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ABSTRACT

Molecular generation is a critical task in drug discovery and mate-
rials science, but current approaches often struggle with efficiency
and scalability when dealing with complex molecular structures.
This study addresses these challenges by comparing Transformer
and MAMBA (State Space Model) architectures for molecular gen-
eration using the Sequential Attachment-based Fragment Embed-
ding (SAFE) representation, which offers improved validity and
interpretability over traditional string-based representations. We
evaluate models with approximately 20M and 90M parameters on
MOSES and ZINC datasets, focusing on generation quality and com-
putational efficiency. Our findings suggest that MAMBA models
can achieve performance comparable to Transformers in generat-
ing valid, unique, and diverse molecules, with both architectures
showing high validity (98-100%) and uniqueness (99.9-100%) scores.
MAMBA models consistently demonstrated lower perplexity and
reduced GPU power consumption (up to 30% reduction) compared
to Transformer models. These results indicate that State Space Mod-
els may offer a computationally efficient alternative for molecular
generation tasks, potentially enabling more efficient processing
of larger datasets and complex molecular structures. Our study
contributes to the exploration of architectural approaches in Al-
driven molecular design, highlighting the potential of State Space
Models for accelerating drug discovery processes and materials
development through improved molecular generation capabilities.
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1 INTRODUCTION

The application of artificial intelligence (AI) to molecular design and
drug discovery has emerged as a promising approach to accelerate
the identification of novel therapeutic compounds [33]. This inter-
section of Al and chemistry builds upon the remarkable success
of sequence modeling techniques in natural language processing
(NLP), where models have demonstrated an unprecedented ability
to understand and generate human-like text [4]. The parallels be-
tween language and molecular structures have inspired researchers
to adapt and apply these powerful sequence modeling techniques
to the complex task of molecular generation.

Sequence modeling, at its core, involves learning patterns and
dependencies within ordered data. In NLP, this has led to break-
throughs in machine translation, text summarization, and even
creative writing [38]. Similarly, in the realm of biology and chem-
istry, molecules can be viewed as sequences of atoms and bonds,
analogous to words and grammar in language. This conceptual
bridge has opened up new avenues for applying advanced Al tech-
niques to molecular sciences.

Recent advancements in deep learning architectures, particu-
larly the Transformer model [38], have shown remarkable success
not only in NLP tasks but also in molecular generation [11]. The
Transformer’s attention mechanism, which allows the model to

weigh the importance of different parts of the input sequence dy-
namically, has proven especially effective in capturing long-range
dependencies in both text and molecular structures.

Concurrently, the development of novel molecular represen-
tations, such as the Sequential Attachment-based Fragment Em-
bedding (SAFE) [26], has improved the bridge between chemical
structures and machine-readable formats. SAFE offers potential ad-
vantages over traditional string-based representations like SMILES
[40] or SELFIES [22] in capturing chemical information and en-
suring high validity rates in generated structures. This evolution
in molecular representation mirrors similar advancements in NLP,
where more sophisticated word and sentence embeddings have
enhanced model performance [7].

Despite the success of Transformer-based models, their qua-
dratic computational complexity with respect to sequence length
poses challenges for scaling to larger datasets or more complex
molecules. This limitation has motivated research into alternative
architectures, such as State Space Models (SSMs), which offer linear
time complexity [13]. SSMs, inspired by control theory and dynam-
ical systems, provide a different approach to capturing sequential
dependencies. The MAMBA architecture, a recent innovation in
SSMs, has shown promising results in language modeling tasks,
but its efficacy in molecular generation remains to be thoroughly
investigated.

The application of these advanced sequence modeling techniques
to molecular generation is not merely an academic exercise. It has
profound implications for drug discovery and materials science.
Traditional drug discovery processes are often time-consuming and
costly, with high failure rates [28]. Al-driven approaches offer the
potential to significantly accelerate this process by efficiently ex-
ploring vast chemical spaces and identifying promising candidates
for further investigation. Moreover, the ability to generate novel
molecular structures could lead to the discovery of entirely new
classes of drugs or materials with unprecedented properties.

Given these developments, our study addresses two critical ques-
tions:

(1) How do State Space Models compare to Transformer-based

architectures in generating valid, unique, and diverse molecules

using the SAFE representation?

(2) Can the efficiency of the MAMBA architecture provide ad-
vantages in terms of computational resources and training
time when applied to larger datasets and model sizes in
molecular generation tasks?

To address these questions, we present a comparative study of
Transformer-based models (SAFE-GPT) and State Space Models
(MAMBA) for molecular generation using the SAFE representation.
We implement both small (approximately 20 million parameters)
and large (approximately 90 million parameters) versions of these
models, ensuring a fair comparison of their capabilities across dif-
ferent scales. This approach allows us to assess not only the per-
formance characteristics but also the practical applicability of each
model in the context of molecular generation tasks.

Our evaluation methodology is designed to provide a compre-
hensive assessment of the models’ performance and efficiency. We



assess model performance using established metrics such as valid-
ity, uniqueness, and diversity of generated molecules. To compare
the models’ ability to capture the underlying distribution of molec-
ular structures, we analyze perplexity scores on held-out test sets.
We also examine the distribution of various molecular properties
(e.g., molecular weight, LogP, TPSA) in the generated compounds,
comparing them to the training datasets. Additionally, we mea-
sure computational efficiency in terms of GPU power consumption
and training time to evaluate the practical implications of each
architecture.
Our study makes several key contributions:

(1) We provide a comprehensive comparison of Transformer
and MAMBA architectures for molecular generation using
the SAFE representation across different model sizes.

(2) We evaluate the potential of State Space Models as an al-
ternative to Transformers for capturing complex structural
information in molecular generation tasks.

(3) We assess the computational efficiency advantages of MAMBA-

based models, exploring their potential for processing larger
molecular datasets and more complex structures.

(4) We offer insights into the trade-offs between model architec-
ture, performance, and computational resources, informing
future research directions in Al-driven molecular design.

The remainder of this paper is organized as follows: Section 2
provides background on molecular representations and the model
architectures used in our study, placing them in the broader context
of sequence modeling advancements. Section 3 details our method-
ology, including dataset preparation, model implementations, and
evaluation metrics. Section 4 presents our results, followed by a
discussion of their implications in Section 5. We conclude in Sec-
tion 6 with a summary of our findings and suggestions for future
research directions.

By bridging the gap between cutting-edge sequence modeling
techniques and molecular generation, our work contributes to the
ongoing efforts to accelerate drug discovery and materials science
through Al-driven approaches. The insights gained from this study
have the potential to inform more efficient and effective strategies
for exploring chemical spaces, ultimately accelerating the pace of
innovation in these critical fields.

2 BACKGROUND AND RELATED WORK

The application of sequence models to molecular generation rep-
resents a convergence of advancements in natural language pro-
cessing (NLP), deep learning, and cheminformatics. This section
provides a comprehensive overview of the evolution of sequence
modeling techniques, their applications in NLP and biology, and
their adaptation to the specific challenges of molecular generation.

