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Abstract
This paper discusses core reinforcement learning (RL) concepts and methods in
addition to elaborating on the field’s significant successes in game-AI. The focus
is on explaining the systems used in achieving superhuman performance in a
variety of game domains. This includes perfect-information games: Go, Chess,
and Shogi; Imperfect-information games: Poker; and video games: the Atari
suite, Dota 2 and StarCraft. This report is split into three main sections. First,
preliminary terminology and formalisms are introduced. Second, foundational
single-agent reinforcement learning methods are explained. Third, methods that
achieved superhuman performance in various game domains are elaborated on.
Additionally, there is a final section illustrating the performance of implemented
value-based methods.
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1 Introduction

1.1 Introduction to Reinforcement Learning
Reinforcement learning is a sub-field of machine learning that concerns itself with teaching an agent
how to map environmental situations to actions so as to maximise the cumulative reward given by
the environment. The goal for the agent is simple: to learn on its own and discover which actions
ultimately lead to better outcomes. Through simple trial-and-error, reinforcement learning agents can
learn to achieve remarkable performances in a variety of tasks.

Within artificial intelligence, games are an incredible test-bed for new methods and techniques. The
development of AI to play games is not anything new within the broader AI field, as some of the
earliest AI research set their sights on solving games. An example of this is the mastery of a digital
Tic-Tac-Toe game by A. S. Douglas in 1952. Early research on games such as chess eventually
culminated in incredible achievements such as Gary Kasparov’s defeat at the hands of IBM’s Deep
Blue [17]. Over the last decade, game-related AI research has expanded to include games of all types
and complexities, including modern video games. This research has pioneered many techniques
that are becoming mainstream artificial intelligence, such as Monte Carlo Tree Search, automated
game design, procedural content generation and using high-sensory inputs, such as screen capture, to
optimise control.

In recent years, we have seen reinforcement learning dominate the field of game-AI. Not only
has superhuman performance been achieved in both perfect and imperfect information games, but
reinforcement learning has done so exclusively by trial-and-error and self-play. These achievements
have sent shockwaves through the world by showing that machines can surpass human intuition and
skill in complex domains without any human intervention. The success of these methods seemingly
pave the way towards general artificial intelligence systems.

1.2 Preliminary Concepts
The following are preliminary concepts and methods that are required to understand how reinforce-
ment learning can achieve superhuman performance.

2



1.2.1 The Reinforcement Learning Problem
The reinforcement learning problem asks the question of how to learn the actions one should take
to, ultimately, maximise some given numerical reward signal. The entity responsible for learning
which actions to take is termed the agent, and the world the agent finds itself in is termed the
environment. In RL, learning generally starts tabula rasa meaning the agent has no prior information
to aid in its discovery of optimal actions. The agent must discover on its own, through means of
environment interaction, which actions to take to achieve its goal. This learning by trial-and-error is
a distinguishing characteristic of reinforcement learning. Formally, this problem is often modelled
using the Markov Decision Process (MDP) framework - see section 1.2.4.

1.2.2 Agent-Environment Interface

Figure 1: Agent’s interaction with environment [59]

The agent-environment interface (see figure 1) describes how interaction/communication takes place
between the agent and environment. This interaction cyclically occurs over time. Each cycle
represents a new time-step t where the environment presents a new situation (state st) to the agent.
The agent then needs to decide what to do, i.e. choose an action (action at). Each time-step, the
environment also gives a numerical reward (rt) after the execution of some action, which the agent
is trying to maximise over time. An agent continues in this cycle of state, action, reward until the
terminal time step T is reached. The full sequence of states, actions and rewards is called a trajectory
or episode. (s1, a1, r1, ..., sT , aT , rT )

1.2.3 States, Actions & Rewards
States represent the underlying environmental situations the agent can find itself in. An example of
this, in the game of chess, would be a certain board configuration. The agent makes use of the state st
to decide which action at to take that will maximise the cumulative reward going forwards

∑T
t=0 rt

. An agent might not have direct access to the environments underlying states, thereby receiving
some observation ot, representing st. In simple environments, the observation is identical to the state
ot = st, but this is not always the case. An example of this is agents learning how to play games
directly from pixels. The pixels themselves are not the state of the environment, but they form a
representation of the state. The set of all possible states the environment has to offer is termed as the
state space S.

Actions are the way the agents interact with the environment. Each state inherently has a set of
possible actions for the agent to take. These actions can be discrete, such as a list of cardinal directions
to move in, or continuous, such as the number of degrees to rotate a steering wheel. The set of all
possible actions an environment has to offer is termed the action space A.

Rewards are the numerical signal an agent is trying to maximise. Depending on the environment and
goal of the agent, the reward function is created. The reward function is the fundamental driving force
to teach an agent what is good or bad to do in a situation. The reward function depends on the current
state st and current action at. Often the reward function is deemed the most important modelling
factor of the reinforcement learning problem because if the reward signals do not truly capture the
goal of the task, the agent will not learn correctly or at all. David Silver, one of the leading pioneers
of modern reinforcement learning research, posits that the objective of maximising reward is enough
to create behaviour that exhibits most attributes of intelligence found in nature [56]. This idea further
enforces the importance of a correctly structured reward function.
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Figure 2: Example of a MDP [59]

1.2.4 Markov Decision Processes
Markov decision processes (MDP) are used to model an environment in a reinforcement learning
problem. Formally an MDP is represented by the tuple (S, A, P ,R, γ) where:

• S represents the set of all possible states.

• A represents the set of all possible actions.

• P represents the state transition probability function which gives the probability of outcome
states st+1 ∈ S given a current state st ∈ S and current action at ∈ A.

• R represents the reward function which gives the numerical reward depending on the current
state st ∈ S and current action at ∈ A.

• γ represents the discount factor that decides the weighting of importance given to immedi-
ate/future rewards.

MDPs (or POMDPs) are used to describe the RL agents environment formally. A POMDP (Partially
Observable Markov Decision Process) is an MDP whereby the agent cannot observe the MDP’s
true underlying state. This results in an MDP where instead of states, there are observations and an
associated observation transition probability function which allows for a degree of inference about
the underlying state. Formally, POMDPs are represented by the tuple (S , A, P ,R, Ω, O, γ) which is
the same as an MDP with the addition of Ω which represents the set of observations and O which
represents the observation probability function.

Since the reinforcement learning problem is mathematically idealised by Markov Decision Processes,
one can construct precise theoretical statements about these problems using them [59]. This is what
allows for many of the theoretical guarantees of tabular reinforcement learning methods.

Figure 2 shows an example of an MDP. The circles represent the states, and the arrows represent
transitions with specific probabilities. As can be seen, states can offer more than one potential
transition. An agent will transition from state to state with a certain probability depending on the
action/transition it decides to take. Figure 1 shows the agent’s interaction with the environment in an
MDP. The agent and environment (MDP) interact at each step in a sequence of discrete time steps. At
every step the agent receives an observation ot of the state st ∈ S , and selects an action at ∈ A based
on this observation according to it’s policy π. Once the agent has executed its action, one time-step
later, the agent will receive a reward rt ∈ R ⊂ IR due to its action and the state it ends up in. This
reward can be positive or negative, depending on the outcome. The agent now finds itself in a new
state st+1 ∈ S and the cycle repeats until a terminal state is reached.

It is important to note that MDPs have the Markov property meaning that the future states are indepen-
dent of the past states given the present state, i.e P [st+1|s1, s2, ..., st, a1, a2, ..., at] = P [st+1|st, at].
Intuitively this means that every state must include the necessary information about all aspects of the

4



past agent–environment interaction so that actions can be accurately decided solely based upon the
current state the agent is in. Many modern problems do not obey the Markov Property and require
the agent to have some form of memory, but this is elaborated in future sections.

1.2.5 Policies and Value Functions
Agent’s use a function, termed a policy, to decide their actions at every time-step. Intuitively, the
policy can be seen as the agent’s brain. A policy π is defined as a mapping of environment states
S to an action [59]. The policy can be constructed as a stochastic or deterministic function. In the
deterministic case, the function π(st) outputs a single action at that the agent will take. If stochastic,
π(st) will output a probability distribution over all possible actions at ∈ A whereby an agent will
sample an action at from this distribution.

In the process of finding the optimal policy π∗, a large proportion of reinforcement learning algorithms
estimate the value function v. The value function is a function that receives a state (st) or state-action
pair (st, at) as input to estimate the expected cumulative reward to be received going forwards (value).
Since the cumulative reward is dependant on future actions in future states, the value function is
defined with respect to the policy the agent is following. The expected cumulative reward Gt can be
defined as follows:

Gt =

T∑
k=t

γk−trk

where T is the terminal time step and γ discount factor (the weight of importance given to immediate
and future rewards). Formally the value function for any given policy is defined as:

vπ(s) = E[Gt|st = s], for all s ∈ S

The bellman equation for the value function decomposes the function into two parts, the immediate
reward and the discounted value of successor states. This can be formulated as :

vπ(s) = E[rt + γ ∗ v(st+1)|st = s]

The bellman equation illustrates an important recursive property used for most methods that involve
estimating a value function.

1.2.6 Prediction and Control
In reinforcement learning, there are two different goals: Prediction - where the agent’s task is to
evaluate how well a given policy performs. An example of this is to estimate the value function of an
MDP given some policy.

The other goal, which is usually the focus of many, is control - where the task of the agent is to find
the optimal policy to some MDP [59].

Often, in the pursuit of optimal control, prediction is used to improve the current policy. An agent uses
its experience to learn and estimate the value function, after which it then improves its policy by acting
greedily. With its new policy, the process of estimating the new value function starts again, thereby
creating a cycle of policy improvement and evaluation, ideally converging on the optimal policy
and value function over time. This cycle of policy evaluation (prediction) and policy improvement
(control) is termed Generalised Policy Improvement (see figure 3). Almost all reinforcement learning
methods can be described as a form of Generalised Policy Improvement.

1.2.7 Model Free
Model-free methods are those in which the agent has no internal representation of the
MDP/Environment. The agent has no knowledge of the MDP transition or reward dynamics and
cannot use this information in learning. Model-free agents do not have the ability to think and plan
about how their environments might change in response to their actions. Since models have to be
accurate to give utility, model-free methods often have the advantage in complex environments, which
is why there has been much success with these methods in the past. Model-free methods are also an
essential building block for model-based methods, which are becoming more popular in recent years.
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Figure 3: Generalised Policy Improvement [59]

1.2.8 Model-Based
Model-based methods are methods in which the environment dynamics such as reward and state
transition functions are learned by (or given to) the agent and modelled into some representation
that the agent can use to choose the optimal action. Models can help agents learn faster and find
better policies in fewer interactions with the environments (i.e. it is sample efficient) [33]. Models
can also aid agents with the ability to predict the future, and this can be very beneficial in certain
situations [58]. Model-based methods are becoming more popular in recent years with the creation of
techniques capable of learning complex models that can be reasoned about e.g. MuZero [49].

1.2.9 Monte Carlo Methods

Figure 4: Dynamic Programming, Monte Carlo, and Temporal Difference Backup illustrated
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Monte Carlo methods aim to solve the reinforcement learning problem by directly learning from
experience and averaging sample returns. Monte Carlo methods have the assumption that all episodes
will terminate and that experience is divided into episodes (sequence of time steps starting in a start
state and ending in a terminal state). The agent simulates episodes of experience and learns directly
from this experience, thereby not requiring any knowledge of how the environment functions. In the
learning process, an agent generates episodes of experience (S0, A0, R0, S1, A1, R1, ...ST , AT , RT )
and uses this to learn a value function or policy function. Since Monte Carlo methods have to simulate
entire episodes of experience before learning can occur, these methods cannot be applied to infinite-
horizon MDPs. What distinguishes Monte Carlo methods apart from classic dynamic programming
and temporal difference learning is that Monte Carlo learning does not employ bootstrapping. The
estimates for one state do not build upon the estimates of any other state. Thus, Monte Carlo methods
have a lower bias compared to other methods, but the trade-off is a higher variance as episode
trajectories can be highly different [59]. An example of a Monte Carlo update for a value function is
as follows:

V (st)←− V (st) + α[Gt − V (st)]

where Gt represents the cumulative value seen from time t onward and α represents the step size. As
shown in the update, a Monte Carlo method directly uses the sampled value Gt it has observed from
experience.

1.2.10 Temporal Difference Learning
Temporal difference methods are the same as Monte Carlo methods in that they directly learn from
experience without the need of a model, but unlike Monte Carlo, they do not need to wait for episode
termination to learn. Instead, they bootstrap from the sample trajectory [59]. TD methods make use
of every individual time-step to learn. At time t+ 1, the experience of 1 or n time steps is used to
update either the agent’s policy or value function. An example of a one-step TD update for the value
function is as follows:

V (st)←− V (st) + α[rt + γV (st+1)− V (st)]

This is updating the agent’s current state value estimate in the direction of the successive state’s
value estimation plus the immediate reward it has seen. Intuitively, this is a combination of dynamic
programming and Monte Carlo ideas, where the agent updates its estimates based on other learned
estimates and does this from raw experience. Since TD methods bootstrap, the variance between state
updates is much lower than its Monte Carlo counterparts. However, this causes an increase in bias as
values are updated based on other estimates instead of experienced trajectories.

2 Foundational Methods
2.1 Value-based
Value-based methods are those in which the agent tries to learn the value function of the MDP it is
situated in. The value function is highly beneficial as it gives the agent information on what states
it should transition to. The agent can use the value function for action selection simply by acting
greedily and choosing the action that takes it to the state with the highest value. Most value-based
methods use the greedy policy (specifically epsilon-greedy)[59] as it is simple to implement and is
effective. The epsilon-greedy policy is precisely like the greedy policy, except every time-step, the
agent has a slight chance to take a completely random action. The epsilon value decides how large
this chance is. The reason for not always acting greedily is to allow the agent to explore new states
and actions it has not seen before.

Practically, most value-based methods try to learn the value of action-state pairs, otherwise known as
the Q-value. The idea behind this is that if the agent does not know the dynamics of the environment,
it does not know which action will take it to the desired state. Hence, the solution is to create a
function that estimates the total expected cumulative reward if an agent takes a specific action in a
specific state:

Q(s, a) = E[Gt|st = s, at = a], for all s ∈ S and a ∈ A

2.1.1 Q-Learning
Q-learning [72] is regarded as one of the early breakthroughs in reinforcement learning [59]. The
Q-learning control algorithm is a way for an agent to learn the optimal action-state value function
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Q∗ directly instead of repeatedly performing policy evaluation and iteration. Q-learning achieves
this by keeping a table of each action-state pair and its associated Q-value estimate. As the agent
interacts with the environment, it iteratively updates its estimates whilst acting greedily or ε-greedily.
Q-learning makes use of TD-learning to update the Q-function. An example of this Q-learning update
using one-step TD-learning is:

Q(st, at) = Q(st, at) + α
[
rt + γmax

a
Q(st+1, a)−Q(st, at)

]
Where α is the learning rate, and γ is the discount factor. In Q-learning, the optimal state-action
value function Q∗ being learned is independent of the behavioural policy that the agent is following.
Due to this, an agent can use a more exploration-focused policy whilst still learning how to perform
optimal control. Although Watkins et al. [72] has shown the convergence proofs illustrating that
Q-learning can effectively solve MDP’s, this is only in the tabular setting.

