Learning to Coordinate Efficiently
through Multiagent Soft Q-Learning
in the presence of Game-Theoretic

Pathologies

Siphelele Danisa

Supervisor: Associate Prof. Jonathan Shock
Dr Arnu Pretorius

Department of Pure and Applied Mathematics

University of Cape Town

This dissertation is submitted for the degree of
Master of Science in Applied Mathematics

September 2022






Declaration

Plagiarism Declaration:
1. Iknow that plagiarism is a serious form of academic dishonesty.

2. Thave read the UCT document Avoiding Plagiarism: A guide for students, am
familiar with its contents and have avoided all forms of plagiarism mentioned
there.

3. Where I have used the words of others, I have indicated this by the use of
quotation marks.

4. Thave referenced all quotations and properly acknowledged other ideas bor-
rowed from others.

5. Thave not and shall not allow others to plagiarise my work.
6. Ideclare that this is my own work.

Signature:

. Danica

Siphelele Danisa
September 2022






I would like to dedicate this thesis to my family and friends. I would like to also
mention specifically my late grandmother and my late sister who passed on having
had a tremendous positive impact and influence in my life. I know that they would

be very proud of me, and I believe that they are.






Acknowledgements

To start with, I would like to thank my family for being ever patient with me and
supportive of my decisions along this journey. Their love and warmth, which I
believe has always created a very conducive space for my development, continues
to motivate me to do my best. This is something that, I think, is fundamentally the
birth place of all the other attributes that have made this work possible.

I would also like to thank my supervisor Associate Professor Jonathan Shock who
has been the best supervisor I could ever ask for since 2018. I cannot fully thank
him for being so generous with his time and wisdom, and also for believing in me
without wavering. I have really learnt so much by working with him, and I am
always inspired by the work that he does as well as his work ethic and approach
to life. Truly, truly exceptional supervision and mentorship and I am very, very
fortunate !

My friends have also made this work possible by keeping my head above the water
throughout this journey. I am exceedingly grateful for all the support that they
continue to extend to me, and I am lucky to have such an amazing social circle—
full of people that I love, and whom I find beyond inspiring. I want to give great
thanks to Joshua Hayes, Thato Mgoboli, Sinelethu Hashibi, Aslesha Pokhrel, Manasi
Mohan and Gareth McCullagh for their support and assistance with putting the final
document together.

I would also like to thank the Mathematics Department for being so supportive to
me during my time as a student in the department. I am very grateful to Associate
Professor David Erwin for being so generous with his time and for helping me
discover myself in Mathematics. Our constant meetings to discuss fundamental
corners of Mathematics and the stories he would tell really, really inspired me and
made me a better Mathematician in many ways. I am also very grateful to Associate
Professor Jeff Murugan for all of his support, also starting at the very beginning of



viii Acknowledgements

my undergraduate degree. Another person who really believed in me, and from
whom I learnt a great deal.

Last but not least, I am grateful to have received the Shuttleworth scholarship which
supported my studies during this degree (to Professor Peter Dunsby for all his work
towards developing this scholarship, and to the committee for all their work). I
would also like to thank InstaDeep Ltd for the internship opportunity (with the Cape
Town office) which piqued my interest into multiagent reinforcement learning and,
hence, inspired this journey, and Dr Arnu Pretorius for being an amazing mentor
and role model during the internship.

They say it takes a community to raise a child, and I see that being something that is
applicable to my journey. There are so many inspirational people I've met along the
way whose names I have not mentioned, but that does not mean I have forgotten.
These are also people from whom I have learnt a lot, people who strongly believe
in me and who have shown me immense support. None of this would have been
possible without all the big and small efforts carving my trajectory very uniquely. I
remain thankful to all of them.



Research Abstract

In this work we investigate the convergence of multiagent soft Q-learning in continu-
ous games where learning is most likely to be affected by relative overgeneralisation.
While this will occur more often in multiagent independent learner problems, it
is present in joint-learner problems when information is not used efficiently in the
learning process. We first investigate the effect of different samplers and modern
strategies of training and evaluating energy-based models on learning to get a sense
of whether the pitfall is due to sampling inefficiencies or underlying assumptions of
the multiagent soft Q-learning extension (MASQL). We use the word sampler to refer
to mechanisms that allow one to get samples from a given (target) distribution. After
having understood this pitfall better, we develop opponent modelling approaches
with mutual information regularisation. We find that while the former (the use of ef-
ficient samplers) is not as helpful as one would wish, the latter (opponent modelling
with mutual information regularisation) offers new insights into the required mech-
anism to solve our problem. The domain in which we work is called the Max of Two
Quadratics differential game where two agents need to coordinate in a non-convex
landscape, and where learning is impacted by the mentioned pathology, relative
overgeneralisation. We close this research investigation by offering a principled
prescription on how to best extend single-agent energy-based approaches to multiple
agents, which is a novel direction. The code for this thesis can be found at :
https://github.com/sipheleledanisa/thesis—investigations.
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Chapter 1
Introduction

Artificial intelligence may be defined as the theory and development of systems
that are able to perform tasks that normally require human intelligence [8]. It is
hard to pin point the origins of artificial intelligence but it has certainly been around
for well over 70 years [9]. The ideas of artificial intelligence, coupled with our
understanding of the brain, gave rise to artificial neural networks as we know them
today [10]. Neural networks are trained to perform various tasks using algorithms
within the broad field known as machine learning. Machine learning itself can be
defined as the use and development of systems that are able to learn and adapt
through the use of algorithms and statistical models to analyse and draw inferences
from patterns in the data [8]. This field is often viewed as being made up of three
main streams—supervised learning, unsupervised learning as well as reinforcement
learning [11][12]. Supervised learning involves the mechanisms wherein learning
is done on data that has labels (for example, classification), while unsupervised
learning is about detecting patterns and abstracting important features from data
(for example, clustering). Of interest to us is the third stream, reinforcement learning.
Reinforcement learning offers a decision making framework wherein an agent learns
by interacting with its environment. The agent takes actions, which are followed
by state transitions and receipt of reward signals, and, through this interaction, it is
able to learn to perform a wide variety of tasks from household robotics to adaptive
controllers in petroleum refineries [12].