2.1 Evolution of Sequence Modeling in NLP

Sequence modeling has been a cornerstone of natural language
processing for decades, with early approaches relying on statistical
methods such as n-gram models and hidden Markov models [?
]. The advent of neural networks, particularly recurrent neural
networks (RNNs) and long short-term memory (LSTM) networks,
marked a significant leap forward in the field’s ability to capture
long-range dependencies in text [16].

The introduction of the Transformer architecture by Vaswani
et al. [38] in 2017 revolutionized sequence modeling in NLP. The
Transformer’s self-attention mechanism allowed for parallel pro-
cessing of input sequences and more effective modeling of long-
range dependencies. This innovation led to the development of
powerful language models such as BERT [7] and GPT [4], which
have achieved state-of-the-art results across a wide range of NLP
tasks.

The success of Transformer-based models in NLP has inspired
researchers to adapt these architectures to other domains, includ-
ing molecular generation. The ability of these models to capture
complex patterns and relationships in sequential data makes them
particularly well-suited for tasks involving the generation and anal-
ysis of molecular structures.

2.2 Applications of Sequence Modeling in
Biology

The application of sequence modeling techniques to biological data

has opened up new avenues for understanding and manipulating

genetic and molecular information. In genomics, sequence mod-

els have been used for tasks such as gene prediction [1], protein

function prediction [31], and the analysis of genetic variants [43].

One particularly notable application is in the field of protein
structure prediction. The AlphaFold system, developed by Jumper
et al. [21], uses deep learning techniques, including attention mech-
anisms inspired by Transformers, to predict protein structures
with unprecedented accuracy. This breakthrough demonstrates
the power of adapting sequence modeling techniques from NLP to
complex biological problems.

In the realm of drug discovery, sequence models have been ap-
plied to various tasks, including predicting drug-target interactions
[27] and generating molecular fingerprints for virtual screening
[18]. These applications highlight the versatility of sequence mod-
eling techniques in capturing and generating complex biological
and chemical information.

2.3 Molecular Generation and Representation

The application of sequence models to molecular generation has
demonstrated concrete advancements in computational drug dis-
covery, as evidenced by several key studies. Gomez-Bombarelli
et al. [10] successfully employed recurrent neural networks to gen-
erate novel, drug-like molecules, achieving a 35% improvement in
desired molecular property optimization compared to traditional
virtual screening methods. Similarly, Jin et al. [19] developed a
graph-to-graph translation model for targeted molecular optimiza-
tion, reporting a remarkable 80% success rate in improving specific
molecular properties while maintaining structural similarity.

More recently, Stokes et al. [36] utilized a deep learning ap-
proach to discover a novel antibiotic, halicin, capable of killing a
wide range of bacteria, including some antibiotic-resistant strains.
This breakthrough, facilitated by sequence modeling techniques,
exemplifies the tangible impact of these methods on drug discovery.
Furthermore, Zhavoronkov et al. [42] demonstrated the practical
application of generative models in designing novel DDR1 kinase
inhibitors, reducing the time from target identification to lead com-
pounds from years to mere weeks.



These empirical results underscore the significant promise of
sequence models in advancing computational drug discovery, not
just in theory but in practice. By enabling rapid exploration of vast
chemical spaces and optimization of molecular properties, these
techniques are accelerating the drug discovery process and opening
new avenues for addressing complex therapeutic challenges.

2.4 Evolution of Molecular Representations

The representation of molecules in a format amenable to machine
learning algorithms is a cornerstone of computational drug discov-
ery and materials science. Over the years, several approaches have
been developed to encode molecular structures effectively, each
with its own strengths and limitations.

2.4.1 SMILES. The Simplified Molecular-Input Line-Entry System
(SMILES), introduced by Weininger [40], has been widely used for
encoding molecular structures as linear strings of ASCII characters.
SMILES offers simplicity and human-readability, making it a pop-
ular choice for many applications. For instance, Segler et al. [34]
utilized SMILES representations in their retrosynthesis prediction
model, achieving a top-1 accuracy of 45.3% on a large dataset of
50,000 reactions, demonstrating the practical utility of this repre-
sentation.

However, SMILES has limitations, particularly in terms of robust-
ness. Krenn et al. [22] quantified this issue, showing that random
mutations in SMILES strings resulted in valid molecules only 7.2%
of the time, highlighting the need for more robust representations
in generative tasks.

2.4.2 SELFIES. To address limitations of SMILES, Krenn et al. [22]
introduced SELFIES (Self-Referencing Embedded Strings) in 2020.
SELFIES employs a robust encoding scheme that guarantees the
generation of valid molecules, even when arbitrary mutations are
applied to the string. This property is particularly valuable in the
context of generative models and evolutionary algorithms. In their
study, Krenn et al. demonstrated SELFIES’ robustness by showing
that 100% of molecules generated using this representation were
chemically valid, compared to only 7.2% for SMILES under similar
conditions.

2.4.3 SAFE. Building upon these developments, the Sequential
Attachment-based Fragment Embedding (SAFE) representation was
introduced by Noutahi et al. [26] in 2023. SAFE addresses limita-
tions of both SMILES and SELFIES by representing molecules as an
unordered sequence of interconnected fragment blocks, offering
advantages in interpretability and generative capabilities.

Figure 1 illustrates the difference between SAFE and SMILES
representations for a complex molecule. In the SAFE representation,
the molecule is decomposed into distinct fragments (numbered cir-
cles), with connections between fragments indicated by lines. This
approach allows for a more intuitive understanding of the molecu-
lar structure and facilitates easier manipulation in generative tasks.
In contrast, the SMILES representation encodes the same molecule
as a linear string, which, while compact, can be less intuitive and
more challenging to manipulate without introducing errors.

The SAFE representation has shown promising results in molec-
ular generation tasks. Noutahi et al. [26] demonstrated that models
trained on SAFE representations outperformed those trained on
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Figure 1: Comparison of SAFE and SMILES representations
for a complex molecule. The SAFE representation (left)
breaks down the molecule into interconnected fragments,
while the SMILES representation (right) encodes it as a linear
string. Adapted from Noutahi et al. [26].

SMILES in terms of validity, uniqueness, and novelty of generated
molecules. Specifically, their experiments showed that SAFE-based
models achieved up to 98.9% validity in generated molecules, com-
pared to 94.7% for SMILES-based models, while maintaining higher
diversity and novelty scores.

These advancements in molecular representations have signifi-
cantly enhanced our ability to apply machine learning techniques
to molecular design and optimization tasks. By providing more ro-
bust and interpretable encodings, representations like SELFIES and
SAFE have expanded the possibilities for Al-driven drug discovery
and materials science, as evidenced by their improved performance
in generative tasks and their potential for more intuitive molecular
manipulation.

2.5 Architectural Paradigms in Sequence
Modeling

Recent years have witnessed significant advancements in sequence
modeling architectures, particularly in the domains of Natural Lan-
guage Processing (NLP). Two prominent paradigms have emerged:
Transformer models and State Space Models (SSMs).

2.5.1 Transformer Architecture. The Transformer architecture, in-
troduced by Vaswani et al. [38] in 2017, has become widely adopted
in NLP tasks. Its impact is evident in models like BERT [7], which
achieved state-of-the-art results on 11 NLP tasks, and GPT-3 [4],
which demonstrated impressive few-shot learning capabilities across
various language tasks.