Algorithm 1: Tabular Q-learning
Initialise Q(S,A) to arbitrary values.
for each episode: do

Initialise S
for Each step in episode do

Choose A from S using policy derived from Q
Take action A and observe R, S′
Q(S,A)←− Q(S,A) + α[R+ γmaxA′ Q(S′, A′)−Q(S,A)]
S ←− S′
until S is terminal

end
end

2.1.2 DQN
When modelled into MDPs, most modern problems have vast state spaces (potentially continuous state
space). Solving these MDPs can prove challenging for tabular setting algorithms, such as Q-learning,
as computers have limited storage. The difficulty of dealing with large state spaces becomes worse
when learning the action-state pair value estimates as the number of states is multiplied by the number
of actions. This high dimensionality makes traditional Q-learning for larger problems computationally
infeasible as action-state pairs’ visitation count must tend to infinity for the Q-function to converge.
The solution to this problem is function approximation. With modern advancements in deep learning,
one type of function approximation used heavily in RL is neural networks. Although any differentiable
function approximation can be used, neural networks are incredibly versatile and high performing.
Deep Q-Networks (DQNs) [39] have been shown, with a few additions such as experience replay
buffer [38] and target networks, to be able to solve large dimensional MDPs, such as Atari games,
effectively. Initially, Q-learning, using neural networks, could not solve even elementary problems
due to three main issues. Firstly, neural networks require non-correlated data, which is not the case in
reinforcement learning as data collected is sequential and temporally related. Secondly, the neural
Q-network is highly sensitive to changes which makes training unstable. Lastly, the Q-targets when
bootstrapping are highly correlated to the Q-values being predicted. These issues effectively prevented
neural networks and the advancements of deep learning from being adopted in RL. However, with
the additions added by Mnih et al., the DQN has become one of the most widely used and expanded
upon algorithms.

The DQN algorithm functions like traditional tabular Q-learning, except a neural network, instead of
a table, represents the Q-function that estimates the Q-value. To train the neural network, as the agent
interacts with the environment, the online Q-network Qθ(st, at) predicts the action-state values and
updates its weights θ according to how close its prediction is to the target Q-value. To calculate the
target Yt, we bootstrap as follows:

Yt = rt + γmax
a

Qθ(st+1, a)
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By using this as the target value, we can then use MSE loss:

L =
1

T

T∑
t=1

(Qθ(st, at)− Yt)2

To calculate the Q-network parameter gradients and perform gradient descent.

These changes alone would not allow the DQN agent to solve complex high-dimensional MDPs. Two
critical additions, introduced by Mnih et. al, are needed:

Experience Replay Buffer:

The agent uses the experience replay buffer to store information about the interactions it has
experienced over multiple episodes. Usually these interactions are stored as tuples in the form
(st, at, rt, st+1). The reason for collecting and storing experience over multiple episodes is twofold.
Firstly, it increases sample efficiency by allowing the agent to use more experience than a single
episode when updating the neural network weights. Secondly, it allows for the experience to be
shuffled when used, thereby decorrelating the data the neural network uses to train. Due to the replay
buffer having a limited fixed size, when new experience is stored, the oldest experience is deleted.
This first-in-first-out replacement scheme helps the agent have more relevant experience to use in
training. When the agent samples experience from the replay buffer, the data is randomly shuffled into
a batch. These batches are ultimately what the DQN is trained on, similarly to supervised learning.

Target Network:

An additional neural network, the target network Q̂θ− , is created and used to produce the Q-targets
Yt instead of the online network Qθ. The target network decouples the Q-targets from the Q-values
produced by the online network. The weights θ− of the target network are fixed as this network is not
trained. Instead, the online Q-networks weights θ are copied over to the target network after a fixed
number of agent time-steps or training updates so that the Q-targets are more stationary as they are
not changing every update. This stationarity stabilises training significantly and assists in the general
performance of the DQN algorithm. The introduction of the target network changes the Q-target Yt
to be:

Yt = rt + γmax
a

Q̂θ−(st+1, a)

As successful as the DQN algorithm is, there are still limitations to the approach. It was shown that
non-linear function approximation, such as neural networks, can cause the Q-networks to diverge
[64]. Q-learning in general also tends to overestimate the actual Q-value, which can eventually lead
to sub-optimal policies [62]. Even though convergence is not theoretically guaranteed when using
neural network function approximation and overestimation still occurs, practically, we see successful
results in applying the DQN algorithm to specific problems [39, 22, 75].

2.1.3 DDQN
A well-known issue with Q-learning is the overestimation of Q-values. Generally, if overestimation
does occur, it is unknown whether or not this overestimation will negatively impact an agent’s
performance. Since in Q-learning, the greedy policy (or ε-greedy) is used, if all values are uniformly
higher, the agents’ action preferences would remain the same, thereby having no impact on the quality
of policy learnt. The problem lies in a non-uniform overestimation whereby Q-values can initially
favour non-optimal states, negatively impacting exploration. With a lack of exploration caused by
non-uniform overestimation, sub-optimal policies can be learnt [63].

The cause of this overestimation in Q-learning is due to the max operator. When calculating the target
Q-values, the maximisation operation favours initial overoptimistic estimates thereby potentially
introducing a source of bias which tends to keep action selection favouring these initially optimistic
states and potentially trap the agent in choosing sub-optimal actions. Hasselt et. al. [65] show that
Q-learning’s overestimation extends to the deep neural network setting and how this can impact the
learning of policies. Additionally, Hasselt et. al. generalise and extend the tabular Double Q-learning
algorithm [26], a proposed solution to Q-learning overestimation, to the deep neural network setting
and show how this improves the DQN algorithm to achieve new state of the art results on the Atari
suite at the time of publication.
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Algorithm 2: DQN
Initialise Replay Memory D to capacity N
Initialise action-value function Q with random weights θ
Initialise target action-value function Q̂ with weights θ− = θ
for Episode 1...M do

Initialise s1
for time step t = 1...T do

With probability ε select a random action at
otherwise select at = argmaxaQθ(st, a)
Execute action at in environment and observe st+1 and rt
Store transition (st, at, rt, st+1) in D
Sample random minibatch of transitions (sj , aj , rj , sj+1) from D

Set Yj =
{

rj if episode terminates at step j + 1

rj + γmaxa′Q̂θ−(sj+1, a
′) otherwise

Perform gradient descent step on (Yj −Qθ(sj , aj))2 with respect to the network
parameters θ

Every C steps, set θ− = θ
end

end

The Tabular Double Q-learning algorithm reduced overestimation by decoupling the action selection
and evaluation performed in the max operation. This algorithm used two Q-functions, whereby action
evaluation was performed by the one and action selection by the other. Double DQN (DDQN), the
extension of Double Q-learning to DQN, aims to reduce overestimations in the same manner. In the
DQN algorithm, the target network is already created and fulfils a similar role as a second Q-function
in the original tabular algorithm. Although using the target network does not provide a complete
decoupling of action selection and evaluation, it prevents the need to create a third neural network
and works well in practice. The DDQN algorithm proposes a simple change. The target network Q̂θ−
is still used to estimate the Q-value of the target but the action used in the target Q-value estimation is
decided by the online network Qθ. Hence, the target values are calculated as follows:

Yt = rt + γQ̂θ−(st+1, argmaxaQθ(st+1, a))

With this simple change in the update target, the overestimation is reduced, and higher-quality policies
are seemingly learnt.

2.1.4 Dueling DQN
Deep learning greatly impacted reinforcement learning by allowing algorithms to scale up to solve
larger and more complex problems. The success of algorithms such as DQN and DDQN have
illustrated the potential of deep learning coupled with reinforcement learning. Despite these successes,
prior to Dueling DQN [71], most research iterations and improvements focused on algorithmic
changes and exclusively used standard neural network architectures. Dueling Deep Q-Networks is a
proposed architectural improvement to the DQN algorithm that takes a new approach to estimating
Q-values and can be used with any existing algorithm that uses a Q-network.

In understanding the change in architecture, it is important to know that the Q-value can be decom-
posed into two separate parts:

1. The advantage function - The advantage/value of the taking an action in a state compared to
the other possible actions :

A(s, a) = Q(s, a)− V (s)

2. The state value function - The value of the state i.e the expected cumulative reward to be
received following a given policy :

V (s) =
∑
a∈A

Q(s, a)
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The dueling network architecture separates the Q-value estimation into two streams - one to represent
the advantage function A(s, a) and the other to represent the value function V (s). These two streams
are ultimately combined using an aggregation layer to produce the final Q-values. The intuitive
reason for this decoupling of estimators is that the Dueling DQN can learn, separately, which states
are or are not valuable without the need to learn the effect of each action at each state. The authors
propose that there is no point in learning/calculating action values if the entire state value is terrible
and can be avoided, e.g. why calculate all actions at one state when all these actions lead to death?
This decoupling is also helpful in states where actions have no impact on the environment in any
critical or relevant way. In this situation, there is no need to calculate and learn the value for each
action as the choice has no importance.

Figure 5: The standard single stream Q-network (top) and the dueling Q-network (bottom). The
dueling network has two streams to separately estimate (scalar) state-value and the advantages for
each action; Both networks output Q-values for each action.

After the separation of the advantage and value functions, one might think the aggregation layer is as
simple as:

Q(s, a) = A(s, a) + V (s)

However, the issue with this is one of identifiability. Given a Q-value calculated in this way, the
advantage A(s, a) and value V (s) cannot be recovered, which is a problem for backpropagation. To
solve this, the authors propose forcing the advantage function to have zero advantage at the chosen
action by using the following formula:

Q(s, a) = V (s) + (A(s, a)− max
a‘∈|A|

A(s, a‘))

An alternative method is also given that replaces the max operator with an average:

Q(s, a) = V (s) + (A(s, a)− 1

|A|
∑
a‘

A(s, a‘))

This replacement loses the original semantics of V and A since it puts them off target by a constant -
but this increases the stability of the optimisation since advantages only need to change as fast as the
mean instead of having to compensate any change to the advantage of the optimal action. This is
ultimately what the authors used in their paper.

Dueling DQN was shown to decrease the time taken to converge to optimal policies and, at the time,
set a new state of the art result on the Atari suite.

2.1.5 Prioritised Experience Replay Memory
In the original implementation of DQN, the experience buffer is used to store the agents’ experience
for training. The buffer’s primary purpose is to break the temporal correlations by mixing recent and
past experience for the agent to use in its updates. It also provides the benefit of allowing experiences
to be used more than once, thereby enhancing learning and sample efficiency. An issue with the
traditional experience replay buffer is that all experience is treated as equally important. Due to
this, an agent can potentially only make use of trivial or redundant transitions/experience in updates,
which can significantly slow down or inhibit learning in certain environments. In 2016, Deepmind
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investigated the effect of allowing this buffer of experience to prioritise the data that the agent is
trained on and created the Prioritised Experience Replay Memory [45].

Temporal Difference Prioritisation:

To prioritise experience, some criterion with which to judge the value needs to be used. Ideally,
one would measure the amount that could be learnt directly from a specific transition; however, this
metric is not accessible. As a proxy for this ideal criterion, one could use the magnitude of the
temporal difference error δ as an approximation. The temporal difference error essentially measures
an agents’ disbelief or surprise in a transition. This error can be used as a measure of the amount of
new information to be learned. Deepmind proposed the use of the calculated TD-error to prioritise
the experience in the replay buffer. This algorithm, referred to as Greedy TD-error prioritisation,
stores the most recently calculated TD-error inside the transition tuple (st, at, rt, st+1, δt) where:

δt = rt + γmaxaQ(st+1, a)−Q(st, at)

When an agent samples from the replay buffer, transitions that contain larger TD-errors are prioritised.
Additionally, new transitions are given a maximum priority to ensure every transition is sampled
at least once. When experience is sampled from the replay buffer, the TD-errors of the sampled
transitions are updated before being reinserted into the buffer after an agent update. This way, as the
agent learns, more relevant experience will be prioritised. The Greedy TD-error approach showed
significant results; however, several issues presented themselves. To avoid computationally expensive
sweeps over the replay buffer, temporal difference errors are only updated when experience is sampled.
This means that any transitions with a small TD error on their first visit may never be sampled again
and ultimately never seen again due to old data being removed as new data enters. This method is
also susceptible to noise spikes that can be made worse due to bootstrapping as potentially noisy
data can be reused consistently. Lastly, this prioritisation tends to focus on a small subset of the
data. Since errors decrease slowly, experiences that initially had high TD-errors might get sampled
frequently. Due to this, the diversity of data sampled from the replay buffer is small, proving to be
detrimental to generalisation and cause overfitting.

Stochastic Prioritisation:

To solve the greedy algorithm’s issues, Deepmind also introduced a stochastic sampling method
to interpolate between a greedy and uniform sampling approach. This method ensures a transition
tuple’s probability of being sampled is proportional to its priority but is always non-zero. This
means even the lowest priority transitions have a chance of being sampled from the replay buffer. A
transition tuple’s sampling probability is assigned as follows:

P (i) =
pαi∑
k p

α
k

where pi > 0 is the priority of transition i. The parameter α decides upon how much prioritisation is
used with α = 0 eliminating prioritisation and giving uniform sampling.

Even with stochastic prioritisation, not all issues were solved. It was seen that the use of any prioriti-
sation scheme introduced a bias as the estimation of an expectation requires updates corresponding to
the same distribution of that expectation. The distribution of updates changes if specific experiences
are valued over others. To correct this bias, Deepmind show that one can use importance-sampling
weights:

wi =

(
1

N
· 1

P (i)

)β
where the parameter β controls the strength of bias correction. This weight can be used in the
Q-learning updates by using the target wiδi instead of just δi.

Deepmind show that the use of a prioritised experience replay buffer helps agents converge to optimal
policies faster. Additionally, in the original paper, state of the art results on the Atari suite (at the
time) were achieved through prioritised memory.

2.2 Policy-based
Policy-based methods are methods in which the agent tries to learn the policy function directly. These
methods offer several advantages over their value-based counterparts. Firstly, policy-based methods
are able to learn stochastic and deterministic policies, whereas value-based methods are essentially
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deterministic but always have a slight ε probability of selecting an action at random. Secondly,
policy-based methods can also effectively learn continuous or high dimensional action spaces and
have better convergence properties. Lastly, in certain environments, the policy function might be a
lot simpler to approximate thereby making it easier for the agent to learn optimal control. Policy
gradient methods search for a local maximum in the objective function J(θ) by gradient ascent:

θ ←− θ + α∇θJ(θ)

where α is the step-size and:

J(θ) = E
[ T∑
t=0

rt|πθ
]

2.2.1 REINFORCE
REINFORCE [73] is a Monte Carlo method that updates the policy function’s parameters directly
using the policy gradient with respect to the objective function J(θ) = E

[∑T
t=0 rt|πθ

]
. Sutton et al.

[60] show that the gradient of the objective function to maximise expected total cumulative reward is:

∇θJ(θ) ∝ E
[ T−1∑
t=0

∇θ log πθ(at|st)Qπ(st, at)

]
By using the Monte Carlo estimate Gt =

∑T
k=t γ

k−trk in place of the Q value, it is relatively easily
calculate the gradient and update the policy’s parameters directly using the REINFORCE update:

θt+1 = θt + α ∗Gt ∗ ∇θ log πθ(at|st)

As per the shortcomings of Monte Carlo methods, REINFORCE suffers from high variance with a
noisy gradient estimate and no clear credit assignment to positive or negative actions throughout the
episode [59]. An easy way to improve REINFORCE is to reduce the variance of the empirical returns
Gt by subtracting a baseline function b(s) in the policy gradient. The baseline function can be any
function that does not rely on the agents’ actions as a parameter. A popular option for the baseline
function is the state value function V (st). The new value after subtracting the baseline from Gt is
the advantage A(st) = Gt − V (st). This changes the REINFORCE update to:

θt+1 = θt + α ∗A(st) ∗ ∇θ log πθ(at|st)

This requires the REINFORCE agent to learn the value function alongside the policy and can
introduce a bias as the cost of lowering variance. The value function is jointly learned by minimising
the MSE loss:

MSE =

T−1∑
t=0

(Gt − V (st))
2

Algorithm 3: REINFORCE with Baseline
Input : a differentiable policy parameterisation π(a|s, θ)
Input : a differentiable state-value function parameterisation v(s|φ)
Algorithm parameters: step sizes αθ > 0, αφ > 0

Initialise policy parameter θ ∈ Rd′ and state-value weights φ ∈ Rd
for each episode: do

Generate an episode s0, a0, r0, ...sT , aT , rT
for Each step t in episode do

G←−
∑T
k=t rk

δ ←− G− v(st|φ)
φ←− φ+ αφ[γt∇v(st|φ)]
θ ←− θ + αθ[γt∇ lnπ(at|st, θ)]

end
end
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Figure 6: Actor-Critic Architecture [59]

2.3 Actor-Critic
Actor-Critic methods [36] are a combination of policy-based and value-based methods to combine
each method’s strong points. Actor-Critic methods consist of two models: The critic which estimates
some value function e.g(Q(St, At)) (intuitively, it tells the actor how good the action was) and the
actor which decides which action to take and updates the policy parameters in the direction suggested
by the critic. REINFORCE with baseline is similar to an advantage actor-critic. The difference
between the two is that the actor-critic makes use of rt + V (st+1) instead of the Monte Carlo return
Gt. This change allows it to bootstrap experience and learn in non-terminating environments but
increases the learning bias.