The single-agent reinforcement learning framework which allows a single agent
to learn can also be extended to multiple agents (to what is known as multiagent
reinforcement learning), which is the direction of study that is of interest to us within
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this thesis. Multiagent reinforcement learning is a rich field wherein behaviours that
cannot be imagined in single agents can be exhibited. This is due to the fact that there
are multiple agents, in the environment, which can interact with each other in non-
trivial ways. For example, Tan [13] investigated aspects of these complex behaviours
by studying competitive and cooperative agents in a game of predator-and-prey, and
Harries et al.[14] explore the use of reinforcement learning for functional software
testing. The formerly mentioned game has agents of two types—predator/hunter and
preys— that roam around a grid. The predators/hunters are tasked with capturing
the preys. This mentioned work was published in the 1993, and at this time the
field didn’t have a solid theoretical grounding. The mathematical connection to
Markov games (to be defined later) was later established by Littman [15] in 1994.
Since then, many advancements have been made in the field. For example, Millidge
et al. [16] tell us that we can view reinforcement learning as iterative inference
(methods here directly optimise the parameters of the approximate posterior), or
amortised inference (where learning is done through a parameterised function
which maps states to the parameters of the approximate posterior). We see from this
work that both approaches are well established. To get a sense of how far the field
has advanced since early 2000s, one may look into Shoham et al. [17] (written in
2003) who offer the perspective that at the time things were very underdeveloped
by looking at prominent papers, critiquing them and, at the same time, devising
fundamental questions surrounding algorithms” design and perspective that they
urged researchers to consider. Examples of surveys that do an amazing job to
showcase the developments to date in, respectively, the general field (from training
schemes to emergent behaviours) and the vast literature concerned with cooperative
games (training schemes and algorithms for the cooperative settings, which are of
primary interest to us) include Gronauer et al. [18] and Oroojlooy et al. [19].

The research undertaken in this thesis was inspired by Wen et al. [5] who attempted
to extend a reinforcement learning method called soft Q-learning (to be defined
formally later) that was introduced by Haarnoja et al. [20] to (cooperative) contexts
with multiple agents. In doing this, the authors looked into a reasonably simple
continuous game (called the differential game/max of two quadratics) where agents
usually struggle to succeed due to game-theoretic technicalities that lead to poor
gradient computation. In this game there are two agents whose task is to find a
pair of numbers (a,b) that correspond to the global maximum on a given surface.
Each agent controls one component on this tuple, and they have to jointly find the
optimality. The agents in experiments were shown to achieve reasonable success



in this task, but they were only successful 72% of the time. This didn’t seem to be
consistent with our understanding of what soft Q-learning does, however. Single-
agent soft Q-learning learns general and robust policies, which is proven in Fischer
etal. [21] and Eysenbach et al. [3], and this breakdown in the extension to multiagent
settings seemed surprising. The questions we had to ask ourselves therefore were as
follows : Assuming that the policies we are learning are robust, then what causes
this inconsistency in performance? Why are we only getting convergence 72% of
the time? If we are not learning general policies, then where are we making the
simplifying step that causes the breakdown, and can we do better (even at the
expense of more stringent requirements)? Our goal was to understand the literature
surrounding this problem, the nature of the pathology leading to this breakdown,
and to extend the ideas in this space.

In what follows, we considered two lines of investigation in this study. The first was
concerned with the way we learn the general policies. In the learning process for
reinforcement learning, agents must take actions, and these actions are followed by
receiving reward signals and state transitions. As mentioned previously, the policies
that are learnt with the soft Q-learning machinery are general (in the sense that they
are universal approximators of distributions), and this makes them hard to sample
from. The initial thought therefore was that we could be sampling inefficiently
from these policies when we want to evaluate the actions for the individual agents.
We assumed that the policies we were learning were general, and so looking into
this direction made sense, since this was the only (loosely speaking) non-routine
step as far as the literature is concerned. Our first sub-question was as follows :
Assuming that the policies learnt by the agents are general, is the way we sample
from these general policies the cause of the problem (inconsistent convergence)?
The corresponding hypothesis was that under the stated assumption, improving the
sampling should solve the problem and provide better results. We then considered
different samplers that we found relevant for our study. We evaluated these as is
needed for our case, and compared the results. The results told us that this was not
the main problem, so we proceeded to the next investigation.

The second aspect that we investigated, seeing that the above was not effective, was
the underlying assumptions of these models. The first step was observing that the
assumption previously made about the generality of the policies that are learned
was not, in fact, true. This was also confirmed by recovering implicit assumptions on
the derivation of gradients, in the original source, which are certainly not compatible
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with cooperative games. What these assumptions translate to is an update rule that
does not scale the gradients in the correct magnitude and direction. There is work
that attempts to remedy this approach by doing some form of opponent modelling
[6]. This approach leads to an objective that maximises the reward as well as the
entropy of the joint policy, which we find to be inefficient. Inspired by this, we took
a slightly different direction with our investigation. The key argument we make,
for our approach, is that the perspective to maximise entropy doesn’t really sit well
with multiple agents since the environment is not stationary from the scope of each
agent. This is because the joint policy is dependent on the joint action instead of
individual actions, and this influences the state transitions of the game. It is thus
hard for each agent to conclude anything about the optimality of its own actions
as far as the global reward is concerned. In the context of this non-stationarity
problem, it is hard to see how exactly maximising the entropy aids learning. We
therefore asked ourselves if the relevant quantity is actually mutual information.
Mutual information, instead of focusing on the entropy of one random variable,
focuses on how informative a random variable is with respect to another. The main
motivation for this is that in any case where two entities are interacting, in reality,
coordination comes naturally and more easily if both entities can share information
efficiently, which is (intuitively) what mutual information regularisation gives us.
Here we hypothesised that including a mutual information term as a regulariser
would improve performance, which was confirmed by the experiments.

We expected our method to do reasonably well because we know that regularisation
can be used to establish coordination [22]. The cited work argues that instead of
learning more than what is required (for example, extra networks that are not needed
when the agent is evaluated), we should make use of experiences to regularise the
individual policies, which in turn leads to better exploration. This is confirmed by
methods that we will see in our study.

We hereby summarise the research questions and hypotheses which drove the work
within this thesis.

Research Question : If we know that the policies we learn should be general enough
to model arbitrary distributions, then what is the cause of inconsistent convergence
in multiagent soft Q-learning?

Sub-research Question 1 : Assuming that the policies learnt by the agents are general,
is the way we sample from these general policies the cause of the problem?



(Corresponding) hypothesis 1 : Assuming that the policies learnt by the agents are
general, it must be the case that the way in which we sample from them is inefficient
and can be improved by better sampling strategies.

Sub-research Question 2 : If the sampling strategies do not improve convergence,
then are we simply not learning the policies well (i.e are we not doing the correct
optimisation)?

(Corresponding) Hypothesis 2 : If the sampling strategies do not improve conver-
gence, then we not doing the correct optimisation for the learning of policies.

In what follows, we start with a literature review which covers reinforcement learn-
ing, regularisation in reinforcement learning, and which then extends the concepts
covered to multiple agents in cooperative environments. Following this, we in-
troduce relative overgeneralisation as a concept and show how it manifests in an
example of interest called the Max of Two Quadratics. Furthermore, we discuss
tailure to learn focusing more on the sampling process. Herein we introduce mech-
anisms that are used for efficient sampling. Lastly, we introduce extensions of
multiagent soft Q-learning whose designs are in line with our hypotheses and their
respective experimental investigations. This chapter is then followed by the method-
ology, which contains details about our experiments and contributions, and acts as a
doorway to the results and discussion sections. Lastly, we sum everything up.