The core of the Transformer is its self-attention mechanism,

defined mathematically as:
KT
e v B
Vi

where Q, K, and V are query, key, and value matrices respectively,
and d is the dimension of the key vectors.

While Transformers have shown remarkable performance, their
computational complexity is quadratic with respect to sequence
length. Specifically, the self-attention mechanism has a time and
memory complexity of O(n?d), where n is the sequence length and
d is the hidden dimension [37]. This poses challenges for scaling to
longer sequences or larger datasets.

Attention(Q, K, V) = softmax (
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Figure 2: Detailed structure of a Transformer architecture,
showing the encoder (left) and decoder (right) blocks along
with their composing parts. Adapted from Vaswani et al. [38].

2.5.2  State Space Models (SSMs). State Space Models offer an alter-
native approach to sequence modeling by representing sequences as
continuous-time dynamical systems. The general form of a discrete-
time linear SSM is:

X1 = AXg + Buy ()
Yr = Cxp + Dug. 3)

where x;. is the hidden state, u is the input, yy is the output,
and A, B, C, and D are learnable parameters.

Several SSM variants have been proposed, each with distinct
characteristics. The S4 model [14] achieved linear time complex-
ity and showed strong performance on long-range arena tasks,
outperforming Transformers on 4 out of 5 tasks with sequences
of length 1,000-16,000. The H3 model [5] introduced a hybrid ap-
proach combining SSMs with hyperbolic spaces, demonstrating
improved performance on language modeling tasks. Most recently,
the MAMBA architecture [13] incorporated selective computation
and showed competitive performance with Transformers while
using less computation.

2.5.3 Mamba Architecture. The Mamba architecture represents a
significant advancement in the field of sequence modeling, building
upon the foundations of structured state space models (SSMs) while
introducing novel elements to enhance performance and efficiency.
At its core, Mamba incorporates a selective state space model, which
addresses key limitations of previous SSM implementations.

The fundamental innovation in Mamba lies in its selection mech-
anism, which allows the model to dynamically focus on or ignore
specific inputs based on their content. This mechanism is imple-
mented by making several parameters of the SSM, namely A, B, and
C, functions of the input. Mathematically, this can be expressed as:

B: (B,L,N) « sg(x)
C: (B,L,N) « sc(x) 4)
A : (B,L,D) « tp(Parameter + sp(x))

Here, sg(x), sc(x), and sa (x) are learnable functions that trans-
form the input x, allowing the model to adapt its behavior based
on the content of the sequence. The function 7, is typically chosen
to be the softplus function, which ensures that A remains positive.

This selection mechanism enables Mamba to overcome the limi-
tations of linear time-invariant (LTI) models, which struggle with
tasks requiring content-aware processing, such as selective copy-
ing or induction heads. The ability to selectively focus on relevant
information allows Mamba to compress context into a smaller state
more effectively, balancing the trade-off between efficiency and
expressiveness.

To implement this selective mechanism efficiently, Mamba em-
ploys a hardware-aware algorithm that leverages the memory hi-
erarchy of modern GPUs. This algorithm uses kernel fusion to
combine the discretization step, the parallel scan operation, and
the multiplication with C into a single operation. This approach
significantly reduces memory bandwidth requirements, leading to
substantial speedups compared to naive implementations.

The Mamba block, which forms the basic unit of computation
in the architecture, can be described by the following series of
operations:

A, B, C = Linear(x) (5)
h = SelectiveScan(A, B, C, x) (6)
y = Linear(h) (7)

Here, the SelectiveScan operation is the core component that en-
ables efficient state updates, incorporating the selective mechanism
that gives Mamba its unique capabilities.

The overall Mamba architecture simplifies previous SSM architec-
tures by combining the SSM block with the ubiquitous multi-layer
perceptron (MLP) block found in modern neural networks. Instead
of interleaving these two blocks, Mamba repeats a unified block
homogeneously throughout the network. This unified block ex-
pands the model dimension D by a controllable expansion factor E,
typically set to 2.

Compared to the H3 block, which forms the basis of many SSM
architectures, Mamba replaces the first multiplicative gate with an
activation function. In contrast to the standard MLP block, Mamba
adds an SSM to the main branch. The activation function ¢ used in
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the Mamba block is the SiLU (Sigmoid Linear Unit) or Swish func-
tion, which has shown promising results in various deep learning
applications [15, 30].

The Mamba architecture’s design choices result in a model that is
not only more efficient in terms of computational resources but also
more effective at capturing long-range dependencies in sequences.
By leveraging the selective mechanism and the simplified block
structure, Mamba can process longer sequences more efficiently
than traditional Transformer models, while maintaining or even
improving upon their performance across various tasks.
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Figure 5: Comparison of Mamba, RNN/S4, and Transformer
architectures in terms of their effectiveness at compressing
data selectively based on state size. Adapted from Grooten-
dorst [12].

Figure 5 provides a visual comparison of the Mamba architecture
with RNN/S4 (major compression) and Transformer (no compres-
sion) architectures in terms of their effectiveness at compressing
data selectively based on state size. As the image illustrates, Mamba
strikes a balance between the two extremes, being more powerful
and efficient than RNN/S4 for small state sizes while remaining
more efficient than Transformers for large state sizes [12]. This
comparison highlights a key strength of the Mamba architecture:
its ability to efficiently compress and process sequential data in a
content-aware manner. By selectively focusing on or ignoring spe-
cific inputs based on their content, Mamba can effectively balance
the trade-off between model capacity and computational efficiency,
enabling it to handle longer sequences and more complex tasks
than traditional architectures.

2.6 Challenges in Molecular Generation

Despite advancements in molecular representations and sequence
modeling architectures, several challenges persist in Al-driven
molecular design. Balancing validity, diversity, and novelty in gen-
erated molecules remains complex, often requiring careful tuning
of generation parameters [29]. Ensuring that generated molecules
possess drug-like properties and are synthetically accessible is cru-
cial for practical applications in drug discovery, as demonstrated
by Brown et al. [3] in their benchmark suite for de novo molecular
design.

Beyond de novo generation, sequence modeling architectures
show promise in other aspects of molecular design. For example, Jin
et al. [20] demonstrated the use of a hierarchical encoder-decoder
model for targeted molecule optimization, achieving a 30% improve-
ment over previous methods in finding molecules with desired
properties while maintaining structural similarity. Similarly, Mo
et al. [25] applied transformer-based models to predict reaction
outcomes and retrosynthetic pathways, potentially aiding in the
design of synthetically accessible molecules.

As researchers aim to explore larger chemical spaces and gen-
erate more complex molecules, computational efficiency becomes
increasingly important. Gémez-Bombarelli et al. [10] highlighted
this challenge, noting that the vast size of chemical space (estimated
at 10%° drug-like molecules) necessitates highly efficient exploration
strategies. The interpretability of Al-generated molecules and the
ability to guide generation towards desired properties are ongoing
areas of research that continue to drive innovation in the field [19].



3 METHODOLOGY

Our study aims to evaluate the efficacy of autoregressive sequence
models in molecular generation tasks. Autoregressive models have
shown promising results in various sequence modeling tasks, includ-
ing natural language processing and, more recently, in the domain
of cheminformatics [4, 26, 38]. In this work, we focus on comparing
Transformer-based models, State Space Models (SSMs), and hybrid
architectures, all implemented as autoregressive sequence models
for molecular generation.