2.3.1 PPO
Due to the use of reinforcement learning with neural network function approximators, a variety of
problems have become significantly apparent. Popular methods such as DQN, REINFORCE, and
TRPO [50] each have unique issues that can cause the inability to feasibly solve certain real-life
problems. DQN can often fail on simple problems [19] and is generally not well understood. REIN-
FORCE and other vanilla policy-gradient methods have low sample efficiency and lack robustness
to hyperparameters. Lastly, Trust Region Policy Optimization (TRPO) which is often seen as the
predecessor to PPO, tries to tackle similar issues as PPO but is a much more complicated method
that does not support use with a variety of architectures, i.e. those that include noise or parameter
sharing. Another issue that is common in reinforcement learning with function approximation is the
case of sudden sharp decreases in policy performance known as catastrophic forgetting. This is due
to large gradient steps that occur in gradient-steep portions of the parameter space. Since the loss
surface can be very unique and non-convex, too large a step might increase loss and worsen the learnt
parameters, ultimately seeming as if the agent has forgotten how to act in the environment. In the
pursuit of creating an algorithm to combat all these issues, PPO was proposed. Beyond solving the
problems above, PPO also aims to take the largest gradient step possible without causing catastrophic
forgetting.

Proximal Policy Optimisation (PPO) [52] is an actor-critic method that has two primary variants,
PPO-Penalty and PPO-Clip. Both variants aim to constrain the magnitude of gradient steps to increase
stability and prevent performance collapse.

PPO-Penalty:

PPO-Penalty is similar to TRPO in that it aims to approximately solve a KL-constrained update.
The difference is that instead of making the KL-divergence a hard constraint in the policy objective
function, it penalises it and automatically adjusts this penalty coefficient over time to ensure appro-
priate scaling. PPO-Penalty, experimentally shown in the original paper [52], performs worse than
PPO-Clip but is seen as an important baseline upon which to compare the Clip variant.

PPO-Clip: PPO-Clip does not make use of the KL-divergence and does not use a constraint term at
all. Not using KL-divergence or a constraint term simplifies the objective function and implementation
in general. The PPO-Clip algorithm relies on a specific clipping mechanism in the objective function
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to inhibit extremely large and potentially performance harming gradient steps. PPO-Clip makes use
of the following update:

θk+1 = arg max
θ

Es,a∼πθk
[
LCLIP (s, a, θ(k), θ)

]
This essentially means the PPO-Clip objective is maximised with respect to the policy parameters
θ. An important observation that needs to be noted is that in each optimisation update the fixed
parameter vector θ(k) from the previous (kth) update is used. This is to allow the Clip objective to
make use of the previous policy and prevent too large gradient steps. The Clip objective is defined as:

LCLIP (s, a, θ(k), θ) = min

(
πθ(a|s)
πθk(a|s)

Aπθk (s, a), g(ε, Aπθk (s, a))

)

where

g(ε, A) =

{
(1 + ε)A A ≥ 0

(1− ε)A A < 0

A(s, a) represents the advantage function Q(s, a)− V (s) or any other advantage estimation. The
objective function aims to create a ceiling and floor to the updates that can occur. The intuition behind
this objective function is quite simple. When the advantage estimate is positive, the objective function
reduces to:

LCLIP (s, a, θ(k), θ) = min

(
πθ(a|s)
πθk(a|s)

, (1 + ε)

)
Aπθk (s, a)

This means that the objective function value will increase if the action selected becomes more likely,
i.e. πθ(a|s) increases, but themin term limits the increase where as soon as πθ(a|s) > (1+ε)πθk(a|s)
the objective function cannot increase further than the ceiling of (1 + ε)Aπθk (a|s). This means that
the new policy experiences no benefit to differ more from the old policy.

When the advantage estimate is negative, the objective function reduces to:

LCLIP (s, a, θ(k), θ) = max

(
πθ(a|s)
πθk(a|s)

, (1− ε)
)
Aπθk (s, a)

This means the objective function value will increase if the action selected becomes less likely, i.e.
πθ(a|s) decreases, but the max term limits the increase where as soon as πθ(a|s) < (1− ε)πθk(a|s)
the objective function cannot increase further than the ceiling of (1− ε)Aπθk (a|s). This creates the
same effect as last time where the new policy experiences no benefit to differ more from the old
policy.

The ε hyperparameter allows one to control how far policies can change whilst improving the
objective function. The clipping mechanism is thus seen as a regulariser to prevent the policy to
change dramatically. Although PPO-Clip aims at preventing dramatic gradient steps, it is still possible
for catastrophic forgetting to occur, albeit much less likely. Due to this, implementation-specific
changes can be made to prevent this. An example of a change is simply early stopping, whereby if the
mean KL-divergence of the new policy increases beyond a set threshold, gradient steps are stopped.
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Figure 7: Plots showing the reduced function when the advantage estimate is positive or negative.
The red circle shows the starting points for the optimization i.e when r = πθ(a|s)

πθk (a|s)
= 1

Algorithm 4: PPO-Clip
Input: initial policy parameters θ0, initial value function parameters φ0
for k = 0, 1, 2, ... do

Collect set of trajectories Dk = {τi} by running policy πk = π(θk) in the environment.
Compute rewards-to-go R̂t.
Compute advantage estimates, Ât (using any method of advantage estimation) based on the
current value function Vφk .

Update the policy by maximizing the PPO-Clip objective:

θk+1 = arg max
θ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

min

(
πθ(at|st)
πθk(at|st)

Aπθk (st, at), g(ε, Aπθk (st, at))

)
,

typically via stochastic gradient ascent with Adam.
Fit value function by regression on mean-squared error:

φk+1 = arg min
φ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(
Vφ(st)− R̂t

)2
,

typically via some gradient descent algorithm.
end

2.4 Tree Search
A less specific concept to reinforcement learning but one that has been crucial to the creation of
game-AI is tree search. Tree search algorithms explore state or action spaces by constructing a tree
structure consisting of nodes and edges. The root node represents the agent’s current state. Edges
represent an agent’s actions, and nodes represent the successive states conditioned on the action taken.
Since every state can have multiple actions that lead to multiple states, each node can have many
children. Different tree search algorithms mainly differ in the way the search tree is constructed and
explored.

Classical tree search algorithms such as depth-first search and breadth-first search are regarded as
uninformed search algorithms as the tree is exhaustively looked at, and every node is seen. It is very
rare to see these algorithms used in a game-AI context as the size of search trees can become so
large as to make them computationally infeasible to exhaustively look at. Additionally, although
these searches can theoretically be used in single-player games to find the optimal path to victory,
they cannot be used for two-player adversarial games where another player is trying to win. This
is because the path to victory is completely dependent on the opponents’ action choice, which is
unknown. For games such as this, e.g. chess, one needs an adversarial search.
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Figure 8: Example of a game tree in tic-tac-toe [57]

2.4.1 Minimax
Minimax is a basic adversarial search algorithm that has been used very successfully in perfect-
information two-player games such as chess and checkers. The algorithm core loop alternates
between both players where one is termed the min player and the other the max player. Each player
explores all possible moves. Within the resulting states, all possible moves of the opponent are
explored. This continues until every possible combination of moves is explored and constructed in
the search tree until the game ends with some result, i.e. win or lose. The game’s outcome gives each
leaf node a value that is ultimately backed up the tree to each parent node indicating the value of the
current game configuration. The backup process assumes that each player is playing optimally. From
the standpoint of the max player, the actions selected try to maximise the score, whereas, from the
standpoint of the min player, the actions selected try to minimise the max player’s score. If either
player does not take the optimal action, the other player will know the winning path. This algorithm
will always work and find the optimal policy in a two-player adversarial game, but the problem is
that in games with large state and action spaces, the process of building the search tree is infeasible.
Even a simple game such as tic-tac-toe has a game tree size of 9! which is 362,880 states. This is a
feasible size, but games such as chess have a game tree of approximately 10154 nodes. This means
practically, if minimax is to be used, the search tree needs to be cut off at a given depth and use some
state evaluation function to predict the outcome of the game from a leaf node.

Minimax is a fundamental tree search algorithm that has seen great success even with its computational
requirements. Improvements to the algorithm such as α−β pruning [35], which removes unnecessary
nodes that make the algorithm slow, and the use of tailor-made non-deterministic state evaluations
functions have allowed for incredibly high performing programs to be made, such as IBM’s Deep
Blue [17].

2.4.2 Monte Carlo Tree Search
As stated previously, Minimax is already a solution to games without large state and action spaces, but
this is seldom the case in most games played today. All games with a high branching factor, indicated
by the possible actions at each state, cannot use Minimax effectively even with modern improvements.
This is because the higher the branching factor, the lower the depth that is possible to compute. This
means searches will be less accurate and potentially non-useful. Another problem with Minimax
is that even if the tree has a relatively large depth, without an accurate and high performing state
evaluation function, the search will be useless. The ancient board game of Go is a useful example
of both of these problems. There is an extremely high branching factor of approximately 300, and
the positional nature of Go makes it almost impossible to judge the value of a board configuration
accurately. Originally, the best Go-playing programs used Minimax, but these programs barely
exceeded the beginner level of play. Additionally, Minimax cannot solve imperfect information or
non-deterministic games due to the inherent nature of the algorithm.
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Figure 9: MiniMax Search Tree - As can be seen, the min player chooses the moves that minimize the
max players scores. Of these minimum choices, the max player chooses the maximum score leading
the game to a draw instead of losing.

Monte Carlo Tree Search was invented to combat Minimax’s limitations and has since seemingly
dominated all game-AI related searches. MCTS not only handles high branching factors and lack
of sufficient state evaluation functions but can also be used for imperfect information and non-
deterministic games. MCTS accomplishes this by not searching all branches of the search tree to an
even depth but instead focusing on sufficiently searching the most promising branches. This makes it
possible to perform deep searches even in high branching factor games. Additionally, to solve for
Minimax’s non-deterministic and imperfect information limitations, MCTS makes use of rollouts to
estimate the value of a game state. A rollout is a random playthrough of the rest of the game from a
specific game state to see the outcome, i.e. win or lose. At the start of a MCTS run, the search tree
only consists of the root node representing the game’s current state. The algorithm then proceeds to
iteratively build the search tree with the addition and evaluation of new nodes. An incredible aspect
of MCTS is that it is an anytime algorithm meaning it can be interrupted at any time, and inferences
can be drawn. MCTS only requires the game rules and terminal state evaluation, i.e. the ability to
ascertain the outcome of a game.

MCTS consists of four main phases:

Selection:

In the selection phase, the algorithm decides which node should be expanded and searched further.
This process starts at the root and continues until a node is selected which has unexpanded children.
Every time an action (node) has to be selected, a child node i is chosen so as to maximise the UCB1
formula:

UCB1 = X̄i + 2Cp

√
2 lnN

Ni

where X̄i is the average reward of all nodes beneath the node being evaluated, Cp is an exploration
constant, N is the number of times the parent node has been visited, andNi is the number of times the
child node i has been visited. The UCB1 formula is a popular method for action selection, although
it is not the only one. Epsilon-greedy and Thompson sampling are examples of other options.

Expansion:

Once a node has been selected that has unexpanded children, one of the child nodes is chosen for
expansion. This means that a simulation is performed using the child node as the starting state. The
selection of which child node to expand is often random.

Simulation:

After a node has been selected for expansion, a simulation, i.e. rollout, is performed using the child
node as the starting state. This effectively performs a playthrough of the entire rest of the game, from
the selected starting state to see the game outcome of victory or defeat. This can be a completely
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random playthrough or make use of some specific action selection method. The outcome is used
as the reward received, i.e. +1 for winning, 0 for drawing and -1 for losing. This reward is then
propagated back up the tree to the expanded node.

Backpropagation: Once an entire rollout has been performed and a reward is received, the reward is
added to the total reward of the new node. This reward is further backed up to its parent and ancestor
nodes, all the way to the root, to add to their total rewards.

With these four steps, the MCTS algorithm has eliminated almost all limitations of the Minimax
algorithm and practically yields a relatively unbiased expectation of reward for action selection.
MCTS executes as many rounds (execution of all four steps) as time will allow. The more rounds
performed, the more accurate the results, which improves move selection. As soon as MCTS was
invented, the strength of Go-playing systems dramatically increased, albeit still not to the level of a
professional. An issue with MCTS is that even though random playthroughs can potentially be very
fast, for games that have extremely long sequences of actions until termination i.e tens or thousands
of steps, most simulations will either take too long or not finish at all thereby yielding no information
about the nodes being expanded. This means MCTS works best in games guaranteed to terminate in
a relatively small number of moves.

Figure 10: MCTS Phases

3 Achieving Superhuman Performance
With games being seen as a form of Turing test for AI, the achievements within this domain always
create much excitement (or fear) around the world. As research progresses, one game after another
falls prey to artificial intelligence’s mastery. Although current methods are seemingly capable of
playing any game, certain games prove to be very difficult for machines to surpass humans. Incredibly
vast search spaces, high sensory inputs, and imperfect information are some of the challenges current
AI methods struggle with. The following section describes current methods and techniques used to
achieve superhuman performance in games that traditionally proved extremely difficult for AI to
master.

3.1 Go
Go is a classical board game originating in China over 3000 years ago. The game is simple: there are
two players using either white or black stones. Players place their stones on the 19 x 19 board every
turn to capture board space or their opponents’ stones. The game only terminates once all possible
moves have been played upon which the number of stones and empty spaces are counted. The player
that scores the highest is the winner. With these simple rules, a profoundly complex game arose,
deemed an impossible task for artificial intelligence.

Go was, historically, seen as the most difficult of classical games for a computer to play. The reason for
this is because Go has an enormous search space due to the number of possible board configurations
being around 10170, which exceeds the number of atoms in the known universe. Additionally,
evaluating board positions and moves is exceedingly challenging due to the complexities of the game.
These two factors make the use of existing search algorithms very challenging and arguably infeasible.
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Despite decades of work, the performance of Go-playing AI has never exceeded a professionals’
level of play. The creation of a Go-playing agent capable of defeating a human professional player
was theorised to be years still away. However, to the world’s surprise, in 2016, DeepMind released
AlphaGo [53].

3.1.1 AlphaGo
AlphaGo was the first computer program to defeat a professional Go player and the first to defeat a
Go world champion. At the time of creation, it was also arguably the best Go player in the world.
AlphaGo, the first iteration of the Alpha algorithms, tried to capture the intuitive nature of Go with
a new approach. Through a combination of neural networks, supervised learning, reinforcement
learning and an advanced MCTS tree search method, computers finally managed to achieve victory
in the game of Go. Due to the highly complex nature of Go, Deepmind deemed that human expertise
was needed. All the neural networks that AlphaGo uses make use of expertly designed heuristic
features of the Go board as input which helps instil a form of human knowledge.