Chapter 2
Literature Review

In this chapter, we will follow the development of the literature that is required
to design the methodology, understand the results, and analyse their significance,
as well as place the present work in the context of the field at large. The problem
that we are trying to solve (which we discuss in depth in section 2.6 on relative
overgeneralisation in team games) involves two agents whose task is to find the
point of highest reward on a reward surface with two quadratic peaks at different
parts along the surface of the action space. This makes the surface non-convex. The
agents struggle to find this because learning algorithms usually compute parameter
updates with gradients that are based on averages, which turns out to be insufficient
[23]. Since this is a continuous space environment it is not easy to avoid this pitfall,
and very well constructed algorithms are needed to solve the problem better. The
algorithms that should perform better are those that can enforce a level of coordina-
tion between the agents, which gives them a better chance of finding the optimal
solution than otherwise. Methods that have become popular for continuous games
in reinforcement learning involve energy-based models, for example the so-called
soft Q-learning and soft Actor-Critic. The former has been applied to this problem,
and variants of it have been established towards improving the performance. It is
thus our main focus for this work.

This chapter will take the following structure for the sections :
* An overview of single-agent reinforcement learning.

* Extending ideas from this setting to multiple agents, thereby introducing
multiagent reinforcement learning.
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A discussion on information theoretic mutual information and entropy.

A discussion on communication and coordination.

Reintroducing reinforcement learning as inference on a graphical model.

Introducing our environment of interest and relative overgeneralisation.

* An overview of samplers for probability density estimation.

Introducing regularisation methods in multiagent algorithms for solving our
problem of interest.

2.1 Single-Agent Reinforcement Learning

Reinforcement learning agents learn to perform tasks by interacting with the envi-
ronment which provides feedback about how well the task is being performed. This
interaction is usually modelled as a Markov decision process (MDP).

Definition 1 (Markov Decision Process). A Markov decision process is a tuple (S, A, P, R, )
where S is a set of states, A is a set of actions, P : S x A — A(S) denotes the probability
transition function from a states € Stos' € S given an actiona € A, R: S x Ax S -+ R

is the reward function that determines the immediate reward for the agent given a state
transition, and vy is a discount factor that weighs the value of instantaneous rewards to
future rewards. Notice that we use R to denote the function itself, and r to denote the values
that the function takes in what follows.

The interplay between the agent and the environment in light of the above definition
is captured on Fig. 2.1. Here, the agent starts at a time, ¢, in a state s; € S, and takes
an action a; € A which is then followed by a transition to state sy 1 ~ P(-|st, a¢).
Furthermore, the agent obtains a reward r; = R(s¢,a;,5;.+1) associated with the tran-
sition. The goal is to the find a policy 71 : S — A(A) such that a; ~ 77(-|s;) and the
discounted accumulated reward is maximised. In maximising the reward, we look
at value functions that we define as follows.

Definition 2 (Value Functions). We define state value functions and state-action value
functions under a policy 7 as, respectively,

Va(s) = ]E( Y ¥ R(st,ar,5141)|ar ~ 7(-|st),50 = S>,
0
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— (D —

a (s,r)
DL

Fig. 2.1 An MDP illustration [1]. The figure depicts an agent interacting with the
environment (/system). The agent takes actions, a, to which the system responds
with a state transition to state s, and a reward r corresponding to the value attained
by the reward function, R, given the tuple (s,a).

and

Qn(s,a) = 1E< Y Y'R(st,at,5141)|ar ~ 7(:|sy), a0 = a,50 = S>-
t>0

The former defines the expected future returns given a starting state, while the latter
gives us the expected returns given a starting state and a particular action as the
agent navigates through the MDP.

One of the key algorithms in classical reinforcement learning is Q-learning intro-
duced by Watkins et al. [24]. Q-learning is an off-policy algorithm, in the sense that
it learns the policy that approximates optimal value functions while following an
independent policy called the behaviour policy. This is in contrast to following the
policy it is learning (on-policy learning), as seen in SARSA by Rummery et al. [25].
Beyond the idea that this method is off-policy, the update rule which characterises it
is given by

Qst,ar) = Q(st,a¢) + | 1141 + ymax Q(se41,a) — Qlst,ar)| -
The algorithm is given by Algorithm 1, and it is worth noting that this method has

been very successfully extended to the case of function approximation (as is often
necessitated when there is a large number of states) leading to the so-called Deep
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Q-Learning [26]. This work truly set the stage for Q-learning in the context of deep
learning (i.e., learning with deep neural networks).

Algorithm 1: Q-Learning

The first step is to initialise the rate « € (0,1] for updates, and an € > 0 for
epsilon-greedy exploration;

Next, initialise the Q function with the value of terminal states being set to 0;

for each episode do

Start with an initialisation of the state, S;

for each step of episode do
Sample action A given the state using a policy derivated from the Q

function (this can be e-greedy);

Step into the environment using the action and observe the reward r, as
well as the next state S’;

Do the Q-learning update :
Q(S,A) + Q(S,A) + afr + ymax, Q(S',a) — Q(S, A)];

Update the state variable;

end

end

Let’s discuss a special case of this setting where the state information is not too
important, but where we don’t exactly have a trivial situation. We will approach this
from the angle of the so-called k-armed bandit problem.

2.1.1 The k-armed Bandit Problem

Suppose that an agent is faced with the task of repeatedly choosing k different
options/actions. After each selection, suppose that we give the agent a reward
chosen from a stationary distribution, which depends only on the actions. Let’s
assume that we want the agent to learn to maximise the expected total reward over
some period of time. This situation defines the so-called k-armed bandit problem.
This is similar to a person playing a game on a slot machine with k-levers—-to further
concretise this notion, a slot machine with only one lever defines a 1-armed bandit
problem. Sutton et al. [12] proceed to lay down the mathematical framework in
Chapter 2 of the text.

The important aspect (in the sense of being of relevance of us) of these problems is
that they are independent of states. This is to say that the process that gives the agent
rewards only depends on the actions, instead of states. Hence, the value functions
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are also independent of state. A policy in this instance is a rule that assigns arbitrary
state variables to the optimal configuration values (values of the levers that achieve
maximum reward). We will see that our problem of interest generalises this setting,
in the sense that the reward function is solely dependent on the actions yet it remains
non-trivial as will be discussed in Section 2.6. In particular, we will observe that
while the state variable is irrelevant (by definition of the reward) we can reformulate
our context in a way that allows us to talk about actions, states and the values of

actions on states or values of states, as we do in classical reinforcement learning.

The single-agent regime has been studied extensively [12]. Below we give brief
summaries of the extensions of the above content to the case of multiple agents.
We will see that this is quite similar to the single-agent reinforcement learning

formulation up to some technicalities. This exposition is given following Zhang et
al. [1].

2.2 The Single-Agent Reinforcement Learning Exten-

sions

The first way to extend single-agent reinforcement learning is rather intuitive. In
this case, the multiagent system is modelled as what is known as a Markov game.
We start our discussion with this formulation.

Markov Games

Definition 3 (Markov Game). A Markov game is defined as a tuple (N, S, { A'}ien, P, {R }ien, 7).
In this context N' = {1,---, N} is the set of agent labels, S is the state space, and A is the

action space for agent i € N'. Letting A = [TA (the direct product of action spaces), then

P:S x A— A(S) as before and similarly R : S x A x S — R is a reward function for

agent 1.