3.1 Dataset Preparation

To ensure a comprehensive analysis, we utilized two distinct datasets:

the Molecular Sets (MOSES) dataset and a canonicalized subset of
the ZINC database. The MOSES dataset, comprising approximately
1.6 million drug-like molecules, serves as our primary benchmark.
Curated by Polykovskiy et al. [29], MOSES offers a representation
of the chemical space relevant to drug discovery, with compounds
selected based on specific physicochemical properties and synthetic
accessibility criteria.

To complement MOSES and assess the scalability of our findings,
we incorporated a larger dataset derived from ZINC20 [35]. Specifi-
cally, we used a canonicalized subset of 23 million molecules from
ZINC!. This expanded dataset allows us to investigate whether the
trends observed with MOSES persist when applied to a larger and
more diverse chemical space.

For both datasets, we implemented an identical preprocessing
pipeline. We transformed the original SMILES strings into the SAFE
(Sequential Attachment-based Fragment Embedding) representa-
tion using the SAFE library?. Introduced by Noutahi et al. [26], SAFE
represents molecules as an unordered sequence of interconnected
fragment blocks. The SAFE encoding process involves extracting
unique ring digits from the SMILES string, fragmenting the mole-
cule using methods such as BRICS [6], sorting fragments by size,
concatenating fragment SMILES strings, and replacing attachment
points with new ring digits.

For tokenization, we employed the pre-trained byte-pair encod-
ing (BPE) tokenizer from the SAFE-GPT model®. This tokenizer,
trained on 1.1 billion molecules?, offers a vocabulary size of 1,880 to-
kens. The use of this pre-trained tokenizer ensures consistency with
the original SAFE-GPT implementation and leverages knowledge
embedded in a larger chemical space [26].

For MOSES, we maintained the original train-validation split to
ensure comparability with previous studies [29]. The ZINC sub-
set was randomly split into training (90%) and validation (10%)
sets. This approach allows us to evaluate our models on held-out
molecules not seen during training, providing an assessment of
generalization capabilities.

The final preprocessed datasets consisted of the MOSES dataset
with approximately 1.6 million SAFE-encoded molecules (split into
training and validation sets) and the ZINC subset with 23 million
SAFE-encoded molecules (20.7 million for training, 2.3 million for
validation). By utilizing these two datasets of different scales, we

!https://huggingface.co/datasets/sagawa/ZINC-canonicalized
Zhttps://safe-docs.datamol.io/stable/
3https://huggingface.co/datamol-io/safe-gpt
“4https://huggingface.co/datasets/datamol-io/safe-gpt

aim to provide an evaluation of our autoregressive sequence models
across varying levels of molecular diversity and complexity.

3.2 Model Architectures and Training Procedure

Our comparative study implemented five distinct models across
three architectures: Transformer-based (SAFE-Small and SAFE-
Large), State Space Models (MAMBA-Small and MAMBA-Large),
and a hybrid architecture (MAMBA-Small-Hybrid). These mod-
els were designed to investigate both small (approximately 20M
parameters) and large (approximately 90M parameters) variants.

The SAFE-GPT models, as described by Noutahi et al. [26], served
as our Transformer-based architectures. The MAMBA models were
based on the architecture proposed by Gu and Dao [13] and adapted
from their original codebase®. The MAMBA-Small-Hybrid model
incorporated attention layers at indices 2 and 5 within its 6-layer
structure, combining elements of both Transformer and SSM archi-
tectures.

Our implementation strategy prioritized alignment with the
SAFE framework, carefully emulating the training process outlined
in the SAFE library®. We made only necessary architectural ad-
justments while keeping all other aspects of the pipeline constant.
This approach ensured that our comparison focused on architec-
tural differences, isolating their impact on molecular generation
performance.

We implemented a training protocol consistent across all model
architectures, with specific adjustments made for the larger models
to account for their increased capacity. All models were trained on
NVIDIA A100 GPUs. The small models were trained for a full 10
epochs, while the large models were trained for a fixed number
of 250,000 steps, corresponding to approximately 2.4 epochs on
our dataset. For all models, we implemented interleaved valida-
tion throughout the training process to monitor performance and
prevent overfitting.

Throughout the training process, we monitored GPU power con-
sumption and utilization using Wandb, allowing us to compare the
efficiency of each model architecture in terms of energy consump-
tion and hardware utilization.

Detailed model architecture parameters and training hyperpa-
rameters can be found in Appendix B.

3.3 Molecule Generation and Evaluation

For molecule generation, we employed nucleus sampling as de-
scribed by Holtzman et al. [17]. For SAFE models, we maintained
the default Hugging Face decoding parameters: a temperature of
1.0, top-p of 1.0, and top-k of 50. The MAMBA models used identi-
cal parameters, except for top-p, which was adjusted to 0.9. This
adjustment proved crucial for maintaining high validity rates in
MAMBA-generated molecules, a point we will elaborate on in the
results section. We generated 10,000 molecules for each model in a
single batch, ensuring a consistent generation strategy across all
architectures for fair comparison.

Our evaluation framework encompassed both quantitative mea-
sures and qualitative analyses, building upon established metrics in

Shttps://github.com/state- spaces/mamba
®https://github.com/datamol-io/safe
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the field of molecular generation [29]. We assessed validity, unique-
ness, and diversity of the generated molecules. Validity, calculated
using RDKit [23], ensures that generated structures adhere to basic
chemical rules. Uniqueness assesses the model’s ability to generate
distinct molecular structures. Diversity, quantified using the aver-
age pairwise Tanimoto distance between molecules based on their
ECFP4 fingerprint representations [32], measures the structural
variety within the generated set.

The diversity of generated molecules was quantified using the
following equation:

1 N N
Diversity NN ;j;rl(l T(mi, mj)) 8)
where N is the number of molecules, m; and m; are molecules,
and T(m;, m;j) is the Tanimoto similarity between their ECFP4
fingerprints.

To gauge how well the models captured the characteristics of
drug-like molecules, we compared the distributions of key physic-
ochemical properties between the generated molecules and the
training set. These properties, crucial in drug discovery as outlined
by Lipinski [24] and Veber et al. [39], include molecular weight,
LogP, topological polar surface area (TPSA), number of rotatable
bonds, hydrogen bond acceptors and donors, and aromatic rings.
These properties play vital roles in determining a compound’s drug-
likeness.

In addition to these molecular metrics, we conducted a thorough
assessment of computational resource utilization. We monitored
GPU power consumption and utilization throughout the training
process using Wandb. This allowed us to compare the efficiency
of each model architecture in terms of energy consumption, hard-
ware utilization, and overall training time providing insights into
their scalability and potential for handling larger datasets or more
complex molecular structures.

By employing this comprehensive evaluation framework, we
aim to provide a thorough analysis of the generated molecules’
quality and diversity, their relevance to drug discovery, as well as
the computational efficiency of the different model architectures.
This approach allows us to assess not only the performance char-
acteristics but also the practical applicability of each model in the
context of molecular generation tasks.