AlphaGo consists of the following main components:

Supervised Learning policy network:

The first stage of the AlphaGo training pipeline is the creation of the Supervised Learning policy
network (SL policy network) and Rollout Policy Network. The SL policy network pσ(a|s) is a neural
network trained in a traditional supervised manner to predict expert moves/actions where s represents
the input features, i.e. state. This network uses convolutional neural network layers with parameters σ
and rectifier nonlinear activation functions. The output of this network uses a softmax layer to create a
probability distribution over all the legal moves a on the 19 x 19 board which predicts the probability
that an expert would make a particular move. The SL network is trained on an extensive database of
expert game data consisting of state-action pairs (s, a). The network optimises the parameters σ to
maximise the likelihood of the human move a when given s. The network is trained independent of
historical moves and aims to predict based on the single state input.

∆σ ∝ ∂ log pσ(a|s)
∂σ

AlphaGo used a 13 layer network trained on 30 million positions. This network only achieved an
accuracy of 57.0% on a held-out test set. Even with the accuracy not seeming impressive at first
glance, the previous state of the art model only achieved a 44.4% accuracy. The relatively minor
improvements in accuracy led to significant improvements in playing strength.

Rollout policy network:

Due to the size of the SL policy network, the evaluation time is slow during a search which inhibits
the number of simulations that can be performed. The solution is to create a smaller network called
the rollout policy, which is much faster. The rollout policy is trained in the same fashion as the SL
policy, although instead of using convolutional layers, it uses simple linear layers. The trade-off is
that as size and complexity decrease, so does the accuracy of predicting expert moves. The rollout
policy pπ(a|s) achieved an accuracy of only 24.2% but required 2 µs to select an action instead of
the 3 ms that the SL policy network uses.

RL policy network:

The second stage of the AlphaGo training pipeline is improving the policy network by using policy-
gradient reinforcement learning. This involves the creation of the RL policy network pρ. Using the
same architecture as the SL network, the RL policy network is initialised with the SL network’s learnt
parameters, i.e. ρ = σ. This gives the RL policy starting knowledge of moves that are deemed good
to play. Once the RL policy network is created, self-play occurs. Games are played between the
current best RL policy pρ and randomly selected policy networks from a pool of previous iterations
pρ(k) . This randomisation of opponents is seen to stabilise the training and prevent overfitting of the
current RL policy. The reward function used in training is very sparse. All intermediate rewards are
zero, with terminal rewards being 1 for winning and -1 for losing. The outcome of the game zt is set
to the terminal reward. The parameters ρ are then updated at each time step t by stochastic gradient
descent in the direction that maximises the expected outcome zt:

∆ρ ∝ ∂ log pρ(at|st)
∂ρ

zt
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This expected outcome is the same for all time steps, thereby giving equal credit assignment for all
moves in the game. The RL policy’s performance was evaluated against the SL policy network where
moves are sampled from the networks outputted probability distributions, i.e. at ∼ pρ(·|st). The
RL policy achieved victory in more than 80% of the games played against the SL policy network.
Surprisingly, a similar result was seen when the RL policy, without the use of any search mechanism,
played against the strongest open-source Go program at the time, Pachi [5], where the RL policy
network won in 85% of the games played. This incredible feat shows the power of reinforcement
learning and self-play as a simple policy network with no search whatsoever could beat a MCTS
program that executes 100,000 simulations per move. Ultimately, the RL policy network is not even
used in the final AlphaGo program but is pivotal in creating the value network.

Value Network:

The last stage in the AlphaGo training pipeline is the creation of the value network. The value network
vθ(s) is created and trained to estimate the value function vp(s) which knows the outcome zt of any
game, from board positions s, that is played using the RL policy pρ.

vp(s) = E
[
zt|st = s, at...T ∼ p

]
All perfect-information games have an optimal value function v∗(s) under perfect play. Practically, if
one does not know what perfect play is, then it is impossible to estimate this function. A solution is
to estimate the value function when played under an extremely high performing specific policy that
one has access to. Thus since the RL policy is the strongest policy available, i.e. an approximation
of perfect play, a neural network vθ(s) is created, which tries to estimate vp(s). Essentially, this
means the value network is trying to approximate an approximation of the optimal value function i.e
vθ(s) ≈ vpρ(s) ≈ v∗(s). The neural network vθ(s) uses the same architecture as the policy network
except outputs a single value. This network is then trained on state-outcome pairs (s, z) to minimise
the mean squared error between the predicted value and outcome z.

∆θ ∝ ∂vθ(s)

∂θ
(z − vθ(s))

When trained on state-outcome pairs of complete games, the value network simply memorised game
outcomes as a lot of the data is highly temporally correlated. This is because successive positions
in one game all share the same outcome. It is shown that when the value network is trained on the
expert data, which consists of this highly correlated data, the minimum MSE on the test set was 0.37,
which is high compared to the MSE of the training set 0.19. This indicates overfitting occurred where
the value network did not learn to generalise. The solution implemented was to create a new data
set, using self-play between the RL policy and itself, consisting of 30 million distinct positions and
outcomes where each was sampled from a different game. When trained on this new self-play data
set, the value network achieved similar test and training MSE scores of 0.234 and 0.226, respectively.
It was seen that the value function vθ(s) was consistently more accurate than Monte Carlo rollouts
using the rollout policy pπ . Additionally, when using Monte Carlo rollouts with the RL policy pρ, the
value network approached the same level of accuracy but with 15,000 times less computation.

Lookahead Search Even though the creation of the RL policy network already achieved an incredible
level of play, it most likely still would not have the ability to beat a professional. The addition of a
search algorithm gives AlphaGo the performance enhancement it needs to compete at the professional
level. AlphaGo makes use of both the policy and value networks in an adapted MCTS algorithm for
action selection. Each edge which represents a state-action pair stores the action value Q(s, a), visit
count N(s, a) and a prior probability P (s, a). These prior probabilities are given by the SL policy
network pσ . In the MCTS simulation phase, at each time step t, action selection of at, i.e. the edge to
traverse, is selected by maximising the action value and a bonus:

at = arg max
a

(Q(st, a) + u(st, a))

where

u(s, a) ∝ P (s, a)

1 +N(s, a)

This bonus makes action-selection use the prior probability but decay its impact with repeated visits
to ensure and encourage exploration. When the traversal of the tree reaches a leaf node sL, this
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leaf node may be expanded and is processed just once by the SL policy network to calculate the
prior probabilities for each possible action in state sL. Since the SL policy network is very slow in
evaluation, the search algorithm tries to limit its use as much as possible by only using it once for
unexpanded leaf nodes. The leaf node is then evaluated in two ways, first by the value network vθ(s)
and second by the outcome zsL of a randomly played game played until termination using the rollout
policy pπ . Both evaluations are combined, which results in a final evaluation score V (sL).

V (sL) = (1− λ)vθ(sL) + λzsL

where λ is a mixing parameter which ended up being 0.5 in the final AlphaGo program. At the end
of a simulation, all the traversed edges have their action values and visit counts updated:

N(s, a) =

n∑
i=1

1(s, a, i)

Q(s, a) =
1

N(s, a)

n∑
i=1

1(s, a, i)V (siL)

Where siL is the leaf node from the ith simulation, and 1(s, a, i) indicates whether an edge (s, a) was
traversed during the ith simulation. Once the MCTS algorithm has finished with respect to the given
time constraints, AlphaGo chooses the most visited move from the root position of the search tree.

With these components, AlphaGo achieved remarkable performance by achieving a 99.8% win rate
against all other Go-playing programs at the time. Additionally, as stated before, AlphaGo achieved
the first computer program victory against a professional human player. Ultimately, DeepMind
created a distributed version of AlphaGo that used 40 search threads, 1,202 CPUs, and 176 GPUs
which achieved higher performance. See figure 11 for additional information on performance.

The initial implementation of AlphaGo was not at the level of play to defeat the world champion Lee
Sedol. However, over time AlphaGo became increasingly stronger upon which world champion level
of play was achieved. AlphaGo was beyond a simple emulation of human performance. AlphaGo
possessed creativity and played several novel game-winning moves that showcased its incredible
level of play.

Figure 11: a: The Elo scores of AlphaGo, Fan Hui, the European Go champion as well as the
other Go-playing computer programs available at the time. b: The Elo differences of AlphaGo
when making use of a different combination of components. c: The Elo increases as computational
resources increase.

3.1.2 AlphaGo Zero
AlphaGo was an incredible achievement, but some would say the use of expertly designed heuristics
and large amounts of expert data diminishes its impact on general game-playing AI. Expert datasets are
often unavailable, and expertly designed heuristics are hard to create and are variable in performance.
AlphaGo Zero [55], the next iteration of DeepMind’s Go-playing agents, set out to remove these
limitations and constraints. The goal of AlphaGo Zero was to achieve superhuman proficiency in
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the game of Go without the use of any human data, i.e. tabula rasa. AlphaGo Zero has four critical
differences from AlphaGo. The first difference is that AlphaGo Zero uses only the black and white
stone positions on the board as input, thereby removing expertly designed heuristics or features. The
second and most important difference is that training is done exclusively through self-play without
any human supervision. This completely removes the need for human-generated data. The third
difference involves changing AlphaGo’s original neural architecture to a singular neural network to
perform both roles of the policy and value networks. The final difference is that AlphaGo Zero uses a
less complex tree search. This more straightforward tree search does not use any Monte Carlo rollouts
to simulate the rest of the game; leaf nodes are evaluated using only the value network. Additionally,
the tree search does not require multiple neural networks for different aspects of the search. AlphaGo
Zero implements these changes along with a newly designed reinforcement learning algorithm that
incorporates an agents’ lookahead search in the training loop. The following sections elaborate on
AlphaGo Zero and its changes:

Architecture:

AlphaGo Zero uses a single neural network fθ(s) to output both the action probabilities p, which
give the probability of selecting each move Pr(a|s), and the state value v which gives the probability
of winning from board position s. This singular neural network serves the roles of both the policy
and value networks used in the original AlphaGo system. The network architecture consists of
residual blocks [28] of convolutional layers using batch normalisation [31], instead of the standard
convolutional layers that AlphaGo used, and rectifier nonlinearities [25]. Combining the policy and
value networks into a singular network allows the dual objective to regularise the network to learn a
more common representation that supports various use cases. Additionally, the singular network is
more computationally efficient, allowing increased MCTS simulations within a limited time frame.

Training:

AlphaGo Zero learns entirely from scratch with only being told the rules of the game. This is done
through self-play and a novel reinforcement learning algorithm. This novel algorithm incorporates
MCTS in the training process as a policy improvement operator whereby the discovered search
probabilities π almost always select stronger moves than the raw probabilities p outputted by the
neural network fθ(s). Self-play with search, which selects each move using the enhanced MCTS-
based policy and then uses the game outcome z as a sample of the value v, may be considered a strong
policy evaluation operator. The idea behind this novel algorithm is to use both the policy improvement
operator and policy evaluation operator repeatedly in a policy iteration procedure [8, 46]. There are
two stages in this training process that occur every iteration: Self-play and Neural Network Training.

Self-play: AlphaGo Zero plays games of Go against itself to generate training data. In each state
s, the agent performs a lookahead tree search using the MCTS algorithm (see section 3.1.1) which
uses the neural network fθ(s) to output the prior probability P (s, a) for actions and value V (s) of a
state. Each execution of the MCTS algorithm produces search probabilities π, for action selection,
proportional to the visit count for each move.

π ∝ N(s, a)
1
τ

where τ is a temperature parameter. Each game is played until completion where at each time step t,
tuples (st, πt, z) are stored, where z is the final outcome of the game i.e {+1,−1} for winning or
losing respectively.

Neural Network Training: The neural network fθ(s) is trained on the stored data tuples to, firstly,
make the raw probabilities p more closely match the improved search probabilities π and, secondly,
make the state evaluation value v more closely match the game outcome z. This optimisation is done
using gradient descent on the following loss function L.

(p, v) = fθ(s) and L = (z − v)2 − πT log p+ c||θ||2

where c controls the level of L2 regularisation to prevent overfitting. This training happens every
iteration where data tuples (s, π, z) are sampled uniformly from all time steps of the previous game.

Outcomes:

AlphaGo Zero started training with completely random behaviour and continued to train without any
human intervention for three days. In only 36 hours out of the 72 hour training time, AlphaGo Zero
outperformed AlphaGo Lee - the AlphaGo iteration that defeated the world champion Lee Sedol.
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Figure 12: a) illustration of the self-play process. b) illustration of the training of the neural network.

This remarkable achievement is made even more apparent when considering that AlphaGo Lee was
trained over several months. Additionally, AlphaGo Lee was distributed over many machines and
used 48 TPUs, whereas AlphaGo Zero only used a single machine with 4 TPUs. After 72 hours of
training, AlphaGo Zero defeated AlphaGo Lee by 100 games to 0.

Deepmind subsequently decided to retrain AlphaGo Zero from scratch using a larger neural network
and longer training time. This AlphaGo Zero agent was trained for approximately 40 days. Upon the
completion of training, an internal tournament was held, which pitted AlphaGo Zero against previous
versions of AlphaGo, including AlphaGo Fan, AlphaGo Lee, and AlphaGo Master - the strongest
existing Go program. AlphaGo Master uses the same architecture and algorithm as AlphaGo Zero
but uses human data and features. In this tournament, AlphaGo Zero achieved an Elo rating of
5,185 - the highest in the tournament. This suggests that agents learning solely through self-play
learn fundamentally different strategies that are higher performing, on average, than their human
counterparts.

AlphaGo Zero comprehensively demonstrates the potential of a pure reinforcement learning approach
even in highly challenging domains such as Go. We see that it is possible to train to a superhuman
level without any human data or knowledge of the domain beyond the rules. Additionally, AlphaGo
Zero demonstrates that a pure reinforcement learning approach can achieve higher performance than
human-assisted methods.

3.2 Chess & Shogi
In the history of artificial intelligence, the game of chess has been a central subject of research.
For decades, humans were never able to create a program that could defeat a professional chess
player. However, in 1997, Deep Blue [17] defeated the human world chess champion, Gary Kasparov,
marking a watershed moment for artificial intelligence. In the following decades, computer chess
systems progressed to the superhuman level. However, these programs use a large number of clever
heuristics and domain-specific adaptations with expertly designed handcrafted features. This makes
all the advances in chess-playing performance relatively inapplicable to other domains. Shogi, a
Japanese variant of chess, is another classic board game that only recently has seen a computer
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program, Elmo, defeat a human champion [2]. Like most chess programs, Elmo used many domain-
specific adaptations, which again prevented the system from being generally applicable. With the
creation of AlphaGo Zero, which eliminated the need for human data and expertly designed heuristics,
the question remained if it can easily be applied to other classical board games, such as chess and
shogi, which have less complex game trees in comparison to Go. Although AlphaGo Zero removed
most game-specific knowledge, certain assumptions remained, such as Go being invariant to rotation
and reflection. AlphaGo Zero exploited this property of symmetry to enhance training data and the
MCTS search. Since properties such as this cannot be assumed for other classical games, Deepmind
again iterated on their previous work to create the next algorithm in their Alpha series: AlphaZero.

3.2.1 AlphaZero
AlphaZero [54] is the generalisation of AlphaGo Zero to allow the original algorithm to achieve
superhuman performance in a variety of challenging games beyond just Go. As with AlphaGo Zero,
AlphaZero starts entirely from scratch, only knowing the rules of the game. With minor changes to
the original AlphaGo Zero algorithm, AlphaZero significantly defeated world champions in chess,
shogi, and Go.

AlphaZero differs from AlphaGo Zero in the following aspects:

1. AlphaZero does not assume that games have a binary win or loss outcome. Games such as
chess and shogi have the potential for players to draw. Instead, unlike AlphaGo Zero which
estimates and optimises for the probability of winning, AlphaZero estimates and optimises
the actual expected outcome.

2. AlphaZero has no game property assumptions and treats games as asymmetric, thereby not
exploiting any game-specific information to enhance training data or tree searches.