Remark : Notice that the transitions are determined by the collection of actions that
the agents take, and the reward similarly. Thus, for the action space, we have a
tuple of length greater than one that plays a role in determining these quantities.
This clearly extends the single-agent case where we only needed to look at actions
corresponding to the choices available to a single agent. The pioneering work for
this approach, to the best of our knowledge, is by Littman, M. [15].
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Fig. 2.2 A Markov game illustration [1]. The figure depicts N agents interacting
with the environment (/system). Each agent takes an action, 4, and (based on the
received N-tuple) the system responds with a state transition to state s, and a reward
r' corresponding to the value attained by the reward function, R/, given the tuple
(s,a). Notice that the state transition is the same for all agents, but the reward values
received need not be the same.

The working principle here is that at time, ¢, each agent i takes an action a: with the
system state at s;. The system then transitions to a state sy, 1 and each agent gets a
corresponding reward r} = Ri(sy,a,5¢,1). This is illustrated by Figure 2.2.

The objective, for each agent, is to find a policy 7' : S — A(A’) such that ai ~ 7t'(-|s;)
and that this optimises the long-term reward for that agent. We analogously define
the value functions.

Definition 4 (Multiagent Value Functions). The corresponding value function for each
agent, i, becomes a function of the joint policy defined as rt(als) := [1{7' }icnr(a'|s) such
that, if —i represents the indices of all agents except agent i, then

7rZ T 1(5) - ( Z(YtRi(St/af/Serl) a 7Ti('|sf)150 - S>'

t>0

Moreover,

ay ~ 70'(-|s¢), a5 = a,50 = s).

5, =B o Rissa1,500)

t>0
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Unlike the MDP setting, here the optimal solution does not depend on a single
agent. A commonly accepted solution to this kind of game is the so-called Nash
equilibrium (NE) which is a strategy in which no agent has incentive to deviate from
their policy. Formally, we have the following definition.

Definition 5 (Nash Equilibrium). Given a Markov game (N, S, {A}icn, P, {R }ien, 7).
a Nash equilibrium is a joint policy 7t* = (7t'/*,- -+, TN"*) such that for any s € Sand i € N
we have that V!, (s)> VI, (s, for any 7',

—i,%

What we have seen in this section is that Markov games extend single-agent reinforce-
ment learning in a very intuitive and straightforward sense. The major drawback
is that they do not clearly model reality as one would expect. For instance, in the
real world, for any two interacting entities there is often uncertainty associated with
making decisions due to partial observability, or similar circumstances. The structure
needed for this is not present in the formulation we have explored, and more work
is needed to establish this. It is thus difficult to do work on contexts with uncertainty
with Markov games [27] [28]. There is a much more general formulation that extends
Markov games, which is also well-studied. This is the context of Extensive-form
games [29] [30]. We give a brief discussion of this formulation in what follows. For
the purposes of our work, the distinction between these extensions is not crucial,
however this exposition is necessary to understand the broad applicability of the
work that we are doing, and therefore the implications of it.

Extensive-form Games

The context of extensive-form games is one that is more general compared to what
we have seen so far, as mentioned above, and it is of interest because it enables the
handling of imperfect information in multiagent decision making. Formally, it is
defined as follows [1].

Definition 6. An extensive-form game is defined by (N U {c},H, Z, A, {R}icn, T, 715, S)
where

o N is the number of agents.

» The variable c denotes a special agent called chance or nature, which has a fixed
stochastic policy that specifies the randomness of the environment.

o Again, A is the set of all possible actions that agents can take.
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* In addition to this, however, H is the set of all possible histories, where each history is
a sequence of actions taken from the beginning of the game. Let A(h) = {a|ha € H}
denote the set of actions available after a non-terminal history h, where ha is a sequence
h followed by action a. Suppose that an agent takes a € A(h) given history h € H,
this then leads to a new history ha € ‘H.

» Amongst all histories Z C H is a subset of terminal histories that represents the
completion of the game.

e A utility is assigned to each agent i € N at a terminal history, dictated by the function
R':Z - R

e Moreover, T : H — N U {c} is the identification function that specifies which agent
takes the action at each history. If T(h) = c, the chance agent takes an action a
according to its policy 7t°, i.e., a ~ 71°(-|h).

e Furthermore, S is the partition of H such that for any s € S and any h,h' € s, we
have t(h) = t(h') and A(h) = A(h'). We call the elements s € S information sets.
In other words, histories h and I’ in the same partition are indistinguishable to the
agent that is about to take action, namely t(h). The elements in S are referred to as
information states.

Remark : Information sets are defined as those histories that are impossible to dis-
tinguish at a given state. This, in addition to the chance agent, is what makes this
framework much more resemblent of the uncertainty that exists in the real work. We
say that a game has imperfect information whenever there is an information set of
length cardinality greater than 1.

An illustration of this, similar to the ones we have seen above, can be seen on Figure
2.3.

In this case, we can discuss the same notions of equilibrium using the so-called
e-Nash equilibrium, defined as follows.

Definition 7 (€ - Nash Equilibrium). An e-Nash equilibrium of an extensive-form game
represented by (N'U {c},H, Z, A, {R}icn, T, ¢, S) is a joint policy 7" = (7tV*,- -+, 7tN*)
such that for any i € N, R (7%, r=*) > Ri(7t!, w=*) — € for any policy 7t of agent i. In
this context, 71" denotes the joint policy of agents in N'\{i} where agent j adopts policy 7t/
forall j € N\{i}. If e =0, then 7t* constitutes a Nash equilibrium.
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Fig. 2.3 An Extensive-form game illustration [1]. The players take actions a' alter-
nately and receive rewards values r(z;) at the end of the game, where z; denotes a
terminal history. With imperfect information, player 2 is unsure about where she is
in the game. This means that there are multiple trajectories that could have led to
where she is, and there is no way of telling between them (in order to make a good
decision about pay-offs).

Having established this framework, it can be shown that Markov games are a re-
stricted case of extensive-form games. We shall not go into this, however. It is readily
apparent from the ideas regarding the chance agent as well as the information states
that this setting can accommodate randomness as well as uncertainty /imperfect
information.

We would now like to remark that there have been attempts to extend Q-learning
to multiple agents. In fact, this work was done very closely to the development of
reinforcement by Littman [15] (in 1994). Littman’s work focused on two competitive
agents, which means that the author did not have to deal with the challenges that
we are exploring here. Moreover, the extension was straightforward in that the state
value function was defined through mini-max arguments, the Q-function defined
using this state value function, and the update equation for the Q-function as written
above except for the part where we have two actions-instead of one. An important
aspect of this work is that the agents were trained separately, and they were merely
evaluated against each other. The training for each agent was a process of learning
defense against worst-case scenarios, hence the mini-max nature of the state value
function. This is in contrast to modern approaches where the agents are usually
trained simultaneously. To make this more precise, this work assumes that there
are two agents with corresponding actions and action spaces a € A and 0 € O. They
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then define

V(s) = maxmin S,a,0)7T,
() = maxmin ., Q(,0)m,

which is the value of the state s, and from this define

Q(s,a,0) = R(s,a,0) + 7Y _T(s,a,0,s")V(s").