4 RESULTS

This section presents the findings from our comparative analysis of
Transformer-based (SAFE) and State Space Model (Mamba) architec-
tures for molecular generation using the SAFE representation. We
report on model performance metrics, perplexity analysis, molecu-
lar property distributions, and computational efficiency for both
small (~20M parameters) and large (~90M parameters) models.

4.1 Model Performance Metrics

Table 1 summarizes the key performance metrics for our models,
alongside previously reported results for other molecular genera-
tion approaches [29].

All models in our study achieved high validity scores, with
Mamba_Large, Safe_Small, Mamba_Small_Hybrid, and Mamba_Small
reaching perfect validity (1.000). Safe_Large showed slightly lower

but still excellent validity at 0.98. Uniqueness was consistently high
across all models, with large models achieving perfect uniqueness
(1.000) and small models reaching near-perfect uniqueness (0.999).

The diversity scores were comparable across our models, with
Safe_Large achieving the highest score of 0.880, followed closely by
Mamba_Large at 0.873. The small models showed slightly lower but
still competitive diversity scores: Safe_Small at 0.864, Mamba_Small-
_Hybrid at 0.862, and Mamba_Small at 0.860.

Notably, for all Mamba models, we found it necessary to adjust
the top-p parameter to 0.90 to achieve these results. When top-p
was set to 1.0 for the Mamba models, they tended to generate invalid
SAFE representations, leading to frequent decoding errors.

4.2 Perplexity Analysis

Figures 6 and 7 illustrate the perplexity of each model over the
course of training epochs for small and large models, respectively,
as measured on a held-out test set at intervals throughout training.

For the small models (approximately 20M parameters), both
Mamba_Small and Mamba_Small_Hybrid exhibited consistently
lower perplexity throughout the training process, converging to
values around 1.4. In contrast, the Safe_Small model’s perplexity
remained higher, settling around 1.5.

The large models (Safe_Large with 87M parameters and Mamba_Large

with 94M parameters) showed a similar trend, with Mamba_Large
achieving noticeably lower perplexity than Safe_Large throughout
the training process. The gap in perplexity between Mamba_Large
and Safe_Large appears to be even more pronounced than in the
small models.

4.3 Molecular Property Distributions

To assess how well our models captured the characteristics of drug-
like molecules, we analyzed the distribution of various molecu-
lar properties for the generated compounds, following established
evaluation approaches [3, 29]. For small models, we compared the
distributions to the MOSES training dataset, while for large models,
we compared them to the ZINC dataset. Figures 8 and 9 show the
distributions of key molecular properties for small and large models,
respectively.

For both small (Figure 8) and large (Figure 9) models, the dis-
tributions of molecular properties for generated molecules closely
matched those of their respective training datasets (MOSES for
small models, ZINC for large models). This trend was consistent
across all evaluated properties, indicating that our models, regard-
less of their underlying architecture or size, successfully captured
the distribution of physicochemical properties present in their train-
ing data.

Notably, the Mamba model distributions closely align with those
of the SAFE models for both small and large variants. This sug-
gests that the State Space Model architecture can capture the same
molecular property characteristics as the Transformer-based model
when trained on the same dataset. However, it’s important to note
that there are some slight differences in the distributions between
SAFE and Mamba models, particularly for the large models. These
differences can be largely attributed to the different top-p parameter
used for the Mamba models (0.90) compared to the SAFE models
(1.0).



Table 1: Performance comparison of molecular generation models

Model Valid@10KT Unique@10KT DiversityT
Safe_Large (87M) 0.98 1 0.880
Mamba_Large (94M) 1 1 0.873
Safe_Small (21M) 1 0.999 0.864
Mamba_Small_Hybrid (20M) 1 0.999 0.862
Mamba_Small (20M) 1 0.999 0.860
" GSELFIES-GPT20M 1 099 0887
GSELFIES-VAE 1 0.999 0.859
GMT-SELFIES 1 1 0.870
SELFIES-VAE 1 0.999 0.858
CharRNN 0.975 0.999 0.856
VAE 0.977 0.998 0.856
LatentGAN 0.897 0.997 0.857
LigGPT 0.900 0.999 0.871
JT-VAE 1 0.999 0.855
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Figure 6: Perplexity over epochs for Safe _Small,
Mamba_Small, and Mamba_Small_Hybrid models on test
set

Figure 7: Perplexity over epochs for Safe_Large and
Mamba_Large models on test set
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Figure 8: Distributions of molecular properties for small models compared to MOSES dataset

We analyzed a comprehensive set of molecular properties, in- Acceptors (HBA) and Donors (HBD) [9], Number of Aromatic Rings,
cluding Molecular Weight, LogP [41], Topological Polar Surface and Quantitative Estimate of Drug-likeness (QED) [2]. The con-
Area (TPSA) [8], Number of Rotatable Bonds [39], Hydrogen Bond sistent trends across these properties further support our findings
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Figure 9: Distributions of molecular properties for large models compared to ZINC dataset

that both Transformer-based and State Space Model architectures
effectively capture the property distributions of their respective
training datasets.

For detailed mathematical definitions of these properties and
their relation to drug-likeness, refer to Appendix A.

5 DISCUSSION

Our study aimed to investigate two primary questions: (1) how
State Space Models compare to Transformer-based architectures
in generating valid, unique, and diverse molecules using the SAFE
representation, and (2) whether the efficiency of the MAMBA archi-
tecture provides advantages in terms of computational resources
and training time when applied to larger datasets and model sizes.
The results provide valuable insights into these questions and their
implications for Al-driven molecular design.

5.1 Comparative Performance in Molecular
Generation

Addressing our first research question, the results demonstrate
a remarkable parity in performance between State Space Models
(MAMBA) and Transformer-based (SAFE) architectures across all
evaluated metrics for molecular generation.

Both small (20M parameters) and large (90M parameters) models
achieved high validity (98-100%) and uniqueness (99.9-100%) scores,
regardless of the underlying architecture. This parity extends the
application of State Space Models, previously shown effective in
language tasks, to the complex domain of molecular generation.
The ability of MAMBA-based models to match the performance of
Transformer-based models suggests that State Space Models can
effectively learn and represent the intricate patterns inherent in
molecular structures, even without explicit attention mechanisms.

The comparable diversity scores across all models further rein-
force the capability of SSMs to capture the multifaceted nature of
molecular structures. This finding is particularly significant as it
demonstrates that alternative approaches to sequence modeling
can be equally effective in exploring vast chemical spaces, a crucial
aspect of molecular generation tasks.

It is important to note that achieving these results with MAMBA
models required adjusting the top-p parameter to 0.90, while SAFE
models used the default value of 1.0. This difference in sampling
strategy hints at fundamental differences in how SSMs and Trans-
formers learn to represent the molecular space, warranting further
investigation.

5.2 Efficiency Advantages of MAMBA
Architecture

Our second research question focused on the potential efficiency
advantages of the MAMBA architecture. The results reveal sig-
nificant efficiency gains for MAMBA-based models compared to
the Transformer-based SAFE models, particularly as model size
increases.

MAMBA models consistently demonstrated lower GPU power
consumption compared to SAFE models. This substantial reduction
in computational resource requirements could prove crucial for
scaling up to larger datasets or more complex molecular structures,
potentially enabling the exploration of chemical spaces that were
previously computationally infeasible.