3. AlphaGo Zero generated data through self-play of the highest performing player of all
previous iterations. After every iteration, the newly updated player would be evaluated
against the best player; if the new player won by more than a 55% margin, it was deemed the
new best player. AlphaZero throws away this approach and simply maintains a single neural
network that is continually updated instead of waiting for training iterations to complete.
This means that all self-play data is generated using the latest parameters of the neural
network.

AlphaZero, without the use of expertly crafted heuristics and features, managed to defeat the strongest
computer programs in chess, shogi and Go. Additionally, AlphaZero searches around 80 thousand
positions per second in chess and 40 thousand in shogi, compared to 70 million for Stockfish (strongest
MCTS chess program) and 35 million for Elmo. This shows that AlphaZero uses an arguably more
human-like approach where its deep neural network focuses on the most promising variations instead
of the more brute force-like search performed by traditional systems.

AlphaZero shows the potential for a game-agnostic algorithm to achieve superhuman performance in
various perfect information games, thereby bringing us closer to the longstanding goal in artificial
intelligence of general superhuman game-playing systems.

Figure 13: A: Performance of AlphaZero in chess compared with the 2016 TCEC world champion
program Stockfish. B: Performance of AlphaZero in shogi compared with the 2017 CSA world
champion program Elmo. C: Performance of AlphaZero in Go compared with AlphaGo Lee and
AlphaGo Zero
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3.3 Poker
AlphaZero has marked an incredible milestone in artificial intelligence whereby a single algorithm
has surpassed human performance in various traditional board games. Even though AlphaZero is
a relatively game-agnostic algorithm, there is one explicit limitation. AlphaZero requires perfect
information where both players know the exact underlying state of the game at any point in time.
This is a severe constraint on the application of AlphaZero in more complex real-life domains. In
imperfect information games, information about the true underlying state of the game is hidden from
players. Hidden information adds a significant degree of complexity to a game as beyond simply
searching for optimal action sequences; a player must ensure an opponent does not find out too much
about their private information. Additionally, imperfect information games cannot be subdivided
into different tasks as the optimal strategy for a current situation can depend on the strategy played
in future or alternative situations. This means that the strategy played must consider the game as a
whole.

Poker has long since been a benchmark challenge for AI that can take into account hidden information
[9, 1, 42]. Due to the game’s strategic complexity and large size, No-limit heads-up Texas hold ’em
has been the primary variant of poker used in AI research. No-limit Texas hold ’em is regarded as
the most popular form of poker in the world. The heads-up variant (only two players) prevents the
possibility of collusion between opponents and scenarios where bad players can cause mediocre
players to do well. This variant, therefore, allows for a clear winner to be determined. Prior attempts
at creating poker-playing agents mainly focused on game theory concepts such as minimising regret
[12]. Although these agents achieved minor success, none had come close to defeating top-ranking
human players. This changed in 2017 when an agent named Libratus [13] was developed. Libratus is
an agent that managed to defeat top human professional poker players in no-limit heads-up Texas
hold ’em without large amounts of expert domain knowledge or any human data.

3.3.1 Libratus
The Libratus agent contains three main modules in its game-solving approach:

1. The first module computes an abstraction of the game being played. This abstraction is
a smaller and easier to solve game represented by a game tree. With the abstraction, the
module then proceeds to compute game-theory based strategies to solve the abstracted game
tree. These strategies provide detailed policies for the early game rounds, i.e. the first two
rounds of betting; however, they only approximate how to play in the later rounds when the
game becomes more complex. This solution to the abstracted game is pre-computed before
any games have taken place and is termed the blueprint strategy.

2. The second module comes into play as the game progresses to later rounds. The second
module is used to construct a more accurate and finer-grained abstraction for the subgame,
i.e. remainder of the game tree, and solves it in real-time. The second module does not
solve the finer-grained abstraction in isolation, and it ensures that the subgame fits within
the created blueprint strategy of the whole game.

3. The third module is the self-improver. This module aims to enhance the blueprint strategy
by filling in missing branches in the blueprint’s abstraction. Additionally, the third module
ensures that game-theory based strategies are created for the missing branches.

In theory, all computations can be done in advance to create an optimal strategy for all possible
situations. However, much like Go or chess, the game tree is too large for this approach to be feasible.

First Module:

To address the problem of imperfect information, an agent has to reason about the entire game as
a whole instead of certain pieces of it. This differs from perfect information games like chess. For
example: in chess, the optimal play does not rely on any other subgames (remaining game trees
from a specific board configuration) that could have been reached and only relies on the current
board configuration. In general, when reasoning about the game in its entirety, a solution can be
pre-computed ahead of play. An example of an algorithm capable of doing this is counterfactual regret
minimisation plus (CFR+) which was used to near-optimally solve heads-up limit Texas hold’em
[10]. This was done entirely offline, and when playing, the agent would simply look up the strategy
to play when certain states were reached. This was feasible since limit poker is much simpler with
around 1013 unique decision points. In comparison, no-limit heads-up Texas hold’em has around
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10161 decision points. This makes traversing the entire game tree even a single time practically
infeasible. Due to this, pre-computing a strategy for every point is also impossible. To reduce this
complexity, one can perform action abstraction since, fortunately, in poker, many decision points are
very similar, e.g. there is practically no difference between betting 100 or 101. Abstraction in this
regard refers to a smaller, more simple game that retains as many strategic aspects of the original game
as possible. This can be employed to vastly reduce the size of the game tree. Libratus makes use of
action abstraction by rounding bets to a predetermined set of bet sizes. Another abstraction performed
by Libratus is chance-dependent action abstraction or, in the case of poker, card abstraction. This
treats similar hands as the same state, e.g. a King-high flush only differs slightly from a Queen-high
flush. By treating these hands as identical, the game tree drastically reduces in size. This may be
beneficial for reducing computational complexity; however, there are differences between these hands
that play a role at the top level of play. Libratus does not use card abstraction in the first two betting
rounds but uses very dense action abstraction. Additionally, in the last two betting rounds, which
contain a significantly larger number of possible states, Libratus only performs the abstraction in
the blueprint strategy that is pre-computed. Once the abstracted game tree is constructed, Libratus
creates the blueprint strategy through self-play using an algorithm called Monte Carlo Counterfactual
Regret Minimisation (MCCFR).

MCCFR estimates and maintains a regret value, i.e. how much would the agent regret not taking
a certain move, for each action in the game tree. When actions are encountered during self-play,
Libratus chooses the action with higher regret more often, i.e. higher probability. As self-play occurs,
MCCFR ensures that a players average regret for any action approaches zero. This means Libratus’s
average strategy during self-play gradually improves. In each simulated game of self-play, MCCFR
chooses one player to explore every possible action and update its regrets (called the traverser)
whilst the other player plays according to the strategy determined by the current regrets. After
every game, the algorithm switches the roles of the players. The regrets for each action form a
probability distribution which is used to sample actions when playing. At the traverser’s decision
points, MCCFR explores every action in a depth-wise manner. At the other player’s decision points,
actions are sampled. This process repeats until the end of the game, whereby a reward is given, which
backpropagates up the tree much like MCTS. Libratus uses a slightly improved version of MCCFR
whereby a smaller portion of the tree is traversed every iteration. In certain games, there are obvious
suboptimal actions and routes that waste computational resources by repeated exploration. Instead of
exploring every hypothetical action, Libratus’s MCCFR skips over the unpromising actions that have
very negative regret as the tree gets deeper. MCCFR is run on the abstracted game tree to derive the
blueprint strategy, which is very detailed for the first two rounds but less detailed for the final two
rounds. Libratus makes use of the blueprint strategy for the first two rounds but not in the last two. In
the last two rounds, the blueprint strategy is used to estimate the reward a player should expect with a
particular hand in a subgame. This estimate is then used to determine a more optimal strategy during
actual play.

Second Module:

Abstraction-based approaches have previously managed to create high performing poker AI [9, 24]
but have not been sufficient to reach superhuman performance. Beyond the abstraction performed
by Libratus in the first module, the second module is aimed at solving subgames whereby a more
fine-grained, detailed strategy is created for a particular part of the game that is reached. As stated
previously, in the first two rounds of betting, Libratus plays according to its pre-computed blueprint
strategy. This is because the early parts of the game allow for more detailed abstraction to take place.
When the third round is reached, the remaining game tree is small so Libratus can construct a new
abstraction for the remaining subgame. This subgame tree is then solved in real-time. The problem
is that in imperfect information games such as poker, subgames cannot be solved in isolation since
optimal strategies can depend on other subgames. Previous solutions have assumed that opponents
play according to the blueprint strategy, but this poses a considerable risk. The opponent can exploit
this assumption by simply switching to a different strategy. This can cause the newly learnt subgame
strategies to be significantly worse than the blueprint strategy. The technique used by Libratus is
termed safe subgame solving. The idea behind this is that Libratus makes no strict assumption about
the opponents’ strategy but instead makes an assumption about the values they could receive in an
equilibrium. An equilibrium (Nash Equilibrium) is a profile of strategies that no player can improve
upon by deviating; therefore, if both players are playing the equilibrium strategy, it ensures you will
not lose in expectation. These equilibrium expectations are approximated using the blueprint strategy.
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Libratus then creates the strategy according to these values that will make the opponents worse off.
There is no guarantee that the strategy created will make the opponents worse off, but at the very
least, the strategy should make the opponent no better off than the action taken in an equilibrium.
Since the equilibrium values are not known and only approximated, there is a margin of error, but this
method has been empirically shown to have high performance. The strategy created for the subgame
is what is used for the last two betting rounds of a poker game. This subgame strategy was created
by using the CFR+ [10] algorithm, combined with specialised optimisations [32] for equilibrium
finding, on the subgame game tree. The technique used by Libratus, safe subgame solving, follows
the theorem that if the subgame estimated values are close to the true equilibrium values, then the
strategy created plays close to a Nash Equilibrium strategy.

Third Module:

Libratus’s third module is dedicated to self-improvement. The module’s responsible for enhancing
the blueprint strategy in the background. Due to action abstraction, the number of branches in the
blueprint strategy does not represent all the actions possible. For example, if an opponent made a bet
of 80, the blueprint strategy may have to round this to 100 as it does not have a branch for that specific
action. This can cause the blueprint strategy to experience rounding errors and misplay certain moves.
The solution to this is the third module. After a day of playing, the third module records the most
popular actions the opponents are playing that are the furthest from actions the blueprint strategy has
already accounted for. Overnight, Libratus then creates and fills in new branches in the blueprint
abstraction and computes game-theory based strategies for these branches. This way, Libratus can
progressively narrow the gaps that are in the action abstraction. By doing this, if the opponents can
find a weakness in the action abstraction, this weakness will not persist for the whole tournament.

Figure 14: The following is taken directly from the original paper [13]. Subgame solving Top: A
subgame is reached during play. Middle: A more detailed strategy for that subgame is determined
by solving an augmented subgame, in which on each iteration the opponent is dealt a random poker
hand and given the choice of taking the expected value of the old abstraction (red), or of playing in
the new, finer-grained abstraction (green) where the strategy for both players can change. This forces
Libratus to make the finer-grained strategy at least as good as in the original abstraction against every
opponent poker hand. Bottom: The new strategy is substituted in place of the old one.

Libratus is the first poker AI ever to defeat top-ranking professionals in poker, albeit only against
single opponents. Libratus managed to capture uniquely human strategies of the game such as
"bluffing" as well as uniquely inhuman strategies such as using a large variety of different bet sizes.
The underlying techniques used by Libratus are relatively domain-independent, allowing it to be
used for a variety of imperfect information domains. As of 2019, an agent named Pluribus [14]
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which builds on Libratus has defeated top professionals in multiplayer poker, meaning the two-player
constraint is no longer required.

3.3.2 Pluribus
Checkers, Chess, Go, and heads-up no-limit texas hold ’em all have a common factor. They are
two-player zero-sum games. Superhuman performance in these games have all been reached by
approximating a Nash equilibrium strategy instead of some method to exploit and adapt to their
opponents. Two-player zero-sum games have a special property whereby the Nash equilibrium
is guaranteed to not lose in expectation no matter the opponent’s strategy. This means the Nash
equilibrium gives the optimal strategy in a two-player zero-sum game. Deviating off the Nash
equilibrium strategy to exploit opponents weaknesses is a viable shift in play; however, this shift
would open one up to being exploited. Nash equilibriums are proven to exist in any finite game,
although discovering them is a non-trivial task. No polynomial-time algorithm is known that can find
Nash equilibriums in two-player zero-sum games. Finding Nash equilibriums in zero-sum games
that contain more than two players is at least as hard, if not harder, than two-player games. Another
challenge in multiplayer games is that it is not clear that simply playing a Nash equilibrium would be
the best choice. If every player independently computes and plays an equilibrium strategy, then the
group of strategies may not be an equilibrium. The Lemonade Stand Game [76] is an example of
this (see figure 15 for an explanation). These issues with multiplayer Nash equilibriums and lack of
game-theoretic solutions make multiplayer games a tough challenge to strategise for. Due to this,
Pluribus’s goal is not a specific game-theoretic solution but rather the construction of an artificial
intelligence system that empirically can defeat human opponents consistently. Pluribus makes use of
algorithms that are not guaranteed to converge to a Nash equilibrium in non-two-player zero-sum
games but are observed to create strong strategies capable of defeating human professionals. A key
observation of Pluribus is that even with a lack of theoretical guarantees, superhuman performance
can be achieved.

Figure 15: The following is taken directly from the original paper [14]. An example of the equilib-
rium selection problem: In the Lemonade Stand Game, players simultaneously choose a point on a
ring and want to be as far away as possible from any other player. In every Nash equilibrium, players
are spaced uniformly around the ring. There are infinitely many such Nash equilibria. However, if
each player independently chooses one Nash equilibrium to play, their joint strategy is unlikely to be
a Nash equilibrium. Left: An illustration of three different Nash equilibria in this game, distinguished
by three different colors. Right: Each player independently chooses one Nash equilibrium. Their
joint strategy is not a Nash equilibrium.

Pluribus, like Libratus, produces its main strategy via self-play, whereby copies of the agent play
against each other. Starting from random play, Pluribus gradually improves as it discovers which
actions and strategies lead to better outcomes. Pluribus uses the same core ideas as Libratus: First, the
computation of a blueprint strategy for the entire game using the MCCFR algorithm, which happens
offline before any games are played. Second, improving the blueprint strategy in real-time depending
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on the situations the agent finds itself in. Additionally, Pluribus also uses the same action and card
abstraction as Libratus to reduce the complexity of the game tree.

Pluribus differs from Libratus in the way it improves the blueprint strategy. Unlike Libratus, which
uses the blueprint strategy for the first two rounds, Pluribus only plays according to it in the first
round. In the second round and above, Pluribus uses a real-time search to discover a stronger, more
fine-grained strategy for its current situation. This real-time search is also used in the first round
if an opponent chooses a bet size that is significantly different from the blueprint abstraction. In
imperfect-information games, real-time search is difficult as the value of non-terminal leaf nodes
is not fixed and depends on the searcher’s and opponents’ strategy. A potential solution, used by
ReBeL [11], is to make the value of leaf nodes conditioned on the belief distribution of both players
at that point in the game [41]. A problem with this, is the computational resources needed for
calculation. This method requires one to solve a large number of subgames that are conditional on
beliefs . This complexity increases with the number of players and amount of hidden information,
making it infeasible for multiplayer setups and games like reconnaissance chess. Libratus avoided
this complexity by exclusively performing a real-time search (nested subgame solving) when the
remaining subgame was short enough that the depth limit would reach the end of the game, thereby
not requiring an evaluation function. Unfortunately, when dealing with more than two players, always
solving to the end of the game also becomes computationally expensive.

Pluribus’s solution to real-time search uses a modified form of Depth-Limited Solving [15] where
the searcher considers that any or all players may shift to different strategies beyond the leaf nodes
of a subgame (see figure 16). This means that, unlike other methods that assume all players are
using a fixed strategy beyond the leaf node, Pluribus assumes that each player may choose between k
different strategies, specialised to each player, to play for the rest of the game. Pluribus specifically
used a k value of four and assumed players could choose between the following four strategies.

