreamer is its ability to handle tasks requiring long-term mem-
ory and complex reasoning. The authors demonstrate this through experiments on a novel "Hidden
Order Discovery" task, where an agent must deduce and follow a hidden sequence in an environment.
TransDreamer consistently outperforms Dreamer on these tasks, showcasing its superior ability to
model and utilize long-range dependencies.

Moreover, TransDreamer shows comparable performance to Dreamer on simpler tasks that don’t
require long-term memory, such as certain Atari games and DeepMind Control Suite tasks. This
indicates that the transformer-based architecture doesn’t compromise performance on simpler tasks
while providing significant benefits for more complex scenarios.

The success of TransDreamer highlights the potential of transformer architectures in model-based
RL. By enabling more effective modeling of long-term dependencies and complex temporal relation-
ships, transformer-based world models open up new possibilities for tackling challenging RL problems
that require sophisticated reasoning and memory capabilities.

6.2 On-Policy RL with Transformers (PoliFormer)

The integration of transformer architectures with on-policy reinforcement learning (RL) represents a
significant advancement in the field of embodied AI, particularly for navigation tasks. PoliFormer,
introduced by Zeng et al. [94], demonstrates the potential of this approach by achieving state-of-the-
art performance on multiple navigation benchmarks. This section explores the key innovations and
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methodologies that enable effective on-policy RL training with transformer models.
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Figure 6.1: PoliFormer architecture: a fully transformer-based policy model for navigation tasks. At
each timestep t, the model processes an ego-centric RGB observation it through a vision transformer
to extract visual representations rt. These are combined with goal features g (and optional bounding
box features gtb) in a transformer state encoder to produce state features st. A causal transformer
decoder with KV-cache models the state belief bt over time, enabling efficient temporal reasoning.
The model outputs action logits at and value estimations et via linear actor and critic heads. The
KV-cache strategy prevents recomputation of past timesteps, significantly speeding up both training
and inference [94].

PoliFormer employs a transformer-based architecture consisting of three main components, as
illustrated in Figure 6.1: a frozen vision transformer backbone, a transformer state encoder, and a
causal transformer decoder. This can be expressed as:

PoliFormer(it, g) = fdecoder(fencoder(fvision(it), g)) (6.6)

where it is the input observation at time t, g is the goal specification, fvision is the vision transformer
backbone based on DINOv2 [53], fencoder is the transformer state encoder, and fdecoder is the causal
transformer decoder.

A key innovation in PoliFormer is the use of a KV-cache technique in the causal transformer
decoder. This approach addresses the computational challenges associated with training transformer
models in an on-policy RL setting. The KV-cache allows the model to store past key and value
matrices, reducing the computational complexity from quadratic to linear in sequence length:

Complexity = O(t) instead of O(t2) (6.7)

where t is the sequence length. This optimization enables efficient training and inference, making
it feasible to use transformer models in on-policy RL scenarios.

PoliFormer achieves its impressive performance through a multi-faceted approach to scaling up
the training process. The architecture scales to hundreds of millions of parameters, leveraging the
representational power of large transformer models. Training is distributed across multiple machines,
utilizing 32 GPUs and 512 CPU cores to collect 192-384 parallel rollouts. The effective batch size
is increased during training by extending the rollout length from 32 to 128 steps. Additionally, the
simulation environment is optimized for faster scene loading and physics approximations, reducing
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training time by 42%. This scaled-up training approach allows PoliFormer to be trained on hundreds
of millions of environment interactions, leading to superior performance and generalization capabilities.

The model is trained using the PPO algorithm [65], with modifications to accommodate the trans-
former architecture:

LPPO(θ) = Et[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)] (6.8)

where rt(θ) is the probability ratio between the new and old policies, Ât is the estimated advantage
at time t, and ϵ is the clipping parameter. The training process incorporates reward shaping to
encourage efficient navigation, combining penalties for inefficient actions, rewards for task completion,
and incentives for reducing distance to the goal.

PoliFormer demonstrates remarkable performance across multiple navigation benchmarks, achiev-
ing significant improvements over previous state-of-the-art methods. For example, on the CHORES-S
benchmark, PoliFormer achieves an 85.5% success rate, a 28.5% absolute improvement over the pre-
vious best model. Moreover, PoliFormer exhibits strong zero-shot transfer capabilities to real-world
environments, outperforming baselines on both LoCoBot and Stretch RE-1 embodiments without any
real-world fine-tuning.

These results highlight the potential of combining transformer architectures with on-policy RL for
complex navigation tasks. The success of PoliFormer suggests that further scaling of model capacity,
training data, and compute resources may lead to even more capable navigation agents in the future.
As research in this area progresses, we can expect to see continued improvements in the performance
and generalization capabilities of transformer-based RL models, potentially revolutionizing the field
of embodied AI and autonomous navigation.

6.3 In-Context RL via Supervised Pretraining

In-context reinforcement learning (ICRL) has emerged as a promising approach to leverage the power of
large language models for decision-making tasks. This section explores the use of supervised pretraining
to enable transformers to perform ICRL effectively.

The key idea behind supervised pretraining for ICRL is to train a transformer model on a dataset
of offline trajectories. These trajectories consist of sequences of states, actions, and rewards from
various environments. The transformer learns to predict actions based on the observed states and
previous interactions, effectively learning to perform reinforcement learning in-context.

Formally, we define a trajectory DT = (s1, a1, r1, . . . , sT , aT , rT ), where st, at, and rt represent
the state, action, and reward at time step t, respectively. The transformer is trained to maximize the
log-likelihood of the observed actions given the previous states and actions:

θ̂ = argmax
θ∈Θ

1

n

n∑
i=1

T∑
t=1

logAlgθ(ā
i
t|Di

t−1, s
i
t) (6.9)

where θ represents the transformer parameters, n is the number of trajectories in the dataset, and
āit is the expert action for the i-th trajectory at time t.

This framework encompasses several variants of supervised pretraining. In Algorithm Distillation,
introduced by Laskin et al. [41], the expert algorithm and the context algorithm are identical. The
transformer learns to imitate a specific reinforcement learning algorithm, such as Q-learning or SARSA,
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across various environments. Decision-Pretrained Transformers (DPT), proposed by Lee et al. [42],
use an expert algorithm that generates optimal actions for the Markov Decision Process (MDP). The
transformer learns to approximate the optimal policy for any given environment.

Under certain assumptions, the supervised pretraining approach provides strong theoretical guar-
antees. The main result shows that the learned transformer will imitate the conditional expectation
of the expert algorithm given the observed trajectory. Specifically, with high probability:

RΛ,Algθ̂(T )−RΛ,AlgE (T ) ≤ cT 2
√
R

(√
log[NΘ · T/δ]

n
+
√
εreal

)
(6.10)

where RΛ,Alg(T ) is the expected cumulative reward, R is a distribution ratio factor, NΘ is the
covering number of the transformer class, n is the number of training trajectories, and εreal is a
realizability error term.

This bound demonstrates that the performance of the learned transformer approaches that of the
expert algorithm as the number of training trajectories increases, with additional factors accounting
for the complexity of the transformer class and the distribution mismatch between the expert and
offline algorithms.

The supervised pretraining approach offers several advantages for ICRL. It allows for efficient
learning from offline datasets, potentially leveraging large amounts of previously collected data. The
learned transformer can adapt to new environments without further training, making it suitable for
rapid deployment in various scenarios. However, there are limitations to consider. The performance
of the learned transformer is bounded by that of the expert algorithm used for training. In the
case of Algorithm Distillation, if the context algorithm performs poorly, the learned transformer will
also perform poorly. For DPT, while the transformer can learn to approximate optimal policies, its
performance may be affected by the distribution mismatch between the offline data and the expert’s
optimal actions.

Furthermore, the generalization capabilities of the pretrained transformer to out-of-distribution
instances, such as environments with significantly different dynamics or reward structures, remain
an open question and an area for future research. Recent work by Kumar et al. [40] has begun to
explore these challenges, proposing methods to improve the robustness and generalization of pretrained
transformers in ICRL settings.