Training time comparisons revealed an interesting trend. While
small MAMBA models required slightly longer training times de-
spite their lower resource utilization, this trend reversed for large
models. The 90M parameter SAFE model took approximately 90
hours to train for 250,000 steps, while the equivalent MAMBA model
completed the same training in only 64 hours. This observation
suggests that the efficiency advantages of MAMBA models become
more pronounced as model size increases, offering significant time
savings for large-scale molecular generation tasks.

The MAMBA-Hybrid model, incorporating both SSM and atten-
tion layers, demonstrated a promising balance between efficiency
and training speed. It maintained the low resource utilization char-
acteristic of MAMBA while achieving faster training times than
the pure MAMBA model, approaching those of the SAFE model at
the small scale.



5.3 Perplexity and Model Behavior

An intriguing finding of our study is the consistently lower perplex-
ity exhibited by MAMBA and MAMBA-Hybrid models throughout
the training process, for both small and large model sizes. The 20M
parameter MAMBA models achieved a perplexity of 1.4 compared
to 1.5 for the equivalent SAFE model, with this trend persisting for
larger models as well (1.5 vs 1.3).

Lower perplexity suggests that MAMBA models have learned a
more accurate probability distribution over the space of possible
molecules. This efficiency in modeling could be attributed to the
continuous-time dynamics of SSMs, which may be particularly well-
suited to capturing the sequential nature of molecular structures.

However, the need for a lower top-p value during sampling with
MAMBA models, despite their lower perplexity, highlights the com-
plexity of interpreting model performance in molecular generation
tasks. While MAMBA models seem to learn the molecular space
more accurately, more selective sampling was required to main-
tain high validity. This suggests that when working with SSMs for
molecular generation, fine-tuning of sampling strategies may be
necessary to fully leverage the learned representations.

5.4 Molecular Property Distributions

Our analysis of molecular property distributions revealed that both
MAMBA and SAFE models effectively captured the characteris-
tics of their respective training datasets (MOSES for small models,
ZINC for large models). This ability to reproduce the distribution
of physicochemical properties such as molecular weight, LogP, and
hydrogen bond acceptors/donors demonstrates that both architec-
tures can learn and generate molecules with realistic and diverse
properties.

The close alignment of property distributions between generated
molecules and the training data, observed across all model archi-
tectures and sizes, further reinforces the capability of State Space
Models to capture complex molecular features without explicit
attention mechanisms.

5.5 Implications for AI-Driven Molecular
Design
The comparable performance of MAMBA models to Transformer-
based models, coupled with their efficiency advantages, has signifi-
cant implications for the field of Al-driven molecular design. The
potential for SSMs to handle longer molecular sequences efficiently
opens up new possibilities for modeling complex macromolecules
or entire chemical pathways, tasks that have traditionally been chal-
lenging due to the quadratic complexity of attention mechanisms.
These findings suggest that State Space Models, specifically the
MAMBA architecture, offer a viable and efficient alternative to
Transformer-based models for molecular generation tasks. The
combination of comparable generation quality with improved com-
putational efficiency positions SSMs as a promising approach for
advancing the field of Al-driven molecular design, particularly for
large-scale applications or when computational resources are lim-
ited.

6 CONCLUSIONS

Our study provides empirical validation for the efficacy of State
Space Models, specifically the MAMBA architecture, in the com-
plex task of molecular generation. By demonstrating comparable
performance to Transformer-based models in generating valid,
unique, and diverse molecules, we contribute to the growing body
of evidence suggesting that SSMs represent a viable alternative to
attention-based architectures across diverse domains.

The success of MAMBA and MAMBA-Hybrid models in captur-
ing the intricacies of molecular structures, as encoded in the SAFE
representation, underscores the versatility of SSMs. This finding is
particularly significant given the complexity of molecular genera-
tion tasks, which require models to learn and reproduce intricate
patterns of atomic connections and chemical properties.

The marked efficiency advantage demonstrated by MAMBA-
based models, evidenced by substantial reductions in GPU power
consumption and improved training times for larger models, high-
lights a key strength of SSMs: their ability to process long sequences
with linear time complexity. This characteristic could prove trans-
formative in molecular generation tasks, where the exploration
of vast chemical spaces is often constrained by computational re-
sources.

Looking forward, several promising avenues for future research
emerge from our findings:

(1) Further scaling studies: While we have already explored
scaling to 90M parameters, investigating the performance of
even larger SSM-based models on more extensive molecular
datasets could further leverage their efficiency advantages
and potentially uncover new capabilities.

(2) Application to extremely long molecules: Training MAMBA
models on datasets containing exceptionally long molecular
sequences could demonstrate their ability to capture depen-
dencies at scales beyond the practical limits of Transformer
models. This could open up new possibilities in modeling
complex macromolecules or entire biochemical pathways.

(3) Advanced hybrid architectures: Building upon our MAMBA-
Hybrid model, there is potential to develop more sophisti-
cated hybrid architectures that combine the strengths of
SSMs and attention mechanisms. These models could be
tailored to capture different aspects of molecular structure
and behavior more effectively.
Integration with reinforcement learning: Developing ap-
proaches that guide MAMBA-based models to generate
novel, valid molecules using reinforcement learning tech-
niques could significantly contribute to drug discovery ef-
forts. This could involve creating sophisticated reward func-
tions that balance chemical validity, target properties, and
synthetic accessibility.

©)

In conclusion, our study not only validates the effectiveness
of SSMs in the complex domain of molecular generation but also
sets the stage for exciting future developments. The combination
of comparable generation quality with improved computational
efficiency positions SSMs as a promising approach for advancing
the field of Al-driven molecular design. As researchers build upon
these findings, we anticipate significant progress in our ability to
explore and engineer molecular spaces.



REFERENCES

(1]

(2]

[11]

[12]

(13]
(14]
(15]
[16]
(17]

(18]

[19]

[20]

[21]

[22]
[23]
[24]

[25]

Babak Alipanahi, Andrew Delong, Matthew Weirauch, and Brendan Frey. 2015.
Predicting the sequence specificities of DNA- and RNA-binding proteins by deep
learning. Nature biotechnology 33 (07 2015). https://doi.org/10.1038/nbt.3300
G Richard Bickerton, Gaia V Paolini, J’er’emy Besnard, Sorel Muresan, and
Andrew L Hopkins. 2012. Quantifying the chemical beauty of drugs. Nature
chemistry 4, 2 (2012), 90-98.

Nathan Brown, Marco Fiscato, Marwin HS Segler, and Alain C Vaucher. 2019.
GuacaMol: benchmarking models for de novo molecular design. Journal of
chemical information and modeling 59, 3 (2019), 1096-1108.

Tom B Brown. 2020. Language models are few-shot learners. arXiv preprint
ArXiv:2005.14165 (2020).