1. The precomputed blueprint strategy.

2. A modified version of the blueprint strategy that is biased toward folding.

3. A modified version of the blueprint strategy biased toward calling.

4. A modified version of the blueprint strategy biased toward raising.

Because picking an imbalanced strategy (e.g. always playing Rock in Rock-Paper-Scissors) would
be exploited by an opponent moving to one of the other continuing tactics, this approach leads to
the searcher discovering a more balanced strategy that accounts for multiple opponents and their
playstyles.

Another challenge in imperfect information games is that optimal play relies on what a player would
do in every situation from their opponents’ perspective. For example, if a player is holding the best
possible hand, betting in this situation is a good action. However, if the player exclusively bets in this
situation, the opponents would always fold as a response. Pluribus calculates how it would act with
every potential hand in its current state, balancing its approach over all hands to stay unpredictable to
the opponent, regardless of whatever hand it is actually holding. Using a newly calculated balanced
strategy, Pluribus then takes action for its current hand.
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Figure 16: The following is taken directly from the original paper [14]. Real-time search in
Pluribus: The subgame shows just two players for simplicity. A dashed line between nodes indicates
that the player to act does not know which of the two nodes she is in. Left: The original imperfect
information subgame. Right: The transformed subgame that is searched in real time to determine
a player’s strategy. An initial chance node reaches each root node according to the normalized
probability that the node is reached in the previously-computed strategy profile (or according to the
blueprint strategy profile if this is the first time in the hand that real-time search is conducted). The
leaf nodes are replaced by a sequence of new nodes in which each player still in the hand chooses
among k actions, with no player first observing what another player chooses. For simplicity, k =
2 in the figure. In Pluribus, k = 4 . Each action in that sequence corresponds to a selection of a
continuation strategy for that player for the remainder of the game. This effectively leads to a terminal
node (whose value is estimated by rolling out the remainder of the game according to the list of
continuation strategies the players chose).

3.3.3 ReBeL
In an attempt at merging the success of AlphaZero and Libratus, Recursive Belief-based Learning
(ReBeL) [11] was created. The ReBeL agent aims to create a single algorithm that can play perfect and
imperfect information games. ReBeL is a general RL and real-time search framework that converges
to a Nash equilibrium (optimal policy) in two-player zero-sum games. Much like AlphaZero, ReBeL
trains a value network and policy network exclusively through self-play reinforcement learning and
makes use of these functions for real-time search. ReBeL managed to defeat top poker players in
heads-up no-limit Texas hold ’em, like Libratus, using far less domain knowledge whilst also being
applicable to perfect-information games.

Imperfect-information games can be converted into continuous state and action space perfect-
information games where the state description contains a probabilistic belief distribution of all
agents. By doing this, perfect-information game techniques can be applied with minor modifications
to imperfect-information games. To elaborate the idea of probabilistic belief distributions, consider a
toy card game consisting of two players, where each player is dealt 52 cards privately. Every turn,
a player has three actions. They can call, raise or fold. Eventually, the game will terminate, and
some player will receive a reward. Since each player has hidden information, this is an imperfect
information game. Now consider a modification to this game by not allowing either player to see
their private cards and introducing a third-party referee to view both their cards for them. On each
turn, a player announces the probability of taking a specific action with each possible private card.
The referee then samples an action on the players’ behalf from the players announced probability
distribution given their actual card. At the start of the game, each player has a uniform random
belief distribution about their private card, but after each action performed by the referee, players can
update their belief distribution about the card they are holding via Bayes’s Rule. Additionally, players
can update their belief distribution about the card their opponent has by looking at the referee’s
actions. Ultimately, throughout the entire game, the probability that each player is holding each
private card is common knowledge for all players in the game. Interestingly, both versions of the
game are strategically identical, but the modified version contains no hidden information, thereby
becoming a continuous state and action space perfect-information game. This requires the assumption
that, although players do not directly announce their policies in the first game, all players’ policies
are common knowledge; therefore, the probabilities associated with each action are also common
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knowledge. This is a common assumption in game theory solutions. An argument for it is that an
opponent would eventually determine an agent’s policy in repeated play.

The first version of the game illustrated is referred to as the discrete representation, whereas the
modified version is referred to as the belief representation. Using the example above, a history
in the belief representations, called Public Belief State (PBS), comprises the sequence of public
observations and 104 probabilities (the probability that each player holds each of the 52 cards). An
action is comprised of 156 probabilities (one per discrete action per private card.). Since a PBS is a
history of the perfect-information belief-representation game, a subgame can be rooted at a PBS.

The interpretation of imperfect-information games as continuous state perfect-information games
is not ReBeL’s novel contribution. ReBeL’s novelty is the combination of this interpretation with
self-play reinforcement learning for adversarial settings. The conversion of imperfect information
to perfect information can, in principle, allow one to run algorithms such as AlphaZero directly.
However, this is practically inefficient. The state and action dimensions can increase exponentially.
Traditional reinforcement learning and search methods prove unwieldy in such situations. ReBeL
uses the convex property of these high-dimensional state and action spaces in two-player zero-sum
games to use a gradient-descent-like algorithm (CFR) to search efficiently. Simply put, these high-
dimensional belief representations are convex optimization problems. This allows the value of leaf
nodes to be calculated and depth-limited search to be used.

Although ReBeL is the first algorithm to offer sufficient Reinforcement learning and Search in
imperfect-information games, the current implementation has certain drawbacks. Most notably, the
amount of calculation ReBeL needs becomes unpractical in games with strategic complexity but little
common knowledge, such as Recon Chess.

3.4 Atari
Traditional board games have long been within the artificial intelligence field, but recently, research
has shifted towards more modern games. A natural progression from traditional board games, video
games have become an extensively researched topic in reinforcement learning. In this domain,
a variety of new and exciting techniques have been created with the routine goal of superhuman
performance.

Video games, differing from traditional board games, have high-dimensional sensory inputs. Ad-
ditionally, game dynamics can be very complex and hard to model. This inhibits the use of tree
search as game simulation is not possible in a model-free context. Originally, learning to control
agents directly from high-dimensional sensory inputs like vision was a longstanding challenge of
reinforcement learning. The reason for this is that the extraction of high-level features from raw
sensory input was extremely difficult and often required handcrafted features. This changed as the
field of deep learning advanced, and as seen in 2013 with the creation of DQN [39], reinforcement
learning was successfully applied to learn to play Atari games. Although complex control policies
were learnt in these high dimensional environments, superhuman performance was far from reached
with these original methods.

The Arcade Learning Environment (ALE), consisting of 57 Atari 2600 games, was offered as a
benchmark collection of tasks. These iconic Atari games present a wide range of problems for an
agent to master. This benchmark is extensively used in the research community to assess progress in
developing increasingly intelligent agents that can operate with high-dimensional sensory inputs. As
research progressed, the performance on the Atari suite of games improved with specific algorithms
achieving superhuman performance in a variety of the games [34, 30]. Although this performance
was reached, the problem of generalisation remained. Programs that could achieve superhuman
performance in one game could fail to perform in another.

3.4.1 MuZero
MuZero [49], the next step in Deepmind’s pursuit of a game-agnostic algorithm, managed to achieve
the same performance as AlphaZero in Go, chess and shogi as well as achieve the state-of-the-art
results (at the time) on the Atari suite. This was all done with yet another game-specific piece of
information removed. AlphaZero managed to achieve superhuman performance in Go, chess and
shogi without using human data or crafted heuristics, but it still required the rules of each game.
MuZero, on the other hand, does not require knowledge of any rules or game dynamics. Due to the
use of planning and lookahead searches, algorithms like AlphaZero cannot be used in environments
with unknown or highly complex game dynamics as knowledge of action consequences is required
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for simulations. In a video game context, this would mean an agent would need to know how its
actions will influence the raw pixel observations it uses as input. Model-based reinforcement learning
attempts to learn a model that can be used for planning but for visually rich domains, learning a model
to predict the high dimensional sensory inputs is exceptionally challenging. Due to this, the most
successful methods in environments such as Atari used to be model-free methods. MuZero builds
upon the AlphaZero algorithm to be compatible with environments of all kinds and achieve success
in visually complex domains whilst maintaining superhuman performance in precise planning tasks
such as Go, chess and shogi.

MuZero is a model-based reinforcement learning technique that learns a model of the environment.
What separates MuZero from other model-based reinforcement learning methods is that instead of
trying to learn and model the entire environment, it learns a model that exclusively focuses on the
aspects deemed necessary for planning and the decision-making process. Once this model is learnt,
MuZero can use AlphaZero’s methodology in any environment, including visually rich domains such
as Atari.

To learn this model, three important elements that are crucial for planning are estimated. The three
elements are: the value function, i.e. how good is the current position? The policy function, i.e.
which action is the best to take? The reward function, i.e. how good was the last action? These
three elements are all that are needed for MuZero to plan in environments with complex or unknown
dynamics.

The MuZero model µθ consists of the following three connected components:

1. The Representation Function s0 = hθ(o1...ot)

2. The Prediction Function (pk, vk) = fθ(s
k)

3. The Dynamics Function (sk, rk) = gθ(s
k−1, ak)

At every time step t, predictions are made for every hypothetical planning step k = 1..K. The model
µθ is conditioned on a sequence of the past observations o1, ..., ot and future hypothetical actions
at+1, ..., at+k to predict the policy pkt , the value vkt and the immediate reward rkt .

pkt ≈ π(at+k+1|o1, ..., ot, at+1, ..., at+k)

vkt ≈ E
[
ut+k+1 + γut+k+2 + ...|o1, ..., ot, at+1, ..., at+k

]
rkt ≈ ut+k

where u is the true reward, π is the policy that is used to select real actions, and γ is the discount
factor.

The dynamics function gθ is a recurrent process that mirrors the structure of a traditional MDP
model as it computes the expected reward and state transition of a given state and action. The crucial
difference here is that the dynamics function’s state representation sk has no semantics of the true
environment attached. sk is simply an internal representation used to accurately predict the relevant
future estimates of policies, values and rewards. The value function and policy function are jointly
computed from the internal state representation sk using the prediction function (pk, vk) = fθ(s

k).
The starting state of any search, i.e. the root state s0, is created using the representation function
s0 = hθ(o1...ot) that encodes past observations into the internal hidden state representation. With
these three components, this model can be used to search over any future trajectories of actions
a1, ..., ak conditioned on the past observations o1, ...ot.

MuZero uses the MCTS algorithm, as used by AlphaZero, to simulate game trajectories and produce
the MCTS improved policies πt and a improved value function vt. Like with AlphaZero, MuZero
selects actions from the MCTS improved policy at+1 ∼ πt. For every hypothetical step k in the
model’s simulation, the parameters of the model θ are jointly trained to accurately match the policy,
value and reward to their respective true values observed after k actual time-steps. Firstly, MuZero
aims to more closely match the model’s produced policies pkt to the MCTS improved policies
πt+k making use of MCTS as a powerful policy improvement operator, as done in AlphaZero.
Secondly, MuZero aims to minimize the error between the model’s value estimates vkt and the
outcome targets of the search zt+k where zt can be the actual outcome value or be a bootstrapped
estimate zt = ut+1 + γut+2 + ... + γn−1ut+n + γnvt+n. Lastly, MuZero aims to minimise the
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error between the model’s predicted reward rkt and the true observed reward ut+k. This creates the
loss function Lt:

Lt(θ) =

K∑
k=0

lr(ut+k,rkt ) + lv(zt+k, v
k
t ) + lp(πt+k, p

k
t ) + c||θ||2

where lr, lv , and lp are the loss function for reward, value and policy respectively. An additional L2
regularisation term is added at the end to prevent overfitting.

Figure 17: The following is taken directly from the original paper [49]. Planning, acting, and
training with a learned model. (A) How MuZero uses its model to plan. The model consists of
three connected components for representation, dynamics and prediction. Given a previous hidden
state sk−1 and a candidate action ak, the dynamics function g produces an immediate reward rk and
a new hidden state sk. The policy pk and value function vk are computed from the hidden state sk
by a prediction function f . The initial hidden state s0 is obtained by passing the past observations
(e.g. the Go board or Atari screen) into a representation function h. (B) How MuZero acts in the
environment. A Monte-Carlo Tree Search is performed at each timestep t, as described in A. An
action at+1 is sampled from the search policy πt, which is proportional to the visit count for each
action from the root node. The environment receives the action and generates a new observation
ot+1 and reward ut+1. At the end of the episode the trajectory data is stored into a replay buffer.
(C) How MuZero trains its model. A trajectory is sampled from the replay buffer. For the initial
step, the representation function h receives as input the past observations o1, ..., ot from the selected
trajectory. The model is subsequently unrolled recurrently for K steps. At each step k, the dynamics
function g receives as input the hidden state sk−1 from the previous step and the real action at+k. The
parameters of the representation, dynamics and prediction functions are jointly trained, end-to-end
by backpropagation-through-time, to predict three quantities: the policy pk ≈ πt+k, value function
vk ≈ zt+k, and reward rkt ≈ ut+k, where zt+k is a sample return: either the final reward (board
games) or n-step return (Atari).

A second version of MuZero, termed Reanalyze, was created that specifically aimed to optimise
sample efficiency. MuZero Reanalyze executes MCTS simulations on its past time steps but using
the models latest parameters. The idea is that, the models latest parameters will potentially allow
the MCTS to provide better action probabilities than the original search. These new search policies
are used as the policy network’s target for 80% of the training updates. Additionally, a target value
network v− = f−θ (s0) is created and used to provide a more recent and stable n-step bootstrapped
target for the value function, zt = ut+1 + γut+2 + ...+ γn−1ut+n + γnv−t+n. MuZero Reanalyze
also changed several hyperparameters to increase sample reuse and avoid overfitting. The Reanalyze
variant of MuZero managed to achieve remarkable scores in Atari, achieving a mean score of 2,168%
(100% is human performance), whilst using magnitudes less data than its primary variant (only 200
million frames compared to 20 billion).

MuZero has equalled the superhuman performance of high-performance planning algorithms in
their preferred domains, e.g. chess and Go, whilst also outperforming state-of-the-art model-free
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reinforcement learning algorithms in their preferred domains, e.g. visually complex Atari games.
Incredibly, MuZero exceeded the performance of AlphaZero whilst also achieving a new state of the
art (at the time) for both the mean and median normalised scores across all 57 games in the Atari
suite. MuZero outperformed the previous best method, R2D2 [34] (a model-free method) in 42 out of
the 57 games. Even though MuZero achieved incredible results in most of the games, certain games
such as Montezuma’s Revenge proved too challenging. This meant the race to create the first general
agent to achieve superhuman performance in all of the Atari games was still on.

Figure 18: The following is taken directly from the original paper [49]. Evaluation of MuZero
throughout training in chess, shogi, Go and Atari. The x-axis shows millions of training steps.
For chess, shogi and Go, the y-axis shows Elo rating, established by playing games against AlphaZero
using 800 simulations per move for both players. MuZero’s Elo is indicated by the blue line,
AlphaZero’s Elo by the horizontal orange line. For Atari, mean (full line) and median (dashed line)
human normalised scores across all 57 games are shown on the y-axis. The scores for R2D2 [34],
(the previous state of the art in this domain, based on model-free RL) are indicated by the horizontal
orange lines. Performance in Atari was evaluated using 50 simulations every fourth time-step, and
then repeating the chosen action four times, as in prior work [40].