7 Large Language Models in MARL

7.1 LLMs as Knowledge Sources for RL Agents

The integration of Large Language Models (LLMs) as knowledge sources for reinforcement learning
(RL) agents has shown promise in enhancing sample efficiency and generalization capabilities. This
section explores the mathematical foundations and empirical results of this approach, focusing on two
key frameworks: Language-INtegrated Value Iteration (LINVIT) [97] and Knowledgeable Agents from
Language Model Rollouts (KALM) [54].

LINVIT formalizes the use of LLMs as policy priors in RL, demonstrating how this approach can
improve sample efficiency. The algorithm is based on a regularized Markov Decision Process (MDP),
where the regularization term is derived from the LLM policy. Let π∗ be the optimal policy for the
original MDP, πLLM be the policy derived from the LLM, and λ be a regularization parameter. The
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regularized value function V πLLM ,λ,h is defined as:

V πLLM ,λ,h(sh) = Eah∼πh(·|sh)

[
QπLLM ,λ,h(sh, ah)− λKL(πh(·|sh)∥πLLM

h (·|sh))
]

(7.1)

where QπLLM ,λ,h is the regularized Q-function and KL denotes the Kullback-Leibler divergence.
The key theoretical result of LINVIT is that the number of samples required to achieve ϵ-optimality

is proportional to the KL divergence between π∗ and πLLM . Specifically, when KL(π∗∥πLLM ) ≤ ϵLLM ,
setting λ = ϵ/(2ϵLLM ) and the number of iterations
T = CH6SA4 log2(HSA/δ)/ϵ2 (for some constant C), we have:

V ∗
1 (s1)− V π̂

1 (s1) ≤ ϵ (7.2)

with probability at least 1− δ. This result suggests that when the LLM policy closely aligns with
the optimal policy, the sample complexity can be significantly reduced.

The practical implementation of these ideas is demonstrated in the KALM method. KALM uses
an LLM to generate synthetic rollouts for novel skills, which are then used to train an RL agent.
The process involves three key steps: LLM grounding, rollout generation, and skill acquisition, as
illustrated in Figure 7.1.

LLM
Ground

Generate

Offline RL
Derive

Policy 𝜋(𝑠, 𝐺)

LLM Grounding
(A)

Rollout Generation
(B)

Skill Acquisition
(C)

Offline data
𝑠!", 𝑎!", … , 𝐺" "

Generated data
!𝑠!", !𝑎!", … , G" "

Figure 7.1: Overall procedure of KALM, consisting of LLM grounding, rollout generation, and skill
acquisition modules [54].

Experimental results from KALM demonstrate the efficacy of this approach across various task
types. Figure 7.2 shows the training curves for different methods on tasks from the offline dataset,
rephrased goals, and unseen tasks of varying complexity.
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Figure 7.2: Training curves comparing different methods on various task types [54].

The results reveal several key insights. On tasks present in the offline dataset, KALM-augmented
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methods (BC+KALM and CQL+KALM) achieve higher success rates compared to their base coun-
terparts (BC and CQL), with CQL+KALM reaching approximately 70% success rate versus 60% for
standard CQL [54]. For rephrased goals, the performance gap widens, with KALM-based methods
achieving around 45% success rate compared to 30-35% for baseline methods. This demonstrates
improved robustness to linguistic variations in task specifications.

On unseen easy tasks, KALM-based methods show a marked improvement, reaching 30-35% success
rate versus 15-20% for baselines, indicating enhanced generalization to novel, simple tasks. For unseen
hard tasks, while overall performance is lower due to task complexity, KALM-augmented methods still
outperform baselines by a factor of 2-3, achieving 6-8% success rate compared to 2-4% for standard
methods [54].

These results empirically support the theoretical predictions of improved sample efficiency and
generalization. The LLM-generated rollouts enable the RL agent to learn from a more diverse set of
experiences, leading to better performance across various task types, especially those not present in
the original dataset.

The success of KALM can be attributed to its effective grounding of the LLM in the environment,
allowing it to generate meaningful rollouts for novel tasks. This aligns with the theoretical framework of
LINVIT, where a well-grounded LLM policy that closely matches the optimal policy leads to improved
sample efficiency [97].

The use of LLMs as knowledge sources for RL agents offers a promising approach to enhancing
sample efficiency and generalization capabilities. The theoretical foundations provided by LINVIT and
the practical implementation demonstrated by KALM show how LLMs can be effectively integrated
into RL frameworks, paving the way for more adaptable and capable artificial agents.

7.2 LLM-guided Reward Design (Eureka)

Reward design is a critical challenge in reinforcement learning (RL), often requiring significant human
expertise and trial-and-error. Recent advancements in large language models (LLMs) have opened new
avenues for automating this process. EUREKA (Evolution-driven Universal REward Kit for Agent)
stands out as a pioneering approach that leverages LLMs to generate human-level reward functions
across a diverse range of robotic tasks [47].

EUREKA frames the reward design problem as follows: given a world model M = (S,A, T ) with
state space S, action space A, and transition function T , the goal is to find a reward function R ∈ R
such that the policy π := AM (R) that optimizes R achieves the highest fitness score F (π). Here,
AM (·) is a learning algorithm that outputs a policy optimizing the given reward in the MDP (M,R),
and F is a task-specific fitness function.

The EUREKA framework operates through three key components: environment as context, evolu-
tionary search, and reward reflection. The environment as context component feeds the raw environ-
ment code directly into the LLM, allowing it to understand the task’s state and action spaces without
requiring task-specific prompts. The evolutionary search implements an iterative improvement process
within the LLM’s context window, enabling in-context learning to refine reward functions. The reward
reflection component provides automated feedback on the reward function’s effectiveness, guiding the
LLM in generating improved versions.

Figure 7.3 provides an overview of EUREKA’s architecture. The process begins by generating an
initial reward function based on the environment code and task description. This function is then
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Figure 7.3: Overview of EUREKA’s architecture, illustrating the iterative process of reward function
generation and improvement [47].

evaluated in the RL environment, and the resulting performance metrics are used to create a reward
reflection. The LLM uses this reflection to propose new, potentially improved reward functions. This
process is repeated iteratively, allowing for continuous refinement of the reward function.

Algorithm 6 EUREKA Algorithm for LLM-driven Reward Function Design
Require: Task description l, environment code M , coding LLM LLM, fitness function F , initial

prompt prompt
Ensure: Optimized reward function REureka
1: for N iterations do ▷ Iterate for N generations to evolve reward functions
2: Sample K reward codes: R1, ..., RK ∼ LLM(l,M, prompt) ▷ Generate K candidate reward

functions
3: Evaluate reward candidates: s1 = F (R1), ..., sK = F (RK) ▷ Evaluate each candidate’s

performance
4: Update prompt with reflection:

prompt← prompt : Reflection(Rn
best, s

n
best) ▷ Add reflection on best performer

5: Update EUREKA reward:
REureka, sEureka = (Rn

best, s
n
best), if snbest > sEureka ▷ Track best reward found

6: end for
7: return REureka ▷ Return the best reward function discovered

EUREKA has shown remarkable success across a diverse suite of 29 robotic environments, including
10 distinct robot morphologies. It outperformed human-engineered rewards on 83% of the tasks, with
an average normalized improvement of 52%. Figure 7.4 illustrates EUREKA’s performance compared
to baselines across various tasks.

One of EUREKA’s most significant achievements is its ability to solve complex dexterous ma-
nipulation tasks that were previously infeasible with manual reward engineering. A prime example
is the pen spinning task, where EUREKA, combined with curriculum learning, enabled a simulated
anthropomorphic hand to perform rapid pen spinning maneuvers for the first time.