The key update on the algorithm is given by

Q(s,a,0) < (1 — 0)Q(s,a,0) + a(r + YV (")),

and the algorithm itself follows the steps of algorithm 1. We give this explicitly in
Algorithm 2.

Algorithm 2: 2 agent Q-Learning

First initialise the step size a € (0,1] for updates, and then choose some € > 0 for
exploration-exploitation;

Initialise the joint Q function arbitrarily, except for terminal states, which get
value 0;

foreach episode do

Proceed by first initialising the state, S;

foreach step of episode do
Choose actions for the agent (A) and its opponent (O) given the state

using a policy based on the value function (this can be e-greedy);
Step in the environment using the joint action and then observe the
reward r, as well as the state change s’
Do the Q-learning update for this setting
Q(S,A,0) <+ (1 —a)Q(S,A,0) + afr + yV(s');
Update the state variable;
end
end

Example Applications

The motivation for studying multiagent reinforcement learning is that these methods
can be applied within a surprisingly wide variety of contexts. For instance, Liu
et al. [31] propose the use of reinforcement learning as a tool to automate feature
selection. To give context, feature selection is a pre-processing step for machine
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learning methods wherein the goal is to determine the features that will be most
useful for a downstream task—for example prediction. Done well, the benefits of this
procedure include dimensional reduction for the problem, better results and more
explainable models. The problem is highly non-trivial, however. Similarly, Kim et al.
[32] present a procedure for exploration, for the broader machine learning context.
This method focuses on building embedding representations of states and actions,
which can then be used to guide exploration. This is done via a mutual information
(to be defined in detail in section 2.3) theoretic lower bound optimisation.

While the examples above seem abstract (in that they are not ordinary everyday
applications), there are many concrete examples for the usage of multiagent rein-
forcement learning. For example Hsu et al. [33] uses the idea of mutual information
in a seemingly competitive setting of "target tracking’. While the modelling here is
similar to what we are pursuing, it differs since the approach demonstrated adds
more complexity to the policies and value functions than is desirable for our goal
of truly understanding the mechanism that develops coordination in our context.
Further applications include Shamsoshoara et al. [34] who develop a distributed
structural procedure for spectrum sharing in the context of drone technology; and
Yao et al. [35] who considered, in the same spirit, a collaborative multiagent rein-
forcement learning anti-jamming method for wireless networks—a single-agent case
is given in Elleuch et al. [36] for comparison. Even more concrete applications in-
clude work done towards traffic control [37], drug target prediction [38], liquidation
strategy analysis [39], and logistic networks [40], to name but a few.

Interestingly, there is a body of work that seeks to relate the way in which we view
multiagent settings with society. This can be observed from these works by the usage
of language, as well as the motivation for the methods. For example He et al. [41]
present an approach which look into the discovery of skills in multiagent systems
with cooperative agenda. Their optimisation encodes skills as latent variables and
maximises the mutual information between these variables as well as the combined
states of all agents. By so doing, the authors provide insights into how coordination
comes about in the context of multiagent particle environments—where particle
agents can move in various ways, communicate where needed, as well as interact
with each other or landmarks in the environment. Lazaridou et al. [42] argue that
the ability to cooperate through language is a defining feature of humans. This
work then makes a case for the importance of understanding how language comes
about (in the sense of the conditions that enable this) as well as how it evolves. The
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benefits of this are presented as two-fold : 1. This could give us insights into human
evolution. 2. This would allow us to create more flexible networks for solving
problems in the Al space.

Coordination, mentioned above, is of immense interest to us. Coordination is related
to communication, but they are not the same thing. After the following section,
we explore this relationship from the lens of existing literature. The following
section introduces entropy and mutual information, as well as ideas of regularisation
using these quantities. We will see that these are useful for this discussion about
communication and coordination.

2.3 Entropy and Mutual Information

We would like to lay down some information theoretic foundations for upcoming
discussions here. We have briefly introduced the context of reinforcement learning,
and in what follows we introduce the ideas of entropy and mutual information,
which we will see come up when we discuss entropy regularised objectives as well
as coordination through regularisation. We follow the discussion in [43].

First we recall that given a probability space, a random variable is a map that takes
elements on the sample space to the finite real numbers, IR, with probability one.
Learned-Miller described the entropy of a random variable loosely as a quantity
that characterises the unpredictability of the random variable. This is the same
intuition that one gets from statistical mechanics [44] wherein given the microstates
of a system (), the entropy is defined as the quantity

S =log Q.

The intuition here is that a larger system with more microstates that are equally
likely will have a higher entropy, which means that the more microstates there are,
the harder it becomes to predict the true state of the system, and vice versa.

We would like to define information theoretic entropy more formally (in a mathe-
matical sense) using probability theory. We shall focus on discrete variables here,
but the theory is extensible to continuous variables. We let X be a random variable
that takes values in some set (). Then the entropy of X is defined as

H(X)=— Z P(x)log P(x),

xeQ)
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where P is the probability measure. The continuous analogue of this is known as
differential entropy and, for a probability density f(x) with support X on the real
line, it looks like

hf1= Ex(—log(f(x)))-
An example here is a fair coin toss in which case

1 1 1 1

since Q) = {T,H} (T for tails, and H for Heads), and given that in a fair coin toss
P(X=T)=1/2=P(X = H).

Another quantity of interest is mutual information, which we shall see much later in
a practical setting. Learned-Miller defines this quantity as that which measures the
relationship between two simultaneously sampled random variables. It measures
the expected amount of information communicated across the variables. He phrases
this intuition in the form of a question, and says one might ask : "How much does
one random variable tell me about the other?"

Formally, we let X and Y be two random variables whose joint distribution is P(X, Y).
We define the mutual information of X and Y by

P(x,y)
1360 erxyerP(le) %8 Px)P(y)’

where X takes values in (), and Y similarly in ().

The analogue for continuous variables can be written as

Px vy (x,y) )

I(X;Y) =Ex,y) <1°g Px(x)Py(y)

Figure 2.4 showcases the relationship between entropy and mutual information
visually.

One should note that mutual information is a positive quantity. Furthermore, that

I(X;Y) = H(X) — HX|Y) = H(Y) — H(Y|X).
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H(X H(Y)

Fig. 2.4 Entropy and Mutual Information [2]. This figure depicts the relationship be-
tween entropy, conditional entropy and mutual information given any two random
variables X and Y. The mutual information is at the intersection of the individual
entropies, and union of the entropies is referred to as the joint-entropy of the random
variables. We also observe conditional entropies.

In reinforcement learning, agents are incentivised with rewards to learn, as we saw
previously. This is what is often referred to as classical reinforcement learning. The
ideas we have discussed here are seen in reinforcement learning via regularisation,
which we discuss briefly below. Regularisation is the addition of an extra term in an
optimisation process which injects preferences into the model. For example, given
an arbitrary objective function L, a neural network/model with weights w, and
a € [0,1] we can define a modified loss function

Ly =L + al|w]|.