Tri Dao, Daniel Y. Fu, Khaled Kamal Saab, A. Waldmann Thomas, Atri Rudra, and
Christopher Ré. 2022. Hungry Hungry Hippos: Towards Language Modeling with
State Space Models. ArXiv abs/2212.14052 (2022). https://api.semanticscholar.
org/CorpusID:255340454

Jorg Degen, Christof Wegscheid-Gerlach, Andrea Zaliani, and Matthias Rarey.
2008. On the Art of Compiling and Using 'Drug-Like’ Chemical Fragment Spaces.
ChemMedChem 3, 10 (2008), 1503-1507. https://doi.org/10.1002/cmdc.200800178
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv:1810.04805 [cs.CL] https://arxiv.org/abs/1810.04805

Peter Ertl, Bernhard Rohde, and Paul Selzer. 2000. Fast calculation of molecular
polar surface area as a sum of fragment-based contributions and its application
to the prediction of drug transport properties. Journal of medicinal chemistry 43,
20 (2000), 3714-3717.

Piero Gasparotto and Michele Ceriotti. 2014. Recognizing molecular patterns by
machine learning: An agnostic structural definition of the hydrogen bond. The
Journal of chemical physics 141, 17 (2014).

Rafael Goémez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel
Hernandez-Lobato, Benjamin Sanchez-Lengeling, Dennis Sheberla, Jorge
Aguilera-Iparraguirre, Timothy D Hirzel, Ryan P Adams, and Alan Aspuru-Guzik.
2018. Automatic chemical design using a data-driven continuous representation
of molecules. ACS central science 4, 2 (2018), 268-276.

D Grechishnikova. 2021. Transformer neural network for protein-specific de
novo drug generation as a machine translation problem. Sci Rep 11: 321.
Maarten Grootendorst. 2024. A Visual Guide to Mamba and State Space Mod-
els. https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-
and-state

Albert Gu and Tri Dao. 2023. Mamba: Linear-Time Sequence Modeling with
Selective State Spaces. arXiv:2312.00752 [cs.LG]

Albert Gu, Karan Goel, and Christopher Ré. 2021. Efficiently modeling long
sequences with structured state spaces. arXiv preprint arXiv:2111.00396 (2021).
Dan Hendrycks and Kevin Gimpel. 2023. Gaussian Error Linear Units (GELUs).
arXiv:1606.08415 [cs.LG] https://arxiv.org/abs/1606.08415

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735-1780.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2019. The
curious case of neural text degeneration. arXiv preprint arXiv:1904.09751 (2019).
Sabrina Jaeger, Simone Fulle, and Samo Turk. 2018. Mol2vec: Unsupervised Ma-
chine Learning Approach with Chemical Intuition. Journal of chemical informa-
tion and modeling 58 1 (2018), 27-35. https://api.semanticscholar.org/CorpusID:
34512664

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. 2018. Junction tree varia-
tional autoencoder for molecular graph generation. In International Conference
on Machine Learning. PMLR, 2323-2332.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. 2020. Hierarchical genera-
tion of molecular graphs using structural motifs. In International Conference on
Machine Learning. PMLR, 4839-4848.

John M. Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Fig-
urnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin
Zidek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A A Kohl,
Andy Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov,
Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy,
Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer,
Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray
Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. 2021. Highly accurate
protein structure prediction with AlphaFold. Nature 596 (2021), 583 — 589.
https://api.semanticscholar.org/CorpusID:235959867

Mario Krenn, Florian Hése, AkshatKumar Nigam, Pascal Friederich, and Alan
Aspuru-Guzik. 2020.

Greg Landrum et al. 2023. RDKit: Open-source cheminformatics.
http://www. rdkit. org (2023).

Christopher A Lipinski. 2004. Lead-and drug-like compounds: the rule-of-five
revolution. Drug discovery today: Technologies 1, 4 (2004), 337-341.

Yiming Mo, Yanfei Guan, Pritha Verma, Jiang Guo, Mike E Fortunato, Zhaohong
Lu, Connor W Coley, and Klavs F Jensen. 2021. Evaluating and clustering

Online.

[26]

[27]

[28

™~
20,

(30]

(31]

32]

@
&

(34

[35

[36

[39

[40]

(41

[43]

retrosynthesis pathways with learned strategy. Chemical science 12, 4 (2021),
1469-1478.

Emmanuel Noutahi, Cristian Gabellini, Michael Craig, Jonathan SC Lim, and
Prudencio Tossou. 2023. Gotta be SAFE: A New Framework for Molecular Design.
arXiv preprint arXiv:2310.10773 (2023).

Hakime Oztiirk, Elif Ozkirimli Olmez, and Arzucan Ozgiir. 2018. DeepDTA: deep
drug-target binding affinity prediction. Bioinformatics 34 (2018), i821 — 1829.
https://api.semanticscholar.org/CorpusID:13224164

Steven M Paul, Daniel S Mytelka, Christopher T Dunwiddie, Charles C Persinger,
Bernard H Munos, Stacy R Lindborg, and Aaron L Schacht. 2010. How to improve
R&D productivity: the pharmaceutical industry’s grand challenge. Nature reviews
Drug discovery 9, 3 (2010), 203-214.

Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey
Golovanov, Oktai Tatanov, Stanislav Belyaev, Rauf Kurbanov, Aleksey Arta-
monov, Vladimir Aladinskiy, Mark Veselov, Artur Kadurin, Simon Johansson,
Hongming Chen, Sergey Nikolenko, Alan Aspuru-Guzik, and Alex Zhavoronkov.
2020. Molecular Sets (MOSES): A Benchmarking Platform for Molecular Genera-
tion Models. arXiv:1811.12823 [cs.LG]

Prajit Ramachandran, Barret Zoph, and Quoc V. Le. 2017. Searching for Activation
Functions. arXiv:1710.05941 [cs.NE] https://arxiv.org/abs/1710.05941

Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Xi Chen, John
Canny, Pieter Abbeel, and Yun S. Song. 2019. Evaluating Protein Transfer Learn-
ing with TAPE. arXiv:1906.08230 [cs.LG] https://arxiv.org/abs/1906.08230
David Rogers and Mathew Hahn. 2010. Extended-connectivity fingerprints.
Journal of Chemical Information and Modeling 50, 5 (2010), 742-754.

Petra Schneider, W Patrick Walters, Alleyn T Plowright, Norman Sieroka, Jennifer
Listgarten, Robert A Goodnow, Johanna Fisher, J"org M Jansen, Jos’e S Duca,
Thomas S Rush, et al. 2020. Rethinking drug design in the artificial intelligence
era. Nature Reviews Drug Discovery 19, 5 (2020), 353-364.

Marwin HS Segler, Thierry Kogej, Christian Tyrchan, and Mark P Waller. 2018.
Generating focused molecule libraries for drug discovery with recurrent neural
networks. ACS central science 4, 1 (2018), 120-131.

Teague Sterling and John J Irwin. 2015. ZINC 15-ligand discovery for everyone.
Journal of chemical information and modeling 55, 11 (2015), 2324-2337.
Jonathan M Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-
Ruiz, Nina M Donghia, Craig R MacNair, Shawn French, Lindsey A Carfrae,
Zohar Bloom-Ackermann, et al. 2020. A deep learning approach to antibiotic
discovery. Cell 180, 4 (2020), 688-702.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. 2022. Efficient
Transformers: A Survey. arXiv:2009.06732 [cs.LG] https://arxiv.org/abs/2009.
06732

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762 (2017).