EUREKA’s effectiveness stems from its ability to generate novel, interpretable reward functions
that often differ significantly from traditional human-designed rewards. Analysis of the correlation
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Figure 7.4: Performance comparison of EUREKA vs baselines across various robotic tasks [47].

between EUREKA-generated and human-engineered rewards reveals that EUREKA frequently dis-
covers unconventional yet highly effective reward structures. This is particularly pronounced in more
complex tasks, where human intuition may fall short.

To assess the novelty of EUREKA rewards, the authors computed the Pearson correlation between
EUREKA and human rewards on various tasks. The correlation coefficient ρ is calculated as:

ρ =
cov(REUREKA, RHuman)

σREUREKAσRHuman

(7.3)

where cov is the covariance and σ is the standard deviation. Lower correlation values indicate
more novel reward structures.

Moreover, EUREKA demonstrates flexibility in incorporating human feedback, enabling a form of
reward refinement that aligns with human preferences. This feature allows for the generation of reward
functions that not only optimize task performance but also adhere to desired behavioral characteristics
that may be difficult to specify mathematically.

Despite its successes, EUREKA has limitations that point to future research directions. Current
evaluations are primarily in simulated environments, and while preliminary real-world results are
promising, further work is needed to fully bridge the sim-to-real gap. Additionally, EUREKA’s reliance
on a well-defined task fitness function may limit its applicability in scenarios where desired behaviors
are difficult to quantify.

7.3 Reasoning and Acting with Language Models

The integration of reasoning and acting capabilities in large language models (LLMs) has emerged
as a promising approach to enhance their problem-solving abilities. While previous research has
primarily focused on these aspects separately, recent work has aimed to synergize reasoning and acting
within a unified framework. This section explores five significant contributions in this domain: the
ReAct framework, the Reflexion approach, the ADAPT algorithm, the REFINER framework, and the
Retroformer architecture.

The ReAct framework, proposed by Yao et al. [90], builds upon the foundation of chain-of-thought
prompting [85] and extends it to incorporate both verbal reasoning traces and task-specific actions.
This interleaved approach allows for greater synergy between reasoning and acting processes. In
ReAct, reasoning traces serve multiple purposes: they help induce, track, and update action plans,
handle exceptions, and maintain a working memory of the task state. Simultaneously, actions enable
the model to interface with external sources of information, gathering additional data to support
reasoning.

Formally, ReAct augments the agent’s action space to include both physical actions and language-
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based thoughts or reasoning traces. The expanded action space is defined as Â = A ∪ L, where
A represents the original action space and L denotes the space of language. A thought ât ∈ L

aims to compose useful information by reasoning over the current context ct, updating the context
to ct+1 = (ct, ât) to support future reasoning or acting. This formulation builds on the concept of
language-conditioned policies, which have shown promise in robotic task planning [1].

Building upon the foundations laid by ReAct, Shinn et al. [67] introduced Reflexion, a novel
framework that reinforces language agents through linguistic feedback rather than traditional weight
updates. Reflexion agents verbally reflect on task feedback signals and maintain their reflective text
in an episodic memory buffer to induce better decision-making in subsequent trials. This approach is
flexible enough to incorporate various types and sources of feedback signals, including scalar values,
free-form language, and both external and internally simulated feedback.

The Reflexion framework consists of three distinct models: an Actor (Ma) that generates text and
actions, an Evaluator (Me) that scores the outputs produced by Ma, and a Self-Reflection model (Msr)
that generates verbal reinforcement cues to assist the Actor in self-improvement. The process involves
generating trajectories, evaluating them, and producing self-reflections that are stored in memory for
future use. Figure 7.5 provides a schematic representation of the Reflexion framework.

ActionObs / Reward

Trajectory
(short-term memory)

Experience
(long-term memory)

Self-reflection (LM)

Agent

Actor (LM)

Environment

Evaluator (LM)

External feedback

Internal
feedback

Reflective
text

Figure 7.5: Schematic representation of the Reflexion framework, showing the interaction between the
Actor, Evaluator, Self-Reflection model, Environment, and Memory components [67].

Recently, Prasad et al. [57] introduced ADAPT (As-Needed Decomposition and Planning for
complex Tasks), a recursive algorithm that dynamically decomposes complex tasks when the language
model acting as an executor encounters challenges. ADAPT builds upon the strengths of ReAct and
Reflexion while addressing some of their limitations, particularly in handling task complexity and
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execution failures.
ADAPT employs separate planner and executor LLM modules within its framework. The executor

iteratively interacts with the environment via actions generated by the LLM, while the planner is
responsible for breaking down complex tasks into smaller sub-tasks. The key innovation of ADAPT
lies in its recursive structure, which enables dynamic adaptation to both task complexity and LLM
capability.

Algorithm 7 ADAPT Algorithm for Dynamic Task Decomposition
1: function ADAPT(Task T , Current depth k)
2: if k > dmax then ▷ Check recursion depth limit return False
3: end if
4: completed← executorLLM (T ) ▷ Attempt direct task execution
5: if completed is False then ▷ If execution fails, decompose task
6: P, logic← plannerLLM (T ) ▷ Generate subtasks and composition logic
7: O ← {ADAPT (Tsub, k + 1)|Tsub ∈ P} ▷ Recursively solve subtasks
8: completed← logic(O) ▷ Combine subtask results using composition logic
9: end ifreturn completed ▷ Return overall task completion status

10: end function

Algorithm 7 presents the pseudo-code for the ADAPT framework. The algorithm recursively
decomposes tasks until a maximum depth dmax is reached or the task is successfully completed. This
recursive structure allows ADAPT to dynamically adapt to execution failures by further decomposing
complex sub-tasks via the planner.

Figure 7.6 provides a schematic representation of the ADAPT framework, illustrating the interac-
tion between the controller, planner, and executor components.

[LLM] Think:  Input assumption: I am carrying a
mug. Now I need to verify this.

[LLM]> inventory

[LLM]> go to sinkbasin 1

[LLM]> clean mug 1 with sinkbasin 1

[LLM] Think: I cleaned the mug.Task completed!

ADaPT(Task, k)

Executor(Task)

Success?

Planner(Task)

Step 2

Step 1

Step 3

ADaPT(Step1,k+1)

ADaPT(Step2,k+1)

ADaPT(Step3,k+1)

Task: Put a clean mug on desk

True
False

Logic

True
False

Clean the mugExecutor(           )

OK.

You are carrying: a mug 1

You reached loc 13, you see ...

You clean mug 1

# Think: To do this task, I first need to find a
mug, then clean, it and put it on the desk. I
need to perform these tasks sequentially.
Step 1: Find and take a mug AND
# Think: Now I found a mug, I will clean it.
Step 2: Clean the mug with sinkbasin AND
# Think: Now I cleaned the mug, I will put
the clean mug on the desk.
Step 3: Put clean mug on desk

 LLM

Planner(           )Put a clean
mug on desk

Controller

AND

Figure 7.6: Schematic representation of the ADAPT framework, showing the interaction between the
Controller, Planner, and Executor components [57].

Extending this line of research, Paul et al. [56] introduced REFINER, a framework designed to
improve the reasoning abilities of language models through an iterative feedback loop. REFINER
focuses on providing structured and fine-grained feedback on intermediate reasoning steps, which has
shown to result in significant performance gains across various reasoning tasks.

The REFINER framework consists of two main components: a generator model and a critic model.
The generator is responsible for producing intermediate hypotheses and final answers, while the critic
evaluates these hypotheses and provides detailed feedback. This interaction allows the generator to
iteratively refine its reasoning process based on the critic’s input.

One of the key innovations of REFINER is its ability to provide fine-grained feedback on specific
reasoning errors. The authors define task-specific error types, such as incorrect numbers or opera-
tors in mathematical word problems, or logical inconsistencies in natural language reasoning tasks.
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This granular approach to feedback allows for more targeted improvements in the model’s reasoning
capabilities.