3.4.2 EfficientZero
Sample efficiency is still a critical challenge within reinforcement learning. Methods such as
AlphaZero need to play approximately 21 million games to train to superhuman performance in Go.
A professional player playing five games per day would need around 11,500 years to achieve the
same level of experience. MuZero, even with its Reanalyze variant, requires large amounts of data to
succeed. In game-like settings, this may not be an issue as experience can continuously be generated,
but this limits the applicability of the method to simulations and games. EfficientZero [74] is a
proposed expansion to MuZero designed to achieve high performance with limited data. EfficientZero
makes use of the following three components to improve sample efficiency whilst maintaining
superhuman performance: a self-supervised environment model, a mechanism to alleviate the model
compounding error, and a method to correct off-policy issues. The use of these components are
solutions to three critical problems that MuZero faces:

1. MuZero’s learned model is trained exclusively through the reward, policy and value functions.
This proves to be challenging since the reward is a scalar and most often sparse signal; the
value functions are trained through bootstrapping, thereby introducing noise, and policy
functions are trained with the search process. Therefore, these three values often cannot
provide enough training signals to learn the environment model accurately with little data.

2. The learned model’s reward prediction has significant prediction errors even with large
amounts of data, and the reason for this is the aleatoric uncertainty of the underlying
environment. These reward prediction errors accumulate in the MCTS process, which then
results in sub-optimal exploration and evaluation.
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3. When MuZero computes the value functions target value, the multi-step reward observed in
the environment is used. This causes severe off-policy issues and hampers convergence in a
limited data setting.

Self-Supervised Consistency Loss:

Since the use of MCTS as a policy improvement operator is so dependent on the environment model,
it is imperative to have an accurate one. Since the output ŝt+1 of the learned models dynamics
function gθ should be the same as the output st+1 of the representation function hθ with the input of
the next observation, we can use this property to help supervise the predicted next state ŝt+1.

hθ(o1...ot+1) = st+1 = gθ(st, at) = ŝt+1

This provides an additional training signal to aid in the learning of the model. Using the SimSiam [1]
self-supervised framework, the difference between the state representations is used in the training
process.

End-To-End Prediction of the Value Prefix:

Model-based agents need to predict the future states conditioned on the current state and hypothetical
actions. The further these predictions extend into the future, the more difficult it is to maintain
accuracy due to the accumulation of prediction errors. This is referred to as the state aliasing problem.
This problem dramatically harms the performance of MCTS and results in suboptimal use of the
search. The estimation of the Q-value is:

Q(st, at) =

k−1∑
i=0

γirt+i + γkvt+k

where the sum of the reward
∑k−1
i=0 γ

irt+i is termed the value prefix. MuZero uses the predicted
reward of each unrolled state ŝt+i which can contain large prediction errors. EfficientZero proposes an
end-to-end method to predict the value prefix instead of each reward independently. The value-prefix
is predicted from all the unrolled states (st, ŝt+1, ..., ŝt+k−1). EfficientZero uses an LSTM to take in
the variable number of inputs and output a scalar value. At every timestep during training, the LSTM
is supervised as there is always a new value prefix when a new state comes in. This allows the LSTM
to be trained well, even with limited data. The end-to-end prediction is also more accurate which
reduces the error accumulation and aids in MCTS performance.

Model-Based Off-Policy Correction:

As seen in MuZero Reanalyze, the value target is given by computing zt =
∑k−1
i=0 γ

iut+i + γkvt+k
from a sampled trajectory of past data. This causes off-policy issues as the trajectory is rolled out
using an older policy, thereby causing the value target to no longer be accurate. Since the agent has
a model of the environment, it can use the model to simulate an online experience. EfficientZero
proposes using the rewards of a dynamic horizon l from the old trajectory, where l < k and l should
be smaller if the trajectory is older. Intuitively, this can be seen as cutting off the old trajectory and
using it as a seed to produce "imagined" data to train on. This process reduces policy divergence.
Additionally, a new MCTS search is performed with the current policy on the last state of sampled
data st+l whereby the empirical mean value at the root node is calculated. The value target used is:

zt =

l−1∑
i=0

γiut+i + γlvMCTS
t+l

where l <= k and l is inversely proportional with the age of the sampled trajectory. vMCTS(st+l) is
the root value of the MCTS tree using the current policy, like MuZero Reanalyze.

EfficientZero is benchmarked on the Atari 100k environment, which limits training data of Atari
games to 100 thousand environment steps. This is roughly equivalent to 2 hours of real-time gameplay.
EfficientZero is seen to vastly improve upon prior methods, achieving state-of-the-art results by a
large margin.

3.4.3 Agent57
Agent57 [3], yet another agent produced by Deepmind, is the first method to achieve, at the minimum,
human performance on all 57 games in the Atari suite. It does this by making use of prior reinforce-
ment learning algorithmic/architectural improvements along with an efficient exploration algorithm
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Figure 19: Agent57’s Lineage

and meta-controller. Since the creation of the DQN, numerous extensions have been developed,
e.g. DDQN [65], prioritised experience replay [45], and Dueling Networks [70], but these methods
consistently fail in 4 specific games. Montezuma’s Revenge, Skiing, Pitfall, and Solaris. MuZero
[49] and R2D2 [34], two state-of-the-art algorithms, surpass 100% of the human normalised score
on 51 and 52 games, respectively. Although these algorithms achieve superhuman performance in
a large percentage of games (e.g. more than 1000% of the human normalised score), even these
algorithms consistently fail in the four games specified. This failure is primarily due to two important
reinforcement learning issues:

1. Long-term credit assignment: the problem of knowing which actions are deserving of
credit for the positive or negative outcome is difficult when an environment is sparsely
rewarded. This means long sequences of actions can occur before a reward is given, making
it difficult for the agent to know which action influenced the outcome. In certain games
such as Skiing, rewards are only given at the end, but certain actions performed during
the playthrough are responsible for the outcome. The agent does not know which actions
produced certain penalties and rewards.

2. Exploration: In reinforcement learning, efficient exploration can be crucial to learning
viable policies. Certain games, such as Montezuma’s Revenge or Pitfall, potentially require
hundreds of actions before the first positive reward is given. Despite the difficulty of
obtaining positive rewards, the agents must continue investigating the environment in order
to succeed. This issue becomes even more prominent in vast, high-dimensional state spaces,
especially when function approximation is required.

To solve these issues and achieve superhuman performance on these games without sacrificing a
strong performance on others, Agent57 uses years of research in the reinforcement learning field in a
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combination of methods and components. The following sections elaborate on the components used
in Agent57:

DQN Improvements:

DDQN, prioritised experience replay and dueling networks are three improvements to the original
DQN algorithm that greatly enhanced its performance. Specifically, these improvements increased its
learning efficiency and stability - two common issues with reinforcement learning algorithms. These
improvements are discussed in section 2. Agent57 makes use of and iterates on these ideas along
with the remainder of its components.

Distributed Learning:

Distributed learning algorithms allow for simultaneous execution on many computers. This enables
increased learning speed and experience generation since multiple simulations can happen in parallel.
Agent57 is a distributed agent whereby the data collection and generation is decoupled from the
actual learning process. In this decoupling process, multiple actors are responsible for environment
interaction, and a single learner is responsible for updating network weights according to the collected
data. For data collection, the actors simultaneously generate experience through interaction with
their independent copies of the environment. This experience is then sent to a centralised, prioritised
experience replay memory buffer. Once there is sufficient data, the learner can sample the trajectories
to construct the necessary loss functions that optimise the parameters of its neural network. Each
actor is periodically sent the learner’s updated network weights to whereby each actor uses these
network weights in a specialised manner determined by individual priorities. Figure 20 illustrates the
distributed learning process.

Figure 20: Agent57’s distributed process of learning

Short-term memory:

Certain environments prove to be challenging to act in with only a partial current observation. The
use of past observations can reveal more about the environment and allow an agent to make improved
decisions. Incorporating a sense of memory in an on-policy learner is a relatively trivial task as
the value of direct actions are being learned; therefore, remembering direct experience is simple.
Incorporating memory into an off-policy learner, on the other hand, which can learn about optimal
actions even when not actively performing those actions, is a lot more challenging as the agent needs
to know what is possibly remembered when executing different behaviours. Off-policy learning
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is desired since the agent can use more exploratory behaviour whilst still learning optimal control.
Additionally, the ability to use past data allows for an agent to be more sample efficient. Deep
Recurrent Q-Network [27] (DRQN) was the first agent to combine a sense of memory with off-policy
learning. DRQN made use of a single LSTM [29] layer (a recurrent neural network) in addition
to the original DQN architecture. This LSTM layer gave the agent a form of short-term memory
with which to aid its decision making. The DRQN agent is seen to have increased performance in
partially observable environments and allows for the ability to infer high-level information using past
observations.

With the advancements in distributed learning showing significant performance increases and research
showing the benefit of short-term memory inclusion, a new method for training distributed, off-
policy, recurrent neural networks was required. R2D2 [34] was this method. The R2D2 algorithm
incorporated recurrent neural networks, a dueling DQN architecture, prioritised experience replay and
distributed learning into a single algorithm. R2D2, like DRQN, used an LSTM network layer atop
a convolutional module. How R2D2 trained its recurrent neural networks required a change to the
way data is stored. Instead of simply storing regular environment transitions (st, at, rt, st+1), R2D2
stores large sequences of trajectories in the form ((s1, a1, r1), (s2, a2, r2), ..., (st, at, rt)). These
trajectories are stored and given a priority level in the replay buffer. Experience is sampled from the
replay buffer as normal, except instead of receiving batches of transitions, the agent receives batches
of transition sequences to train on.

Episodic Memory:

Never Give Up (NGU) [4] was designed to augment R2D2 with episodic memory in addition to its
short-term memory. This gives the agent the ability to detect when it encounters novel states. The
reason for this is to allow the agent to focus on exploring the novel parts of the game it encounters.
Due to this, the agents’ behaviour dramatically shifts to favour exploration, making it difficult for the
agent to learn the optimal policy for its original goal of achieving a high score. This makes off-policy
learning required so that the exploration experience generated can still be effectively used. NGU uses
an episodic memory buffer that stores the agents’ observations within a single episode to calculate
intrinsic motivation for efficient exploration.

Intrinsic Motivation:

For many sparsely rewarded environments, shaping the reward function is not possible. Using random
exploration methods rely upon the agent stumbling onto the goal state by chance. This can be
practically impossible in large environments and will result in failure to learn. Intrinsic motivation
can be seen as a new way of learning which requires no extrinsic rewards re from the environment. It
is a controlled form of exploration. The two most popular formulations of intrinsic reward can be
grouped as follows: The first class of methods encourages the agent to explore states it has not seen
before. Bellemare et al. [6] have shown improved results in very sparsely rewarded environments,
such as Montezuma’s Revenge, using such exploration with DQN. The second class of methods
focus on encouraging the agent to take actions that lower the error in the agent’s ability to predict
the consequences of its actions. Intuitively this aims to increase the agent’s knowledge about the
environment [47, 48, 18]. Measuring the novelty, i.e. how different a state is from a previous state, or
building an internal environmental model to predict the next state can be complex in high dimensional
state spaces. This is compounded with environment stochasticity and noise, which ultimately makes
intrinsic reward calculation difficult.

Random network distillation [16] (RND) is an exploration method that introduces a new approach
for the second class of methods. Two neural networks are created: one that is fixed where weights
are randomised called the target network f(ot) and one that is trained on data collected by the agent
called the predictor fθ(o). The target network simply receives the agent’s observation ot as input and
outputs a fixed random embedding of the state. The predictor network receives an observation and
also outputs a random embedding of the state. The predictor network is then trained to minimise the
difference between its output and the fixed target output.

Lθ(o) = |fθ(o)− f(o)|2

This process essentially "distils" the predictor network into a trained one. The prediction error
between the two networks is expected to be larger for novel states that are more dissimilar to the
states the predictor network has seen and been trained on. This prediction error Lθ forms part of the
intrinsic reward ri as a way to encourage moving to novel states.
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NGU introduced a new way to calculate intrinsic reward. This intrinsic reward has three main
properties:

1. It discourages returning to the same state inside the same episode.

2. It gradually discourages trips to states that have been visited many times across episodes.

3. The concept of state overlooks parts of the environment that are unaffected by an agent’s
actions.

The intrinsic reward is made up of two modules: the episodic novelty module and life-long novelty
module. The episodic novelty module uses the episodic memory buffer to calculate an episodic
intrinsic reward repisodict for each observation based on the difference between the observation in
question and all other observations seen within the episode. The intrinsic reward given is linearly
proportional to the size of the difference. The episodic intrinsic reward rapidly diminishes if the
agent starts to visit similar states within the episode repeatedly. The reason for this is to encourage
an agent to explore as much as possible within a single episode time limit. The second module, the
life-long novelty module is used to control how much exploration is performed across episodes. This
is achieved with the use of a curiosity factor αt. Random Network Distillation is used to control this
factor as follows:

αt = 1 +
Lθ − µ
σ

where Lθ is the RND error as discussed above, µ and σ are the running mean and standard deviation
of Lθ respectively. The curiosity factor then uses the episodic intrinsic reward repisodict to create the
NGU intrinsic reward rit:

rit = repisodict · {max{αt, 1}, L}
Where L is the chosen maximum reward scaling. Through the mixing of rewards in this fashion,
long-term novelty detection is leveraged whilst still encouraging exploration. This means that if the
curiosity factor and episodic intrinsic rewards are high, the agent receives a large intrinsic reward.
Suppose the curiosity factor is low and the episodic intrinsic rewards are high. In that case, the
resulting reward will be scaled down but never vanish entirely, thereby always incentivising the agent
to continue exploring (the agent will Never Give Up).

Every time step t, N different augmented reward signals are created by NGU. This is done by adding
N differently scaled versions of the intrinsic reward βjrit to the extrinsic reward ret thereby producing
N reward signals calculated by:

rj,t = ret + βjr
i
t

Each reward rj,t therefore offers a greater or lesser degree of exploration incentivisation that depends
on the scaling value βj . NGU then proceeds to try and learn N different optimal Q functions Q∗rj
each associated with the different rewards rj . NGU, therefore, learns N different policies associated
with different degrees of exploratory behaviour controlled by the exploration rate βj . Additional
control is also performed by giving each of the N policies a different discount factor γj to use in
training. Since NGU is a distributed learning algorithm, actors, which gather experience, are each
given different βj and γj parameters, thereby contributing to a very diverse pool of experience for
the learner to use. NGU achieved high scores on the four hard-exploration Atari games but sacrificed
performance in the others.

Meta-controller:

A problem with NGU is that all experience generated was treated as equally valuable, not taking into
consideration the contribution to learning. The Atari suite provides a variety of games that all have
very different exploratory needs. NGU focused too much on exploration in games that did not need it,
resulting in lower performance than desired. This begs the question of whether or not one can teach
an agent to decide for themselves when it is better to explore or exploit. This is precisely what the
meta-controller is used for. Agent57 uses a meta-controller to directly decide the level of exploration
going to be performed at the start of an episode. Since Agent57 is an expansion of NGU, most aspects
are the same. Like NGU, multiple policies, parameterised by an exploration rate βj and discount
factor γj , are maintained and used by different actors in generating experience. Agent57 differs in
that in every episode, each actor runs a non-stationary multi-armed bandit algorithm to select one of
the multiple policies such that the policy maximises the expected return of that episode. Essentially,
this sets out to teach the agent to pick the best performing policy for a specific episode. This gives
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each actor the ability to pick the level of exploration it deems necessary to achieve. Through this,
Agent57 can prioritise policies during training time to allow for more efficient use of resources. An
additional change is also made to the Q-network to increase training stability. This sees to decompose
the contributions of the intrinsic and extrinsic rewards by creating two separate neural networks such
that:

Qθ(s, a) = Qeθ(s, a) +Qiθ(s, a)

whereby Qeθ(s, a) is the extrinsic component and Qiθ(s, a) is the intrinsic component.

Agent57, the most general of Atari-playing agents, is built from years of research and incremental
improvements in the reinforcement learning field. It is the only algorithm to achieve at least human
and generally superhuman performance in all 57 Atari games and marks another milestone in
reinforcement learning produced by Deepmind.