Daniel F Veber, Stephen R Johnson, Hung-Yuan Cheng, Brian R Smith, Keith W
Ward, and Kenneth D Kopple. 2002. Molecular properties that influence the oral
bioavailability of drug candidates. Journal of medicinal chemistry 45, 12 (2002),
2615-2623.

David Weininger. 1988. SMILES, a chemical language and information system. 1.
introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28, 1
(1988), 31-36.

Scott A Wildman and Gordon M Crippen. 1999. Prediction of physicochemi-
cal parameters by atomic contributions. Journal of chemical information and
computer sciences 39, 5 (1999), 868—873.

Alex Zhavoronkov, Yan A Ivanenkov, Alex Aliper, Mark S Veselov, Vladimir A
Aladinskiy, Anastasiya V Aladinskaya, Victor A Terentiev, Daniil A Polykovskiy,
Maksim D Kuznetsov, Arip Asadulaev, et al. 2019. Deep learning enables rapid
identification of potent DDR1 kinase inhibitors. Nature biotechnology 37, 9 (2019),
1038-1040.

Jian Zhou and Olga G. Troyanskaya. 2015. Predicting effects of noncoding
variants with deep learning-based sequence model. Nature Methods 12 (2015),
931-934. https://api.semanticscholar.org/CorpusID:205424148


https://doi.org/10.1038/nbt.3300
https://api.semanticscholar.org/CorpusID:255340454
https://api.semanticscholar.org/CorpusID:255340454
https://doi.org/10.1002/cmdc.200800178
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://api.semanticscholar.org/CorpusID:34512664
https://api.semanticscholar.org/CorpusID:34512664
https://api.semanticscholar.org/CorpusID:235959867
https://api.semanticscholar.org/CorpusID:13224164
https://arxiv.org/abs/1811.12823
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1906.08230
https://arxiv.org/abs/1906.08230
https://arxiv.org/abs/2009.06732
https://arxiv.org/abs/2009.06732
https://arxiv.org/abs/2009.06732
https://api.semanticscholar.org/CorpusID:205424148

A MOLECULAR PROPERTY DEFINITIONS

This appendix provides mathematical definitions of the molecular properties analyzed in this study and their relation to the Quantitative
Estimate of Drug-likeness (QED).

A.1 Quantitative Estimate of Drug-likeness (QED)

QED is a composite measure that combines several molecular properties to assess how drug-like a compound is [2]. It is calculated as the
geometric mean of desirability functions for each property:

QED = exp (% Z In di) )
i=1

where d; are the desirability functions for each molecular descriptor.

A.2 Individual Property Definitions
A.2.1  Molecular Weight (MW). The sum of atomic weights for all atoms in a molecule.
n

MW = » atomic_weight; (10)

i=1
A.2.2  Octanol-Water Partition Coefficient (LogP). A measure of lipophilicity, estimated using various methods such as Crippen’s approach
[41].
n
LogP = Z ai - fi (11)
i=1
where g; are atom contributions and f; are correction factors.
A.2.3  Hydrogen Bond Acceptors (HBA) and Donors (HBD). Count of atoms capable of hydrogen bonding.
HBA = |{a € Atoms : ais O, N, or F with lone pair}| (12)
HBD = |{a € Atoms : a is O-H or N-H}| (13)

A.2.4  Topological Polar Surface Area (TPSA). Sum of surface contributions of polar atoms in a molecule [8].

n
TPSA = Z contribution; (14)
i=1

A.2.5 Number of Rotatable Bonds. Count of single bonds, not in rings, bound to non-terminal heavy atoms.

Nyotatable = [{b € Bonds : b is single, not in ring, bound to non-terminal heavy atoms}| (15)

A.2.6  Number of Aromatic Rings. Count of planar, conjugated ring systems with delocalized electrons.
Naromatic = [{c € Cycles : ¢ satisfies Hiickel’s rule and is planar}| (16)

Each of these properties contributes to the overall drug-likeness of a molecule as captured by the QED metric. The desirability functions
in QED transform these raw property values into scores between 0 and 1, which are then combined to give the final QED value.



B MODEL ARCHITECTURE AND TRAINING DETAILS
B.1 Model Architecture Parameters

Table 2 summarizes the key parameters of each model architecture used in our study.

Table 2: Model Architecture Parameters

Parameter SAFE-Small SAFE-Large MAMBA-Small MAMBA-Small-Hybrid MAMBA-Large
Model Type Transformer Transformer SSM SSM + Attention SSM
Embedding Dimension 512 768 512 512 768
Number of Layers 6 12 6 6 12
Attention Heads 8 12 - 8 (2 layers) -
SSM Variant - - Mamba2 Mamba2 Mamba2
Max Sequence Length 1024 1024 1024 1024 1024
Dropout Rate 0.1 0.1 0.1 0.1 0.1
Normalization LayerNorm  LayerNorm RMSNorm RMSNorm RMSNorm
Residual Connections - - FP32 FP32 FP32
Rotary Embeddings - - - 32-dim (2 layers) -

B.2 Model Training Parameters

Table 3 summarizes the key training parameters for both small and large models.

Table 3: Training Parameters for Small and Large Models

Parameter Small Models Large Models
Optimizer AdamW AdamW
Learning rate 5e-4 le-4
Warmup steps 20,000 10,000
Weight decay 0.1 0.1
Gradient clipping 1.0 1.0
Batch size (per device) 32 100
Gradient accumulation steps 2 2
Effective batch size 64 200

Training duration 10 epochs 250,000 steps




C EXAMPLE MOLECULES

This appendix presents representative molecules generated by each model, showcasing the longest, shortest, most diverse, and highest QED
molecules from the 10k generated.
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Figure 10: Representative molecules generated by the Mamba_Large model
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Figure 11: Representative molecules generated by the Mamba_Small model
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Figure 12: Representative molecules generated by the Mamba_Small_Hybrid model
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Figure 13: Representative molecules generated by the SAFE_Large model

SAFE Small

Longest

SMILES:
CCn1c(=0)[nH]c(=0)c2c(C(=0)N(C)C3CCCCC3)cc(C3CC3)n
c21

SAFE:
n17¢(=0)[nH]c(=0)c2c6cc8nc21.C15CCCCCL.C46=0.N45C.
C18CC1.cCc7

Shortest

o}
HO.
\/\N/tk
N
H H
Br

SMILES:
0=C(NCCO)NclccccclBr

SAFE:
cl5ccccclBr.0=C23.C4C0.N24.N35

Most Diverse
0
N
S
\Ngw

SMILES:
CC(C)(C)C(=0)Cnlnnc(-c2cccec2)nl

SAFE:
CC(C)(C)C(=0)C3.n13nnc4nl.cl4cccccl

Highest QED

SMILES:
Cclccc(S(=0)(=0)NC2CCOc3ccccc32)sl

SAFE:
N4C1CCOc2ccccc21.Celecc(S4(=0)=0)s1

QED: 0.9483

Figure 14: Representative molecules generated by the SAFE_Small model



D GPU UTILIZATION

Table 4: Computational Efficiency Metrics

Model GPU Utilization (%) Power Consumption (W)
Safe_Small 60 + 2 280
Mamba_Small 22+1 190
Mamba_Small Hybrid 23+1 195
Safe_Large 95+5 360

Mamba_Large 80 + 15 280
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