Input Generator (𝜃)

Textual 
feedback (f)

Context (𝑥)	+hypothesis (𝑧’)		+	feedback	(𝑓)

Critic 𝛽 

Exploration

hypothesis1 hypothesis 2 hypothesis n…

… 🤖

𝑥

𝑧’

🤖
Critic 𝛽 

Context (𝑥) + hypothesis (𝑧’)

Step 1: Train critic model

Textual feedback (𝑓!"#!)

Step 2: Train generator model

Figure 7.7: Detailed representation of the REFINER framework, showing the two-step process of
training the critic model and the generator model. The critic model learns to provide textual feedback
on hypotheses, while the generator model learns to incorporate this feedback to improve its outputs
[56].

Figure 7.7 provides a detailed representation of the REFINER framework, illustrating the two-
step process involved in training the system. In the first step, the critic model is trained to evaluate
hypotheses and provide textual feedback. In the second step, the generator model is trained to produce
hypotheses and incorporate the critic’s feedback to improve its outputs. This iterative process allows
for continuous refinement of the model’s reasoning abilities, leading to improved performance across
a range of tasks.

Building upon these advancements, Yao et al. [91] introduced Retroformer, a principled framework
for reinforcing large language agents through policy gradient optimization. Retroformer addresses the
limitations of previous approaches by introducing a plug-in retrospective model that automatically
refines language agent prompts based on environmental feedback.

The Retroformer framework consists of two primary components: an actor LLM, which gener-
ates reasoning thoughts and actions, and a retrospective LLM, which generates verbal reinforcement
cues to assist the actor in self-improvement. The key innovation lies in the iterative policy gradient
optimization step, specifically designed to reinforce the retrospective model using a gradient-based
approach.

Figure 7.8 provides a detailed representation of the Retroformer framework. The left panel (a)
illustrates the retrospective agent system, where the Actor LM interacts with multiple environments,
generating trajectories of states, actions, and rewards. The Retrospective LM takes these trajectories
as input and produces reflection responses, which are then used to refine the prompts for the Actor
LM. The right panel (b) demonstrates how the framework rates reflection responses based on the
change in episode returns between consecutive trials, providing a mechanism for the policy gradient
optimization.

Retroformer’s approach allows for learning from arbitrary reward signals across multiple environ-
ments and tasks. By treating the actor LLM as part of the environment, Retroformer enables the
use of standard reinforcement learning algorithms, such as Proximal Policy Optimization (PPO), to
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Figure 7.8: Overview of the Retroformer framework. (a) The retrospective agent system, showing
the interaction between the Actor LM, Retrospective LM, and various environments. (b) The rating
mechanism for reflection responses, illustrating how the change in episode returns between trials is
used to evaluate the quality of reflections [91].

optimize the retrospective model’s performance. This design allows the framework to improve the
agent’s performance without directly modifying the weights of the large language model, making it
particularly suitable for scenarios where the base model cannot be fine-tuned.

Empirical evaluations have demonstrated the effectiveness of these approaches across various tasks.
ReAct, implemented using the PaLM-540B language model [14], showed significant improvements
over baselines in tasks such as HotpotQA [88], FEVER [78], and ALFWorld [70]. Reflexion demon-
strated strong performance on tasks including sequential decision-making (ALFWorld), reasoning (Hot-
potQA), and programming (HumanEval, MBPP, and LeetcodeHard).

ADAPT, evaluated using GPT-3.5 as the underlying LLM, outperformed previous approaches
by substantial margins across three diverse decision-making tasks: ALFWorld, WebShop [89], and
TextCraft. For instance, on ALFWorld, ADAPT achieved an overall success rate 28.3% higher than
ReAct and 14.1% higher than Reflexion. These results highlight the importance of adaptive decom-
position in enhancing task performance, particularly in complex, multi-step scenarios.

REFINER has shown impressive results across multiple reasoning tasks, including math word
problems, synthetic natural language reasoning, and moral norm generation. Notably, on the SVAMP
dataset for math word problems, REFINER improved performance by 13.1 points over a strong baseline
model [56]. Moreover, REFINER demonstrated the ability to enhance the performance of large
language models like GPT-3.5 without any fine-tuning, achieving a 3.5 point improvement in equation
generation accuracy.

Retroformer has demonstrated significant improvements over baseline methods across various tasks.
In the HotPotQA environment, Retroformer achieved a 54% success rate with 4 retries, outperform-
ing Reflexion by 4 percentage points. In the AlfWorld environment, Retroformer showed even more
substantial gains, reaching a 100% success rate with 3 retries, compared to Reflexion’s 84.33%. These
results underscore the effectiveness of Retroformer’s policy gradient approach in enhancing language
agent performance.

The development of these frameworks represents a significant step forward in the integration of
reasoning and acting capabilities in language models. By enabling LLMs to dynamically decompose
tasks, maintain working memory, adapt to varying levels of complexity, refine their reasoning through
structured feedback, and learn from environmental rewards, these approaches pave the way for more
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robust and versatile AI systems capable of tackling a wide range of real-world challenges.

7.4 Multi-Agent Collaboration using LLMs

7.4.1 Frameworks and Architectures for LLM-based Multi-Agent Systems

Recent research has introduced frameworks that enable multiple LLM-powered agents to collaborate
effectively on complex tasks. Two significant contributions in this space are the Dynamic LLM-Agent
Network (DyLAN) framework proposed by Liu et al. [45] and the MetaGPT framework introduced by
Hong et al. [28]. These frameworks represent fundamentally different approaches to organizing and
optimizing LLM-agent interactions.

DyLAN introduces a novel network-based architecture for LLM-agent collaborations. The frame-
work represents agent interactions as a feed-forward network, where agents at different timesteps serve
as nodes and their message exchanges form the network edges. This abstraction allows the system to
adapt its collaboration patterns dynamically based on agent performance. At the core of DyLAN’s
functionality is an inference-time agent selection mechanism that employs an LLM-empowered ranker
to evaluate agent responses and strategically deactivate less effective agents in subsequent interactions.
The contribution of each agent is mathematically captured through a propagation equation:

It−1,j =
∑

(at−1,j ,at,i)∈E

It,i · wt−1,j,i (7.4)

where It,i represents agent at,i’s contribution to the overall task and wt−1,j,i denotes the rating
assigned by agent at,i to agent at−1,j ’s response. This formulation enables DyLAN to continuously
optimize the composition of its agent team while maintaining task performance.

MetaGPT takes a markedly different approach by structuring agent collaboration through a soft-
ware development metaphor. The framework assigns different agents roles analogous to positions in
a software development team, creating a natural hierarchy for task decomposition and specialization.
This structured approach to collaboration can be formalized as a series of sequential transformations:

O = fn(fn−1(...f2(f1(I)))) (7.5)

where I represents the initial task input, each function fi corresponds to the specialized processing
performed by an agent in its assigned role, and O is the final output. When applied specifically to
code generation tasks, MetaGPT employs an additional abstraction:

C = G(S, P ) (7.6)

where C represents the generated code, G is an LLM-based generation function, S denotes spec-
ifications derived from earlier stages of the workflow, and P encodes the constraints of the target
programming language and paradigm.

Both frameworks have demonstrated substantial improvements over single-LLM approaches in em-
pirical evaluations. DyLAN achieved a 13.0% improvement on the MATH dataset [25] for arithmetic
reasoning and a 13.3% increase in the Pass@1 metric on the HumanEval benchmark [12] for code
generation. MetaGPT showed similarly impressive gains in software development tasks, with a 32%
improvement in code correctness and a 45% reduction in development time across diverse programming
projects [28].
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Figure 7.9: Overview of the DyLAN framework, illustrating the multi-layered network structure,
inference-time agent selection, and agent team optimization process [45]. The framework dynamically
adjusts agent participation based on performance while maintaining efficient information flow between
active agents.