Here we are still optimising the original loss function, however this regularisation
forces the model to consider small weights. The degree of this preference is controlled
using a. In the case of entropy or mutual information, we define the modified
objectives as

Ly =L+ aH(),

and
Ly =L+ual(;),

respectively. Speaking more concretely, classical reinforcement learning seeks to find

" = argmax_ ZIE(st,at)an(V(St/at))-
t
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However, we can modify this to become
TC* = argmaxn ZIE(St,th)an(r(stiaf)) + “H(T(( |Si’))/
t

which is the so-called maximum entropy reinforcement learning objective [20], and
we will see precisely how this comes about in Section 2.5. Mutual information
based regularisation follows in the same fashion with the difference being that the
regularising term is related to mutual information. It is also worth mentioning that,
in what follows, when we talk about lower bounds of mutual information, we are
talking about all functions f such that f(-;-) < I(:;-). The quality of each bound
depends on how well it approximates mutual information, given the same variables,
and lower bounds are important as they tend to offer trade-offs between accuracy
and computational speed [45]. To give an example, again, Kim et al. [46] propose an
objective

Y (r(st,at) + (xZI(rci; 7Tj)>} ,

t>0 @i,7)

](7-():1]37{[

where (i, j) are agent pairs. They propose to optimise this via a derived lower bound

Z o <r(st,at) + aH(T'(-|ss)) + %Z [logq(af;|a{,st) + q(aﬂaﬁ,st)} )} ,

J(') = Ex [
£>0 i#]

where g(al |a]t.,st) approximates p(a’ ]a{;,st) in the dynamics of the Markov game. We

see that the first two terms are the usual reward and entropy pair. The last term

accounts for the approximation of mutual information, and they show where this

comes from in the paper.

To give a glimpse into what will follow, we ask the question : What can we do with
these ideas? To start, we know that entropy is helpful for exploration from Liu et
al. [47] who show that exploration can be improved through off-policy learning
whose behaviour policies are driven by entropy regularisation. Ma et al. [48] study
interactions between agents as well as how to best leverage them. They propose an
algorithm to understand these agent interactions from the perspective of policy and
value functions. The policies they consider are trained with an entropy regularisation
term. In similar vein, there is work surrounding strategy building. Strousse et al.
[49] and Jiang et al. [50] show how to learn effective strategies in multiagent systems
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that are either cooperative or competitive where there is no access to a model of
the environment or encoded expectations of how the agents should interact with
each other. Their approach is rooted in the idea of allowing the agent the freedom
of revealing its intentions or not, using a mutual information-theoretic regularising
term. We will see more applications that are much closer to our research direction in
the next section.

2.4 Notions of Communication and Coordination

In what follows, we will look into communication, coordination as well as the
relationship between them. We first note that communication can be used to achieve
coordination, so we discuss this relationship. It will be clear from this literature
survey why we would like to consider methods that do not explicitly demand
communicative structures. Following this, we will move on to discuss the implicit
ways of achieving coordination-through regularisation. Communication may be
defined as an exchanging of information while coordination may be defined as a
harmonious functioning of different parts of a system for effective results. Ideas
around communication in multiagent reinforcement learning have been around
for at least 29 years [13]. Earlier work in this space was much less organised,
and we provide an overview of the ideas in this paragraph before specialising in
those that follow. One of the earlier papers by Tan [13] (as previously mentioned)
performed studies towards answering questions about the success of agents who
can communicate compared to those who cannot in cooperative games. This paper,
with its concept of sensation, was one of the first to hint towards communication.
The sensations in a game with two hunters, H; and H», were defined as signals that
Hj will receive should H, be in proximity to a prey to facilitate the coordination in
capturing the prey. In earlier work there was belief that it is sufficient for agents to
be ‘aware’ of each other to establish coordination [51], however in many applications
this is not true. For example in Wei et al. [20] the agents are aware of each other (in
the same sense as Claus et al. [51]) but they still cannot solve the differential game
problem. This inspired researchers to look at coordination which is facilitated by
communication. In this setting, as an example, Szer et al. [52] present an algorithm
for cooperative multiagent settings. The key focus on this work is the attainment
of correct coordination. Their approach leads to a communication protocol which
allows the agents to coordinate better. Forms of communication include signaling
[53], intent propagation [54], imagination [55], and we can even add a layer to these
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strategies towards vote/consensus-based learning [56]. The relationship between
coordination and communication is indeed subtle, for instance Havrylov et al. [57]
study two agents engaging in a referential game and, fundamentally, develop a way
of communicating as needed to succeed in the given game, which makes one think
that some coordination is necessary to establish communication. So the relationship
is not one-way, as the above might have suggested.

Let’s now talk about the structures required for communicating. The mechanics
of communication have been established in many ways, as the above has hinted.
Often the easiest way is to let the agents share some network that is being used in
learning then observe emergent communication behaviours in cooperative tasks
[58]. A wide variety of networks can be used here, and an example is the use of
graph neural networks [59]. We would like to mention that this approach is not
limited to graph neural networks, and we mention Shen et al. [59] as an example
out of many such methods that use a variety of neural networks. We argue that this
approach seems contrived since we would like our agents to have some form of
independence from each other. In this direction of decoupling aspects of the learning
process, Eccles et al. [60] attempt to ease the need to centralise training in order to
establish communication where this problem arises. In short, the authors introduce
inductive biases for signalling and listening, which turn out to be sufficient for the
problems with which the paper is concerned. This is in a similar spirit to Hu et al.
[61] and Wang et al. [62] who optimise communication under limited bandwidth
settings through signalling mechanisms. These are standard practice mechanisms
that are used to establish communication.

It should be clear from the examples above that communication can be leveraged
for good when we would like to coordinate. However, it is hard to communicate—in
the sense that it is expensive to do so—-in a decentralised setting (due to limited
bandwidth, noisy channels [63], etc.). On the other hand, centralised structures
are not natural for real world problems. Another reason for the strong dislike for
centralised structures is demonstrated in van der Heiden et al. [64] (very similar to
Li et al. [65]) who argue that multiagent reinforcement learning agents trained in
a centralised way can be brittle because they can overfit to their training partners.
This produces agents that adopt policies that act under the expectation that the
other agents in the environment will act a certain way rather than react to their
actions. They propose a social empowerment framework to ease the problem, which
is achieved through a mutual information theoretic approach. This is similar to
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Jaques et al. [66] who do something similar but through the lens of causality. Mutual
information based optimisation as a means to disentangle learning dynamics in
multiagent reinforcement learning has been studied, for example, by Krupnik et al.
[67], and we will explore more of this idea in what follows as well as its implications.
Notice that in what follows we will loosely refer to “other agents’ as opponents, even
though we are working in the cooperative setting. We take this terminology from
Wen et al. [6] and Tian et al. [7].