3.5 Dota 2
From Backgammon [61] to Chess [17] to Atari [3], step-by-step complex games have been mastered.
In 2016, AlphaGo showed the world the ability for artificial intelligence methods to surpass human
intuition even in extremely complex perfect information games. In 2018, AlphaZero managed
to accomplish this in various games without needing human supervision or intuition capturing
engineering. Upon this success, it was deemed that the next major AI milestone was collaboration.
With this in mind, OpenAI decided to embark on creating a team of agents to play the highly complex
game of Dota 2.

Dota 2 is a popular online multiplayer real-time strategy video game. The game is conceptually
simple: There are two teams consisting of 5 players each. Each team attempts to destroy a specific
structure on their opponents’ territory whilst defending their own. The complexity arises through
the range of possible moves, the number of pre-game choices, the number of in-game choices and
possible strategies that are needed to secure victory. The game also does not provide players with
perfect information as the sight of enemy players is not always available. Due to this, algorithms
such as AlphaZero, which use tree search, cannot accurately predict what the game will look like
even one step ahead. Additionally, the complex rules and game logic make it challenging to develop
game models even with the use of algorithms such as MuZero [49].

OpenAI’s key solution to the additional problems presented by a domain such as Dota 2, was a
seemingly common approach in the world of artificial intelligence. The solution was simply to scale
existing reinforcement learning systems to unprecedented levels of compute, making use of thousands
of GPUs over several months. OpenAI Five [7] is the name of the Dota 2-playing agent that ultimately
went on to beat the only two-time world champions. For any Dota 2 agent to be created, the three
main problems needed to be addressed are:

1. Long Time Horizons: Dota 2 games last on average 45 minutes with a 30 frames per
second output. OpenAI Five limits its action selection to every fourth frame, which yields
approximately 20,000 steps every episode. This is a stark difference to games such as Go or
chess, which on average last 150 and 80 moves, respectively.

2. Partial observability: The only portion of the game state that is visible to a team is near
their units and buildings, and the rest of the map is hidden and unobservable. Due to this, a
crucial part of playing Dota 2 is the ability to infer situations based on incomplete visible
data.

3. High dimensionality of observation and action spaces: In Dota 2, games are played on a
large map containing ten unique characters, several buildings, infinitely spawning non-player
units and a variety of complex game features that influence the game, such as trees, wards,
etc. As a consequence of this, OpenAI Five approximately observes 16,000 values every
time step. The action space is also extremely large, where depending on the character being
played, the discretised action space is between 8000 to 80,000 actions.

These reasons make the game of Dota 2 an extremely challenging domain for humans and computers
alike.
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3.5.1 OpenAI Five
The creation of the OpenAI Five agent can be distinguished into two main stages; interaction and
optimisation.

Interaction:

Every time-step (4th frame), OpenAI Five receives an observation from the game, which has been
encoded to represent all the visible information available that a human player has access to. OpenAI
Five uses this observation to return a discrete action that encodes the desired movement, attacks, etc.
Due to the game’s complexity, OpenAI Five relies on several human crafted scripts for specific game
mechanics. This entails the order in which characters purchase items and choose abilities, the control
of the unique courier unit and the selection of which items are kept in reserve. In hindsight, OpenAI
believes that the system would be capable of higher performance without relying on these scripts, but
this was unfortunately never investigated due to the computational and financial cost of retraining.
The agents’ policy functions πθ use a parameterised recurrent neural network that receives a history
of the agents’ observations as input and outputs a probability distribution over all the possible actions.
The recurrent neural network used is a single layer 4096-unit LSTM [23] with weights θ. For each of
the five characters, separate policy functions are created that all use the same parameters θ. Since the
available information for each character is almost identical, each character receives highly similar
observations differing only in small features such as distance to the enemy. The OpenAI Five agent
does not learn directly from pixels as usual in video games. Instead, the available information is
summarised in a set of arrays. Due to this, the observations received by the agents are imperfect, with
small pieces of information that are available to humans not being encoded. This might be seen as
giving the agent an unfair disadvantage. However, the agent has access to all the given information
simultaneously at every single time step, which is not feasible for a human. For the policy function to
consider the unique differences of characters being played, the LSTM receives an extra input that
indicates which of the five heroes is being controlled (see figure 21).

Figure 21: The following is taken directly from the original paper [7]. The complex multi-array
observation space is processed into a single vector, which is then passed through a 4096-unit LSTM.
The LSTM state is projected to obtain the policy outputs (actions and value function). Each of the five
heroes on the team is controlled by a replica of this network with nearly identical inputs, each with
its own hidden state. The networks take different actions due to a part of the observation processing’s
output indicating which of the five heroes is being controlled.

Optimisation:

In order to optimise the policy function πθ, a reward function is needed. Due to the long time horizon
of a Dota 2 game, credit assignment is a significant learning challenge. To combat this, a shaped
reward function is created that does not only give rewards for winning or losing. Agents are given
rewards for a set of actions that are deemed good by human players. This reward function instils
human knowledge in the learning process, thereby giving the agents a more clear path of how to
win. The algorithm used to train agents is PPO (see section 2.3.1). Additionally, the optimisation
algorithm Generalised Advantage Estimation [51] is used to stabilise and accelerate learning. Much
like AlphaZero, the neural network used by the agent outputs both the policy function and value
function. Through self-play, experience is collected and stored in a centralised buffer similar to the
buffer used in R2D2 [34]. A pool of optimiser GPUs receive data and store it locally within their
own experience buffers. Each optimiser then samples mini-batches of experience and computes the
network gradients. These separately calculated gradients are then averaged before being applied to
the parameters. Due to this manner of calculating gradients, the effective batch size used is the batch
size of each GPU, 120 samples, with 16 time-steps, multiplied by the number of GPUs used, which
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was 1536 at the peak. Every 32 gradient steps, the new parameters are pushed to a central storage
called the controller. Each Rollout worker runs self-play games in parallel to generate experience.
An important note is that each rollout worker does not run the policy, only the game engine. The
rollout workers communicate with a separate pool of GPU machines that run forward passes of the
policy and value function network. These machines also frequently get the latest parameters from the
controller.

Figure 22: OpenAI Five System Overview

OpenAI launched the OpenAI Five Arena, in which OpenAI Five was exposed to the public for
competitive online games to see if it could be regularly abused by creative or out-of-distribution play.
OpenAI Five played 3,193 teams in 7,257 games and won 99.4% of the time. Additionally, OpenAI
Five managed to defeat the first two-time world champions. This achievement has demonstrated that
with significant compute, deep reinforcement learning can not only achieve superhuman performance
in an incredibly complicated domain but can do so in collaboration dependent domains.

3.6 StarCraft II
When it comes to video games, the Atari suite can be seen as incredibly simple. Still, artificial
intelligence methods struggled for years to achieve human or above performance in all 57 games.
Video games offer a diverse range of problems that pose no real challenge to humans yet greatly
prevent machine mastery. StarCraft, widely regarded as one of the most difficult Real-Time Strategy
(RTS) games and one of the most popular esports of all time, has emerged as a "grand challenge" for
AI research in recent years. Despite notable accomplishments in video games like Atari, Mario, and
Dota 2, AI methods have struggled to cope with the complexity of StarCraft. Handcrafting significant
aspects of the system, placing severe limits on the game rules, granting systems superhuman abilities,
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or playing on simpler maps is what has allowed prior success. Despite these modifications and
constraints, no algorithm has yet to come close to matching the ability of professional players. Al-
phaStar [67] is Deepmind’s StarCraft-playing agent that is trained using supervised and reinforcement
learning to play the entire game without any simplifying modifications.

StarCraft II pits two players against each other in a highly complex strategy game whereby each
player controls up to 200 units at a time. At the start of the game, each player selects one of three
races, Terran, Zerg, or Protoss. Each race has very distinct abilities and characteristics that define
their play style and strategy. Both players start the game with basic units that gather resources to build
structures, units and technologies. These creations allow a player to further bolster their military,
economy and territory in the hopes of developing the capabilities to defeat their opponent. High-level
play involves complex macro-management of their economy and territory and micro-management to
control their individual units’ movement and activities. This proves to be very difficult for AI systems
as long-term, and short-term goals need to be balanced along with adapting to unexpected situations.
The following are the challenges that have been deemed crucial to solve in order to create a StarCraft
agent:

1. Game Theory: StarCraft does not present a single optimal strategy. Due to this, an AI
system needs to explore and gain new strategic information continually as existing game-
theoretic solutions cannot be applied.

2. Imperfect Information: StarCraft is an imperfect information game where pivotal infor-
mation is hidden from the player. To discover this information in the game, the player needs
to move units to scout areas that are invisible.

3. Long Term Planning: StarCraft actions do not have immediate consequences, and games
can last up to one hour to finish. This means actions taken may only pay off far into the
future.

4. Real Time: StarCraft games are played in real-time without a turn-based system. This
means that players need to act within the game until it is finished continually.

5. Large Action Space: Since hundreds of units need to be controlled simultaneously, the
combinatorial space of possibilities is vast. Additionally, actions, which are hierarchical in
nature, can be augmented and modified, thereby increasing the action space further.

These challenges severely prevent the use of existing methods and pose incredible difficulty for
computer mastery.

3.6.1 Alpha Star
AlphaStar, as with most modern reinforcement learning solutions, makes use of a deep neural network
as a policy function πθ(at|st, z) that receives its input directly from the raw game interface. The game
interface essentially provides a list of units and properties that are visible to the agent. AlphaStar’s
neural network uses all previous observations st = (o1:t, a1:t) to output a sequence of instructions
that represent an action within the game. AlphaStar’s policy is also conditioned on a summarised
strategy z that is sampled from human data. The specific architecture used is relatively complicated,
using a variety of recent advances in deep learning research. The architecture consists of a transformer
[66] (for observation processing) combined with an LSTM [29] (to aid with partial observability), an
auto-regressive policy head [68] with a pointer network [69] (to manage the combinatorial action
space), and a centralised value baseline [21]. AlphaStar additionally uses a novel multi-agent learning
algorithm. Similarly to the original AlphaGo implementation, AlphaStar trains its deep neural
network on human games to predict each action at. In this training process, the policy was either
solely conditioned on st or also on z. This resulted in a diverse set of strategies similar to human
play. The use of supervised learning intended to teach AlphaStar to imitate the basics of micro and
macro-strategies. With supervised learning alone, AlphaStar managed to defeat a "gold" level player,
the 5th highest rank, around 95% of the time. Subsequently, agents were trained using a new form of
self-play and a reinforcement learning algorithm to maximise the win rate against various opponents.
The reinforcement learning algorithm is an off-policy actor-critic algorithm [20] that makes use of
experience replay, self-imitation [43] and policy distillation [44].

The discovery of novel strategies is one of the critical challenges in StarCraft. Due to the large action
space, it is improbable that naive exploration will discover long-term strategies to aid the agents’
victory. To encourage diverse and robust behaviour, as shown by human players, agents utilise human
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data. Every agent is initialised with the parameters learnt by the initial supervised learning. During the
reinforcement learning training process, each agent is either trained unconditionally or is conditioned
on z, a human strategy. Agents conditioned on z are rewarded for following the human strategy, and
non-conditioned agents are free to choose their own strategy. Human exploration ensures that various
strategies and ideas are seen and are continued to be explored during the reinforcement learning
training. The novel form of self-play used by AlphaStar is termed league training. Traditional
self-play can result in cycle-chasing, e.g. agent A defeats agent B, who defeats agent C, but agent
A loses to agent C. This results in the creation of agents who only can beat specific strategies. A
form of self-play called Fictitious self-play (FSP) [37] manages to avoid these cycles through the
computation of a best-response against a uniform mixture of all previous policies. This mixture
is seen to converge to a Nash equilibrium in two-player zero-sum games. League training extends
FSP to compute the best response from a non-uniform mixture of opponents. The league, which
emulates a tournament-like structure, includes a wide variety of agents and their policies from current
and previous iterations of training. Every iteration, agents play against opponents sampled from the
league. Agent parameters are then updated from the outcomes of the games using the reinforcement
learning algorithm. In normal self-play, each agent tries to increase its chances of winning against
its opponents; however, this is only half a solution. In reality, a player who wants to get better
at StarCraft could team up with partners to practice specific strategies. As a result, their training
partners are not playing to win against every conceivable opponent but rather to expose their friend’s
shortcomings to help them grow as a player. A primary discovery in league training is that the idea of
playing to win is not enough to create superhuman performance: we need main agents who want to
win against everyone and exploiter agents who want to assist the main agent in getting stronger by
revealing its vulnerabilities, rather than maximising their own win rate against all players. League
training takes this idea and implements it into the self-play process. The league is comprised of three
types of agents using differing opponent selection schemes:

1. Main Agents: The main agents use a prioritised FSP mechanism that adapts the mixture
probabilities proportionally to the win rate of each opponent against the agent. The reason
for this is to provide agents with an increased number of opportunities to defeat the most
problematic opponents.

2. Main Exploiter Agents: The main exploiter agents competes solely against the current
iteration of main agents. Their goal is to discover possible exploits in the main agents and
encourage them to resolve such vulnerabilities.

3. League Exploiter Agents: League exploiter agents employ a similar Prioritised FSP tech-
nique as main agents but are not targeted by main exploiter agents. Their mission is to
identify the entire league’s systemic flaws.

Both main exploiters and league exploiters are re-initialised regularly to promote greater variety, and
they may quickly find specialised techniques that are not always resistant to exploitation. League
training takes population-based and multi-agent reinforcement learning further by creating a process
that consistently explores the large strategic space of StarCraft. This process ensures all the agents
know how to perform against the strongest strategies whilst not forgetting the earlier ones experienced.

Figure 23: League Training Overview
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The league was trained using a single main agent and main exploiter agent for each StarCraft race
and six league exploiter agents. Each agent was trained using 32 TPUs over 44 days. During league
training, almost 900 distinct players were created. The final AlphaStar agent achieved a Grandmaster
ranking, the highest rank, in StarCraft II competitive play, placing it above 99.8% of ranked human
players. This is the first computer program ever to reach this level of play.
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4 Implementations
The following sections show the results of DQN, DDQN and Dueling Networks when applied
to learn how to play the Atari game of Pong. All models are trained from pixel observa-
tions. In the game of Pong, the total score represents the difference between points scored by
the agent and opponent with a max score of 21. All the code to my implementations can be
found here: https://github.com/EdanToledo/RL-Algorithms and https://github.com/
EdanToledo/DuelingDDQN-and-AlphaZero. Additionally, a minimal version of AlphaZero was
implemented to learn the game of Connect Four.

4.1 DQN
Figure 24 shows the results of the DQN agent. This can be seen as a baseline to compare the
improvements of algorithms such as Double DQN and Dueling Networks.

Figure 24: Running average of total scores achieved by the DQN

4.2 DDQN
Figure 25 shows the results of the DDQN agent. We can see that the DDQN agent has increased
performance and requires less data to perform as well.

Figure 25: Running average of total scores achieved by the DDQN
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4.3 Dueling DQN
Figure 26 shows the results of the Dueling DQN agent. We can see that the Dueling DQN agent
has the highest performance thus far with the lowest requirement of data but experienced unstable
training with high variation in performance as training progressed.

Figure 26: Running average of total scores achieved by the Dueling DQN

4.4 Dueling DDQN
Figure 27 shows the results of the Dueling DDQN agent. We can see that the Dueling DDQN agent
performed slightly worse than the Dueling DQN agent (approximately the same as the DDQN agent)
but had the most stable learning process out of all the agents.

Figure 27: Running average of total scores achieved by the Dueling DDQN

Figure 28 shows the results of all the agents on a single plot. From this we can easily see that Dueling
DDQN is the best performer as learning was stable and high performing.

4.5 AlphaZero
AlphaZero, after several hours of training, managed to capture key strategies in the game of Connect
Four. Using a standard convolutional neural network architecture, the AlphaZero algorithm achieved
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Figure 28: Comparison of all agents

strong human performance. This AlphaZero model has been made available to play against at
https://connect-four-vs-alpha-zero.vercel.app/.

Figure 29: AlphaZero match ending in draw
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