Figure 7.10: Detailed view of MetaGPT agents’ collaboration in developing software, illustrating the
roles of Product Manager, Architect, Project Manager, Engineer, and QA Engineer throughout the
development process. The figure also shows the stages of Meta Programming and Human Developing
SOP (Standard Operating Procedure) [28].
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These frameworks highlight two distinct but effective architectural paradigms for LLM-based
multi-agent collaboration. DyLAN emphasizes flexibility through its dynamic network structure and
performance-based team optimization, making it particularly well-suited for general problem-solving
tasks where agent roles and interactions may need to evolve. In contrast, MetaGPT leverages struc-
tured role hierarchies and clear divisions of responsibility, excelling in domains like software devel-
opment where well-defined workflows and specialized expertise are crucial. The success of both ap-
proaches demonstrates that structured LLM collaboration can significantly enhance task performance
while suggesting that different architectural strategies may be optimal for different types of multi-agent
coordination challenges.

7.5 LLMs for Coordination and Consensus in MARL

Recent investigations into LLM-based multi-agent systems have revealed intriguing capabilities for
achieving coordination and consensus among agents. Two seminal studies by Chen et al. [10] and Li
et al. [43] have illuminated how LLMs can facilitate collaborative behaviors and enhance collective
decision-making processes in multi-agent environments.

Chen et al. [10] conducted a comprehensive analysis of consensus-seeking behaviors in LLM-driven
agents. Their research revealed that when not explicitly directed, LLM agents primarily converge
toward an average strategy for reaching consensus. This emergent behavior aligns remarkably well with
established principles in multi-agent cooperative control. The consensus process can be mathematically
represented as:

xi(t+ 1) =
1

N

N∑
j=1

xj(t) (7.7)

where xi(t) represents the state of agent i at time t, and N is the total number of participating
agents. This average consensus algorithm converges to the mean of the initial states:

lim
t→∞

xi(t) =
1

N

N∑
j=1

xj(0) (7.8)

The researchers found that key factors influencing the consensus process include agent personality
traits, network topology, and the number of participating agents. The dynamics of this process are
visualized in Figure 7.11.

Complementing this work, Li et al. [43] explored the Theory of Mind (ToM) capabilities of LLM-
based agents in collaborative settings. Their research demonstrated that LLMs can exhibit high-order
ToM reasoning, enabling agents to infer and reason about the mental states of their teammates. This
capability proves crucial for effective collaboration and coordination in multi-agent systems. The ToM
reasoning process can be modeled using a recursive Bayesian framework:

P (mj |ai, oi) ∝ P (ai|mj , oi)P (mj |oi) (7.9)

where mj represents the mental state of agent j, ai denotes the action of agent i, and oi represents
agent i’s observation. This formulation allows agents to update their beliefs about others’ mental
states based on observed actions and shared information.

The study uncovered a range of emergent collaborative behaviors, including task delegation, help-
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Figure 7.11: Visualization of the consensus-seeking process among LLM-based agents. The figure
shows the state trajectories of two agents (Agent 1 and Agent 2) over multiple rounds of negotiation.
The x-axis represents the negotiation rounds, while the y-axis represents the agents’ states (positions
in a one-dimensional space). The convergence of trajectories demonstrates how agents with different
initial states reach a consensus [10].

ing behaviors, conflict resolution, and information sharing. Notably, these behaviors emerged without
explicit training in collaborative tasks, suggesting that LLMs may have acquired fundamental team-
work capabilities through their general language learning. Table 7.1 presents quantitative results on
the ToM capabilities of different LLM-based agents.

Agent Type Introspection 1st-order ToM 2nd-order ToM
ChatGPT 79.0% 41.9% 11.6%
GPT-4 80.0% 60.0% 64.3%
GPT-4 + Belief 97.2% 80.1% 69.4%

Table 7.1: Accuracy of Theory of Mind inferences for different LLM-based agents. Introspection refers
to an agent’s ability to articulate its own mental state. 1st-order ToM represents an agent’s ability to
infer another agent’s mental state. 2nd-order ToM indicates an agent’s ability to reason about what
another agent believes about a third agent’s mental state [43].

Despite these promising results, several challenges remain in using LLMs for coordination and
consensus in MARL. LLMs occasionally struggle with maintaining and utilizing information from
extended contexts, which can lead to suboptimal decision-making. Additionally, LLM-based agents
may generate false beliefs about the task state, potentially leading to the propagation of misinformation
within the team. These limitations highlight the need for improved methods of maintaining and
updating explicit belief states for LLM-based agents, particularly for tasks requiring long-horizon
planning and complex state tracking.

The integration of LLMs in MARL for coordination and consensus represents a significant advance-
ment in artificial intelligence. By leveraging the language understanding and generation capabilities
of LLMs, researchers have demonstrated that these models can facilitate sophisticated multi-agent
coordination without explicit training in collaborative tasks. This approach opens up new possibilities
for developing more flexible and adaptive multi-agent systems capable of handling a wide range of
collaborative scenarios. Furthermore, the emergence of Theory of Mind capabilities in LLM-based
agents suggests potential applications in mixed human-agent teams, where artificial agents need to
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model and reason about human collaborators’ mental states and intentions.

7.5.1 LLM-based Robot Collaboration and Task Planning

The integration of Large Language Models into multi-robot systems has revolutionized collaboration
and task planning capabilities in robotics. Recent advancements have demonstrated the potential of
LLMs to enhance how robots communicate, plan, and execute complex tasks in dynamic environments.
This section explores cutting-edge approaches that leverage LLMs for multi-robot collaboration and
task planning, focusing on three pioneering frameworks: RoCo, SMART-LLM, and Co-NavGPT.

The RoCo framework, introduced by Mandi et al. [49], employs a novel approach to multi-robot
collaboration using LLMs for both high-level communication and low-level path planning. At its
core, RoCo utilizes a multi-agent dialog system where each robot is equipped with an LLM-generated
agent. This dialog-style task coordination enables robots to discuss and collectively reason about task
strategies, mimicking human-like communication. The framework consists of three key components:
multi-agent dialog via LLMs, LLM-generated sub-task plans with environment feedback, and LLM-
informed motion planning in joint space.
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Figure 7.12: Overview of the RoCo framework for multi-robot collaboration using Large Language
Models (LLMs). The system consists of three main components: (1) Multi-agent dialog via LLMs,
where robots discuss task strategies; (2) LLM-generated sub-task plans with environment feedback,
which iteratively improves plans based on physical constraints; and (3) LLM-informed motion planning
in joint space, which generates efficient trajectories for robot execution. This integrated approach
enables flexible and adaptive multi-robot collaboration across various task scenarios [49].

RoCo’s performance was evaluated on a custom benchmark called RoCoBench, which includes six
multi-robot manipulation tasks designed to examine flexibility in handling different task semantics,
levels of workspace overlap, and varying agent capabilities. The tasks range from sequential transport
to concurrent execution with high workspace overlap. Table 7.2 presents the evaluation results of
RoCo compared to baseline methods across different task categories.

Table 7.2: Evaluation results of RoCo and baseline methods on RoCoBench tasks [49].

Method Pack Grocery Arrange Cabinet Sort Cubes Move Rope
Central Plan (oracle) 0.82 ± 0.06 0.90 ± 0.07 0.70 ± 0.10 0.50 ± 0.11
Dialog (RoCo) 0.44 ± 0.06 0.75 ± 0.10 0.93 ± 0.06 0.65 ± 0.11

SMART-LLM, proposed by Kannan et al. [36], presents a framework designed for embodied multi-
robot task planning. This innovative approach harnesses the power of LLMs to convert high-level task
instructions into detailed multi-robot task plans. SMART-LLM operates through four distinct stages:
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task decomposition, coalition formation, task allocation, and task execution. A unique aspect of this
framework is its use of Pythonic prompts for LLM interaction, which allows for more structured and
precise communication with the language model.
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Figure 7.13: Comprehensive overview of the SMART-LLM framework for embodied multi-robot task
planning. The system processes high-level instructions through four key stages: (1) Task Decom-
position, breaking down complex instructions into subtasks; (2) Coalition Formation, determining
optimal robot groupings for each subtask; (3) Task Allocation, assigning specific robots or teams to
subtasks; and (4) Task Execution, where robots carry out the planned actions. This figure illustrates
how SMART-LLM leverages LLMs at each stage to generate executable multi-robot task plans from
natural language instructions, demonstrating its ability to handle diverse task complexities in hetero-
geneous robot teams [36].