What we hope to put forward, moving on, is a discussion of how to harness the
ideas of mutual information within the multiagent setting, and to hint that small
differences between the ideas lead to big differences in modelling power. For exam-
ple, as we will do as well, Kim et al. [46] use mutual information for coordination
but optimise a lower bound, and we will see that optimising lower bounds can
lead to instability. More than this the mutual information optimisation is done
with an assumption that the policies of different agents are independent. This is
similar to Wang et al. (2020) [68], Wang et al. (2019) [69] and Zheng et al. [70] who
optimise lower bounds to solve problems in multiagent reinforcement learning. We
will see that lower bounds are not sufficient, and beyond that the assumption that
policies are independent is not helpful in our setting. A lot of the work that uses
mutual information theoretic ideas in multiagent reinforcement learning leans on
assumptions that point to either lower bounds, or policy decompositions that are
not reasonable. This is important because when we start talking about the work that
we studied, the pool of relevant works becomes very small.

2.5 Entropy Regularisation in Single-agent Reinforce-

ment Learning

2.5.1 Background : Function Approximation in Reinforcement

Learning

Very often, we need to shift our focus to reinforcement learning through function
approximation instead of using tables and arrays to build value functions. In
this case, optimisation procedures are required to find the optimalities of these
functions. Once such procedure is the so-called gradient descent. For a given
function ] : R" — IR dependent on parameters € R", gradient descent proceeds
to find optima through updates
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9k+1 — O +aV](0).

For reinforcement learning, we can take the state value function as the objective to
optimise. In a sense, if we do this, we are saying that we want to only visit states
that will yield the optimal reward. With this, we want to demonstrate what the form
of this update might look like using an example. Sutton et al. [12] show that in this
case, we get

VIO) = TVa(9) = V| S r(al9Qets,0),

for all states s, which follows from the definitions of the value functions. They also
show that

\Y% {Zn(a\s)Qn(s,a)] Z Z Pr(s — x,k, n)ZVn(a S)Qx(s,a),
a xeSk=

where Pr(s — x,k, 1) specifies transition probabilities from state s — x in k steps
under the given policy, where we have basically expanded the details of the equality.
From here, we can then re-write this as

VI©) « L) L Vi) Qa(s,0) = B | T Qa(S0,0)VetalS:,6)],

where u denotes the distribution of the states.

We can stop here and take satisfaction in this form. However, we want to show
a well-known update, called REINFORCE, and also introduce what the so called
actor-critic methods are doing. In order to do this, we need the following sequence
of observations

VJ©) o« L0 L V@) Qn(s,0) = B | ¥ Q(S1,0)V (a]51,6)

=E, _Zn(aISt,G)Qn(St/“)w}

Pl 71(a|St,0) (2.1)
0 Vt(A4|St,0) |
_E, ZQH(Stht)W}

_ V(A |St,9)}
= En ZGt 71(A¢|St,0)

a
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where Gt =) > v'R(st,at,5141). The second step essentially multiplies and divides
by 7t(a|St,60), while the third step samples A; from 71(a|S¢, 0). Lastly, we just use the
short form for the returns to express the expectation in a clean form. Now, this leads
to the so-called REINFORCE update

VTC(At | St , 9)
Ori1 < Ok + aGp———F—.

- 7(A|St,6)
This is important because we see that algorithms can then be defined based on the
form of their value functions, as well as how they optimise the objective function.
Moreover, we want to introduce the so-called actor-critic methods. Notice that we
can consider an update

VN(At|St,9)

Ok+1 < O + a(Gt — b(Sy)) (Ad]S1,0)

for any function b(s) that is independent of the actions, and this leaves the expected
value of the updates unchanged. We can choose this function to be the state value
function, which is what happens in actor-critic algorithms. Here we have to be a
bit careful with the returns for the case n-step methods. For one-step methods, the
update becomes

VTL'(AtlSt,G)

Ox+1 < O + a(Gr.pr1 — 0(51)) K

where

Grt+1 = Rip1 + 70(S¢41).

For n > 1 one has to consider what is known as generalised returns, but the idea
is that we need to define carefully what the expected returns should be. What we
have gotten to here is an update rule for actor-critic methods. The essence, then, of
these methods is that there is a learned policy and value function, and this value
function is used for bootstrapping, as opposed to only being used as a baseline
whose estimate is being updated. When we talk about actor-critic methods moving
forward, these are the fundamental ideas that we will have in mind.
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2.5.2 Reinforcement Learning as Inference

Reinforcement learning can be regularised with an entropy term that encourages
achieving a task in a more robust sense — by this we mean that with reasonable
deformations in the environment, the agent can still perform the main task as it
will have learnt a variety of ways to achieve it [3]. Eysebach et al.[3] contains the
following insightful graphic, Figure 2.5, which demonstrates robustness.

Original Dynamics Perturbed Dynamics
* *
1 1 2
—
— —— Standard RL MaxEnt RL * goal —

Fig. 2.5 A demonstration of robustness by Eysebach et al.[3]. On the left we have
a figure with a robot performing a maniputation task. The left-most plot shows
trajectories learned by maximum entropy reinforcement learning and standard
reinforcement learning while the right most shows the agent’s trajectories given
perturbations on the environment.

They used standard reinforcement learning and maximum entropy reinforcement
learning to learn a manipulation task (left) without obstacles, but added obstacles
(red squares) during evaluation. They then plot the policies learnt without the
obstacle (center) and with (right). We see that the maximum entropy regularised
policy is still useful even with the environmental disturbances. In this section we
discuss why entropy regularisation is such a natural thing to consider. In order
to do this, we cast the reinforcement learning problem as an inference problem on
a probabilistic graphical model. This treatment follows Levine [71] closely. The
treatment establishes reinforcement learning as amortised inference, in the sense
of Millidge et al. [16] who give classifications of reinforcement learning based
on how they go about the optimisation. Amortised inference procedures learn a
parameterised function which maps directly from states to the parameters of the
approximate posterior. This is in constrast to iterative methods that directly optimise
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the parameters of the approximate posterior, a process which is carried out for each
data-point. The more theoretical framework is discussed in Fellows et al. [72].

(a; | (ag ) (a3 ) (&
81 3 82 = 83 = sS4

| 81

."*-...

S3

L

Fig. 2.6 Graphical model with states and actions. Here we have process X = {X;}
that takes states s;, and the transitions between these states are dependent on the
action variables a;.

We consider the relationship in Figure 2.6. This corresponds to a model with factors
that take the form p(s;11|s¢, a¢). This corresponds to Figure 2.1, in the sense that have
a given state and the agent can take an action that will take it to a next state with
a given probability. In order to encode for optimality, we consider the graphical
expression in Figure 2.7. The variables, O; are optimality variables which take values
in Z;, where Oy = 1 means that the action taken at that time step under consideration
is optimal, and the 0 value denotes suboptimal action .

If the distribution over this variable is chosen to be

p(Or = 1|ss,a) = exp(r(ss, ar)),

where the rewards r(s¢,a;) < 0, then we find the following, intuitive, posterior
distribution over actions, which conditions on O; forall t € {1,---,T}:

T
p(t|O1.1) & p(t,O1.1) = p(s1) [ [ P(Or = 1lst, ar)p(se41lst,a)
=1
T
= P(Sl) Hexp(r(st/at))p(stJrl |St/ at)
=1
T T
= {P(Sl)HP(StH |Strﬂt)} exp < ). V(St/at))-

t=1 t=1
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S —} So —} Sa l—} S4

Fig. 2.7 Graphical model with optimality variables. Here we have process X = {X;}
that takes states s;, and the transitions between these states are dependent on the
action variables a;. Moreover, we have variables O; which tell us whether the actions
chosen yield optimal transitions.