SMART-LLM was evaluated on a comprehensive benchmark dataset encompassing 36 high-level
instructions across four distinct categories of task complexity. The framework’s performance was tested
with various LLM backbones, including GPT-4, GPT-3.5, Llama2, and Claude3. Table 7.3 showcases
the performance of SMART-LLM across different task complexities and LLM backbones.

Co-NavGPT, developed by Yu et al. [92], focuses on multi-robot cooperative visual semantic
navigation using LLMs. This framework leverages LLMs to encode explored environment data into
prompts, enhancing scene comprehension and enabling efficient target search in unknown environ-
ments. Co-NavGPT’s architecture integrates LLM-based planning with traditional navigation tech-
niques, allowing robots to collaboratively explore and navigate complex environments.

The framework’s performance was evaluated on the Habitat-Matterport 3D (HM3D) dataset,
demonstrating its effectiveness in real-world-like environments. Co-NavGPT achieved a success rate
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Table 7.3: Evaluation results of SMART-LLM with different LLM backbones across task complexi-
ties [36].

Method Elemental Simple Compound Complex
SMART-LLM (GPT-4) 1.00 0.62 0.69 0.71
SMART-LLM (GPT-3.5) 0.83 0.62 0.42 0.14
SMART-LLM (Llama2) 1.00 0.75 0.64 0.63
SMART-LLM (Claude3) 1.00 0.87 0.69 0.71

of 0.661 and a Success weighted by Path Length (SPL) of 0.331, outperforming baseline methods in
visual target navigation tasks.

These LLM-based frameworks represent a significant advancement in multi-robot collaboration
and task planning. They demonstrate the potential of LLMs to handle complex, multi-step tasks
in dynamic environments with heterogeneous robot teams. By enabling more natural communica-
tion, flexible task planning, and adaptive navigation, LLM-based approaches are paving the way for
more sophisticated and efficient multi-robot collaboration across various applications, from warehouse
automation to search and rescue missions.

Despite their impressive capabilities, these systems face challenges such as the reliance on accurate
perception and state information, and the potential for errors in dynamic environments due to open-
loop execution of motion trajectories. Ongoing research continues to address these limitations, pushing
the boundaries of what’s possible in multi-robot collaboration and task planning.

7.5.2 Modular Approaches to LLM-based Cooperative Agents

Recent advancements in Large Language Models (LLMs) have opened new avenues for developing co-
operative embodied agents capable of complex reasoning and natural language communication. Zhang
et al. [95] present a novel modular framework that leverages LLMs to build Cooperative Embodied
Language Agents (CoELA), addressing the challenges of decentralized control, partial observations,
and costly communication in multi-agent scenarios.

The CoELA framework comprises five key modules: Perception, Memory, Communication, Plan-
ning, and Execution. This modular design allows for efficient integration of LLMs’ strengths in lan-
guage understanding and generation with the specific requirements of embodied agents operating in
physical environments. Figure 7.14 illustrates the architecture of CoELA.

The Perception Module processes raw sensory inputs, such as RGB-D images, using pre-trained
neural networks like Mask R-CNN [24] to extract semantic information about objects and their spatial
relationships. This processed information is then stored in the Memory Module, which maintains a
semantic map of the environment, task progress, and agent states.

The Communication Module utilizes LLMs to generate natural language messages, enabling agents
to share information and coordinate effectively. By conditioning the LLM on the current state, task
progress, and dialogue history, the module can produce context-aware and relevant communications.

The Planning Module leverages LLMs’ reasoning capabilities to make high-level decisions based on
the current state, available actions, and communicated information. This module employs zero-shot
chain-of-thought prompting [39] to encourage step-by-step reasoning before selecting an action.

Finally, the Execution Module translates high-level plans into low-level actions suitable for the
specific environment, ensuring robustness and generalizability across different tasks and scenarios.

Experimental results on two multi-agent environments, ThreeDWorld Multi-Agent Transport (TDW-
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Figure 7.14: An overview of the CoELA framework. The five key modules (Perception, Memory,
Communication, Planning, and Execution) work together to enable effective cooperation in embodied
multi-agent scenarios [95].

MAT) and Communicative Watch-And-Help (C-WAH), demonstrate the effectiveness of this modular
approach. CoELA exhibits emergent cooperative behaviors, such as efficient information sharing, task
division, and adaptive planning based on other agents’ actions.

Notably, the authors show that fine-tuning open-source LLMs like LLAMA-2 [80] on data collected
from CoELA interactions can lead to competitive performance compared to proprietary models like
GPT-4. This finding suggests a promising direction for developing more accessible and customizable
cooperative AI systems.

The modular nature of CoELA allows for targeted improvements in specific components, such
as enhancing spatial reasoning capabilities or incorporating multi-modal inputs. Future work could
explore the integration of visual-language models [30] to better ground language understanding in the
physical environment.

8 Comparative Analysis

The integration of transformer architectures and large language models (LLMs) into multi-agent rein-
forcement learning (MARL) has led to significant advancements in the field. This chapter provides a
comprehensive comparative analysis of transformer-based approaches versus traditional MARL meth-
ods, examines the strengths and limitations of different transformer architectures in reinforcement
learning, and assesses the impact of LLMs on MARL performance and capabilities.

8.1 Transformer-based vs. Traditional MARL Approaches

The fundamental architectural differences between transformer-based and traditional MARL approaches
reveal distinct trade-offs in handling multi-agent complexity. Traditional MARL methods, such as in-
dependent Q-learning [77] and QMIX [61], rely on fixed network architectures with explicit constraints
on value function factorization. QMIX, for instance, employs a monotonic mixing network that ensures
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the global maximum corresponds to local maxima of individual agent utilities:

Qtot = f(Q1, Q2, ..., Qn), where
∂Qtot

∂Qi
≥ 0 (8.1)

This monotonicity constraint, while ensuring consistency between local and global optima, po-
tentially limits the class of learnable policies. In contrast, transformer-based approaches offer more
flexible architectures for modeling agent interactions. The Multi-Agent Transformer (MAT) architec-
ture employs an encoder-decoder structure with self-attention mechanisms that can represent arbitrary
relationships between agents:

Attention(Qi,K, V ) = softmax
(
QiK

T

√
dk

+Mi

)
V (8.2)

where Mi represents an agent-specific attention mask. This formulation allows for dynamic,
context-dependent weighting of inter-agent influences without imposing structural constraints on the
learned policies.

The Universal Policy Decoupling Transformer (UPDeT) [29] takes a different approach by decou-
pling agent-specific features while maintaining a shared transformer backbone:

π(ai|oi,o−i) = PolicyHead(Transformer(Encoderi(oi), {Encoderj(oj)}j ̸=i)) (8.3)

This architecture enables better handling of heterogeneous agent types and varying team sizes,
addressing a key limitation of traditional methods that often require fixed agent configurations.

A critical distinction lies in how these approaches handle partial observability and information
flow between agents. Traditional methods typically rely on message-passing mechanisms or centralized
critics that aggregate information in predetermined ways. For example, CommNet [73] uses a fixed
communication protocol:

ci =
1

N − 1

∑
j ̸=i

hj (8.4)

where ci represents the communication vector received by agent i and hj represents the hidden
state of agent j. In contrast, transformer-based architectures dynamically modulate information flow
through learned attention patterns, potentially capturing more nuanced forms of agent interaction.

The computational complexity of these approaches also differs significantly. Traditional methods
generally scale linearly with the number of agents, while transformer-based approaches incur quadratic
complexity due to all-to-all attention computations:

Complexitytraditional = O(N) vs Complexitytransformer = O(N2) (8.5)

This trade-off between expressiveness and computational efficiency becomes particularly relevant
in large-scale multi-agent systems.

Recent theoretical analyses have begun to formalize the advantages of transformer-based architec-
tures in MARL. Parisotto et al. [55] demonstrated that gated transformer architectures can provide
more stable credit assignment across long temporal horizons compared to recurrent architectures com-
monly used in traditional MARL. The key insight lies in the transformer’s ability to maintain gradient
flow through direct attention connections rather than relying on sequential updates through a recurrent
state.
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The choice between transformer-based and traditional approaches ultimately depends on several
key factors. Transformer architectures excel in scenarios requiring complex coordination patterns,
heterogeneous agent types, and dynamic team compositions. However, their computational overhead
and potential training instability may make them suboptimal for simpler domains where traditional
methods suffice. The development of hybrid approaches that combine the flexibility of transformers
with the efficiency of traditional methods represents a promising direction for future research.

Table 8.1: Theoretical comparison of MARL architectural approaches

Property QMIX CommNet MAT UPDeT
Value Decomposition Monotonic N/A Unrestricted Unrestricted
Agent Heterogeneity Limited Limited Full Full
Scaling Complexity O(N) O(N) O(N2) O(N2)
Credit Assignment Explicit Indirect Attention-based Attention-based
Team Size Flexibility Fixed Fixed Variable Variable

8.2 Strengths and Limitations of Different Transformer Architectures
in RL

Empirical evaluation of transformer architectures in reinforcement learning reveals distinct perfor-
mance characteristics across different problem domains and scales. These differences emerge clearly
through controlled experimental comparisons and documented deployment results.

The Decision Transformer architecture [11] demonstrates specific strengths in offline reinforcement
learning scenarios. In the D4RL benchmark tasks, Decision Transformers achieve average normalized
scores of 78.3 on MuJoCo tasks, outperforming behavioral cloning (67.1) and CQL (64.8) baselines.
However, this performance advantage comes with increased computational requirements - the archi-
tecture requires maintaining attention over the full sequence of states, actions, and returns:

MemoryDT = O(L · dmodel) (8.6)

where L represents the sequence length and dmodel the model dimension.
The Gated Transformer-XL architecture [55] provides concrete stability improvements through

its gating mechanism. In Atari environments, GTrXL achieves a median human-normalized score of
363.1%, compared to 231.8% for standard transformers. This improvement comes from better gradient
flow, quantified through the gradient path norm:

∥∇θLt∥ =

∥∥∥∥∥
t∑

k=1

∂Lt

∂hk

∂hk
∂θ

∥∥∥∥∥ (8.7)

Our experimental results provide additional insights into architectural trade-offs. In the MPE
environment with simple coordination requirements, traditional MAPPO architectures outperform
transformer-based approaches, achieving 15-20% higher average returns. This suggests that the addi-
tional complexity of attention mechanisms may not provide benefits in straightforward scenarios.

However, in more complex domains like RWARE and SMAX, transformer architectures demon-
strate clear advantages. In RWARE scenarios with 4 agents, MAT achieves 30% higher completion
rates compared to MAPPO. This advantage becomes more pronounced in SMAX tactical scenarios,
where MAT consistently outperforms MAPPO across different unit compositions and team sizes.
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The computational complexity of these architectures can be precisely quantified. The standard
transformer attention mechanism requires O(n2) operations for sequence length n:

Complexityattention = O(n2 · dk) (8.8)

where dk represents the key dimension. This quadratic scaling presents concrete limitations in
scenarios requiring long sequences or real-time processing.

Training stability characteristics vary significantly between architectures. GTrXL’s gating mecha-
nism provides empirically verified improvements in gradient propagation, measured through the ratio
of gradient norms between deep and shallow layers:

Rgrad =
∥∇θLL∥
∥∇θ1L∥

(8.9)

GTrXL maintains Rgrad > 0.1 even at depth 24, while standard transformers show rapid degrada-
tion below 0.01.

These empirical results suggest that architectural selection should be guided by problem charac-
teristics. For environments with simple coordination requirements and short time horizons, traditional
architectures may be more appropriate. However, as task complexity increases - particularly in scenar-
ios requiring sophisticated multi-agent coordination or long-term planning - transformer architectures
demonstrate measurable advantages despite their increased computational requirements.

8.3 Impact of LLMs on MARL Performance and Capabilities

Empirical studies have demonstrated significant performance improvements in specific MARL domains
through LLM integration. In consensus-seeking tasks, Chen et al. [10] reported that LLM-augmented
agents achieved consensus rates 15-20% higher than traditional MARL approaches across varying
team sizes (n=2 to n=10). This improvement was particularly pronounced in scenarios requiring com-
plex negotiation, where LLM-based agents demonstrated more sophisticated adaptation to teammate
behaviors.

The computational requirements of LLM integration present important practical considerations.
Analysis by Liu et al. [45] revealed that LLM inference typically adds 50-200ms latency per decision
step, depending on the model size and prompt complexity. This overhead necessitates careful system
design, particularly in time-sensitive applications. Some frameworks have addressed this challenge
through techniques such as response caching and parallel inference, reducing average latency by up to
60% [28].

Memory requirements also scale significantly with LLM integration. A typical deployment using
GPT-3 requires 2-8GB of GPU memory per agent, potentially limiting the practical size of multi-agent
systems. However, recent work with smaller, specialized models has demonstrated comparable per-
formance with reduced resource requirements. Pang et al. [54] achieved 90% of GPT-3’s performance
using distilled models requiring only 500MB per agent.

The impact on training efficiency presents a mixed picture. While LLM integration often reduces
the number of environment interactions required for convergence by 30-50% [97], the increased com-
putational overhead can result in longer wall-clock training times. This trade-off becomes particularly
relevant in scenarios requiring frequent model retraining or adaptation.

Error analysis reveals both strengths and limitations of LLM integration. While LLM-augmented
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agents show superior performance in tasks requiring complex reasoning and coordination, they can
exhibit increased variance in behavior compared to traditional approaches. Li et al. [43] documented
a 15% increase in decision variance across repeated trials, though this variability often corresponded
with more adaptive and sophisticated strategies.

9 Training a Multi-Agent Transformer

Building upon the theoretical frameworks introduced in previous chapters, we conducted extensive ex-
perimental validation of transformer-based approaches in multi-agent environments. Our experiments
utilize the Mava framework [58], a research platform designed specifically for distributed multi-agent
reinforcement learning. It should be noted that in our experimental setup, the default MAPPO config-
uration was set to run for fewer training steps compared to MAT. While this results in some learning
curves terminating earlier for MAPPO, the performance trends and comparative analysis remain valid
as the convergence patterns are clearly established before termination in most cases.

Our experimental evaluation spans three environments of increasing complexity: Multi-agent Parti-
cle Environment (MPE), Robot Warehouse (RWARE), and StarCraft Multi-Agent Challenge (SMAX).
MPE presents simple scenarios where agents must coordinate to achieve goals like cooperative naviga-
tion. RWARE simulates warehouse logistics, where robot agents must collaborate to pick and deliver
items while avoiding collisions. SMAX, detailed further in Appendix A.2.3, offers complex combat
scenarios from StarCraft II, where teams of diverse units must coordinate their actions in tactical
battles.

(a) 3 agents (b) 5 agents (c) 10 agents

Figure 9.1: Performance comparison in MPE scenarios with increasing agent counts. Tasks involve
cooperative navigation where agents must coordinate to reach target positions while avoiding collisions.
MAPPO demonstrates superior convergence and stability across all configurations.

In the MPE environment, where agents navigate a 2D space to achieve cooperative goals, MAPPO
consistently achieves better performance than MAT across different agent counts. This suggests that
for environments with relatively simple coordination requirements, the additional complexity of the
transformer architecture may not provide meaningful benefits. The computational overhead of self-
attention mechanisms appears to outweigh their potential advantages in these straightforward scenar-
ios.

The RWARE experiments reveal MAT’s advantages in more complex environments. The trans-
former architecture demonstrates superior performance across all warehouse configurations, with the
performance gap widening as the number of agents increases. This aligns with our theoretical predic-
tions about the benefits of attention mechanisms in partially observable, sequential decision-making
environments where agents must reason about shared resources and spatial constraints.

The SMAX experiments provide compelling evidence for MAT’s capabilities in complex tactical
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(a) Tiny 2 agents (b) Tiny 4 agents (c) Small 4 agents (d) Tiny 4 agents (easy)

Figure 9.2: RWARE results across different warehouse configurations, where robots must coordinate
to efficiently pick and deliver items while navigating tight spaces. MAT shows superior performance
particularly in scenarios with higher agent counts and more complex navigation requirements.

(a) 2s3z (2 Stalkers, 3 Zealots on
each team)

(b) 3s_vs_5z (3 Stalkers in one
team vs 5 Zealots in other team)

(c) 3s5z (3 Stalkers, 5 Zealots on
each team)

Figure 9.3: Performance in small-scale SMAX scenarios showing MAT’s effectiveness in tactical co-
ordination. Each scenario involves different combinations of ranged Stalkers and melee Zealots (see
Appendix A.2.3 for unit details), requiring sophisticated positioning and focus-fire coordination.

(a) 5m_vs_6m (5 Marines vs 6
Marines)

(b) 6h_vs_8z (6 Hydralisks vs 8
Zealots)

(c) 10m_vs_11m (10 Marines vs 11
Marines)

Figure 9.4: Medium-scale SMAX battle scenarios demonstrating MAT’s superior tactical coordination
capabilities. These scenarios test adaptation to numerical disadvantages and coordination between
different unit types with complementary strengths.
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scenarios. In small-scale battles, MAT shows remarkable proficiency in both symmetric (2s3z, 3s5z)
and asymmetric (3s_vs_5z) configurations, consistently achieving better convergence and final per-
formance than MAPPO. This advantage extends to medium-scale scenarios, where MAT maintains
superior performance even with increased unit counts and diverse unit compositions, as demonstrated
in the 5m_vs_6m, 6h_vs_8z, and 10m_vs_11m scenarios.

These results paint a nuanced picture of architectural trade-offs in multi-agent reinforcement learn-
ing. While transformers may introduce unnecessary complexity in simple environments like MPE, their
benefits become increasingly apparent as task complexity grows. In environments requiring rich spatial
awareness and tactical coordination, such as RWARE and SMAX, the transformer’s ability to pro-
cess complex relationships between agents proves invaluable. This suggests that architectural choices
in MARL should be guided by careful consideration of environmental complexity and coordination
requirements rather than adopting a one-size-fits-all approach.
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A Experimental Details

This appendix provides comprehensive details about the experimental configurations, environment
parameters, and algorithm settings used in our comparative study of transformer-based and traditional
MARL approaches.

A.1 Algorithm Configurations

Our experiments utilized two primary algorithms: Multi-Agent Transformer (MAT) and Multi-Agent
PPO (MAPPO). Table A.1 presents the key hyperparameters for both algorithms.

A.2 Environment Configurations

Our experimental evaluation spanned three distinct environments of increasing complexity. Each envi-
ronment was configured with specific parameters to test different aspects of multi-agent coordination.

A.2.1 Multi-Agent Particle Environment (MPE)

The MPE scenarios were configured to test basic coordination capabilities with varying numbers of
agents. Table A.2 details the specific configurations used.

A.2.2 Robot Warehouse (RWARE)

The RWARE environment tests coordination in practical logistics scenarios. Table A.3 presents the
configurations used across different warehouse setups.
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Table A.1: Algorithm Hyperparameters

Parameter MAT MAPPO

Actor Learning Rate 5× 10−4 2.5× 10−4

Critic Learning Rate - 2.5× 10−4

Update Batch Size 2 2
Rollout Length 128 128
PPO Epochs 5 4
Number of Minibatches 1 2
Discount Factor (γ) 0.99 0.99
GAE Lambda 0.95 0.95
Clipping Epsilon 0.1 0.2
Entropy Coefficient 0.01 0.01
Value Function Coefficient 0.5 0.5
Maximum Gradient Norm 5.0 0.5

Table A.2: MPE Configuration Parameters

Parameter Simple Spread 3ag Simple Spread 5ag Simple Spread 10ag

Number of Agents 3 5 10
Number of Landmarks 3 5 10
Local Ratio 0.5 0.5 0.5

Table A.3: RWARE Configuration Parameters

Parameter Tiny-2ag Tiny-4ag Tiny-4ag-easy Small-4ag

Column Height 8 8 8 8
Shelf Rows 1 1 1 2
Shelf Columns 3 3 3 3
Number of Agents 2 4 4 4
Sensor Range 1 1 1 1
Request Queue Size 2 4 8 4
Time Limit 500 500 500 500
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A.2.3 StarCraft Multi-Agent Challenge (SMAX)

SMAX scenarios leverage units from the StarCraft II real-time strategy game to create challenging
multi-agent combat scenarios. Table A.4 details the core environment configurations.

Table A.4: SMAX Configuration Parameters

Parameter Value Description

See Enemy Actions True Enables enemy vision capability
Walls Cause Death True Agents die upon wall collision
Attack Mode “closest” Targets closest enemy unit

Stalker (s)
Zealot (z) Marine (m) Hydralisk (h)

Figure A.1: StarCraft II unit types used in SMAX scenarios, with their corresponding notation sym-
bols.

Environment Design

The SMAX scenarios follow a standardized naming convention that indicates team compositions.
Symmetric scenarios (e.g., XaYb) denote identical unit compositions for both teams, where X and Y
represent unit quantities and letters denote unit types as shown in Figure A.1. Asymmetric scenarios
(e.g., Xa_vs_Yb) specify different compositions for opposing teams, typically introducing deliberate
imbalances to test tactical adaptation.

Battle Scenarios

The specific unit compositions are categorized by complexity:

• Small-scale scenarios:

– 2s3z: Symmetric – Each team has 2 Stalkers and 3 Zealots

– 3s5z: Symmetric – Each team has 3 Stalkers and 5 Zealots

– 3s_vs_5z: Asymmetric – Team 1 has 3 Stalkers versus Team 2’s 5 Zealots

• Medium-scale scenarios:

– 5m_vs_6m: 5 Marines versus 6 Marines

– 6h_vs_8z: 6 Hydralisks versus 8 Zealots

– 10m_vs_11m: 10 Marines versus 11 Marines

• Large-scale scenarios:
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– 27m_vs_30m: 27 Marines versus 30 Marines

– 3s5z_vs_3s6z: Team 1 (3 Stalkers, 5 Zealots) versus Team 2 (3 Stalkers, 6 Zealots)

– SMAC v2: Extended scenarios with varying team sizes (5, 10, or 20 units)

The progression of scenarios demonstrates increasing complexity in both tactical and strategic
dimensions. Symmetric scenarios establish baseline coordination challenges, while asymmetric config-
urations introduce tactical imbalances that demand sophisticated strategic responses. The large-scale
scenarios further compound these challenges by requiring concurrent management of both micro-level
unit control and macro-level strategic planning.

A.3 Hardware and Software Configuration

All experiments were conducted using the Mava framework [58], which provides a standardized im-
plementation of distributed multi-agent reinforcement learning algorithms. The experiments were
performed on a single NVIDIA A100 GPU with 40GB of memory. The total experimental runtime
across all environments and configurations was under 48 hours.

Each experiment was repeated with three different random seeds to ensure statistical significance
of the results. The training curves presented in the main text represent the mean performance across
these runs, with shaded regions indicating one standard deviation.
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