In the case of deterministic dynamics, one finds that

T
p(t|O1.1) & 1jp()L01€XP < Y. T(St,at))-
=1

When we speak of the optimality variable moving forward, we shall assume interest
in the case where O; =1, and in equations we shall omit this specification for
simplicity. The optimal policy, in the graphical model setting, can be recovered in
the following way. We compute backward messages B¢(st,at) = p(Oy.r|st, at), which
can be interpreted as the probability of optimality of a trajectory from time step ¢ to
T where that trajectory starts at s; with action a;. We define

,Bt(St)EP(Ot:T!St):/AP(Ot:T\St,at)P(ﬂt\St)dﬂtZ/Aﬁt(st,ﬂt)}?(atlst)dat,

where this quantity specifies the probability of optimality of a trajectory given a start-
ing state instead. The factor p(a¢|s;) is an action prior, and can be set to being a uni-
form distribution based constant over the action set as it is not conditioned on Oj.7.
Using a recursive backward message passing algorithm to compute B;(st, a;) from
time step t = T to t = 1 one finds that for the base case p(Or|sT,ar) «x exp(r(st,ar)),
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and the recursive case is B¢(st, at) = fs Brr1(St+1)p(St+1]5t,ar)p(Otlst, ar)dss 1. Here
message passing algorithms are types of iterative decoding algorithms that factorise
a global function of many variables into product of simpler local functions, whose
arguments are the subset of variables. The backwardness refers to the fact that we
start at time t = T to t = 1. From here, one finds the optimal policy as

Bi(st, ar)
Be(se)

p(at|st, Orr) o

We can then ask the question: what objective are we optimising when doing the
above? In the deterministic case, we can adopt an approximate inference procedure
where we want to find an approximation 7t(a¢|s¢) such that the trajectory distribution
P(T) o Lip(oy 201 Hle 7t(at|st), matches the above example of the deterministic case.
We can do this by minimising the KL-divergence.

Drr(p(0)|[p(7)) = —Erp()[log p(7) — log p(7)]

= ~Erp

T
logp(s1) + Y_(log p(siv1lst,ar) + r(st,ar))
=1

T

—logp(s1) — Y _(log p(st+1lst, ar) + log rt(ay|sy))
=1
T

=—Erp) {Zr(st,at) — log 7(at|st)
t=1

T
= — Y B, a)~pssanr(st,ar) — log m(a|sy)]
=1

T
= — ) (EGsa)~piseanr(6t,a0] 4 Eg,wpsp [H (7 (ar|se)]).
=1

In the case of stochastic dynamics, one then observes that the optimised distribu-
tion is (1) = p(s1|OrT) Ty p(St41|5t ar, O1.7)p(ar|ss, O1.7) where the initial state
distribution is conditioned on optimality. The KL-divergence is then

T
Dkt () [p(0) = B piey | logp(s1) + 3 r(st,a) + log plsast,a)| — H(p(r).

t=1
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What we have shown here is that we can formulate reinforcement learning as
inference on a graphical model. We did this in a very natural way wherein we
merely wanted to devise dynamics that are qualified as optimal, and all we had to
do was apply probability theory. The point is that maximum entropy reinforcement
learning is not a contrived notion. In practice, it is usually preferable to include a
coefficient « that multiplies the entropy term in order to control the trade-off between

maximising entropy and maximising the main reward.

While the approach presented is very convenient and powerful it has been shown
that it has its weaknesses [73]. This work shines a light on problems that arise
generally when we blindly take reinforcement learning as inference over a graphical
model, and it then asks the question: "Under what conditions, can we make this
assumption (that reinforcement learning is equivalent to inference over a graphical
model) for best utility?" The best utility case being that the problem doesn’t inher-
ently become computationally intractable, which forces us to use approximative
procedures.

Moving forward, this regularising coefficient will be included in our equations. The
question we ask next concerns the value functions and policies that arise in this
setting. We want to write them reasonably explicitly, and see how we can lift this
context to involve multiple agents.

2.5.3 From Maximum Entropy to Energy-Based Policies

In the previous section, we introduced the concept of entropy regularisation in
reinforcement learning. In this section we will have a more in depth discussion on
this context, focusing specifically on results from [20]. The following theorem tells
us that given value functions defined using the maximum entropy objective, we
have a policy that takes on a very specific (energy) form. Interestingly, in addition to
these energy-based policies we get the so-called soft Q-function and soft V-functions,
which correspond in effect to the state-action value function and state value functions
(respectively) that we saw previously.

Theorem 1. Let the soft Q-function be defined by

Q;koft(st’at) =TI+ ]E(SH—L“')NPH [Ziyl(rf‘H + “H(n}\k/luxl—:nt(' |St+l))) ’
=1
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and soft value function by

* 1 *
Voort(st) = alog/Aexp (EQsoft(St'a/)>da/'

Then the optimal policy for the maximum entropy objective is given by

* 1 * *
TMaxEnt (At|5t) = eXp(_(Q (st a1) — Vo 13(s1)))-
Proof. (Appendix A.1, [20]) O

Remark : The soft V-function is said to be soft because it is only when Q(ay, s;) is
large that V(s;) =~ max,, Q(st,at), otherwise it is said to attain a soft-max. The soft
Q-function is said to be soft in a similar sense.

The next two theorems give us assurances that we can still look at things in a Bellman
sense as we do in classical reinforcement learning. We see that, given the value
functions stated above, we obtain notions of convergence that are very similar to

what we know from the classical setting.

Theorem 2. The soft Q-function given above satisfies the soft Bellman optimality equation

Q:oft(sf/”t) =71+ 'Y]Est+1~ps[vs>2ft(5t+1)]/
where the optimal soft value function is also as given previously.
Proof. (Appendix A.2, [20]) O

Theorem 3. Let Qq,f(-, -) and Vs, f4(-) be bounded and assume that [ , exp(2 Qsoft(-,a"))da’ <
oo and that Q7 i < 0. Then the fixed-point iteration

Qsoft(st,ar) <= 1t + YEs,  ~p [Veoi(St4+1)], Ve, a
1 / /
Viarisr) - alog [ exp (5 Qupi(st,a) ), s
converges to Q7 fi and V 1% respectively.

Proof. (Appendix A.2, [20]). O



32 Literature Review

Practically, however, what one wants to do is convert the above operation into a
stochastic optimisation problem expressing the soft value function (for which we
can assume that the corresponding neural network is parametrised by parameters 0)
as an expectation via importance sampling. Moving forward, we will often say that
a function is parametrised by a set of parameters as a short-hand for the statement
that the neural network we use to approximate that function is parametrised using
those parameters.

The idea behind importance sampling is that if we want to compute an expectation
E(f(x)) = [ f(x)p(x)dx, for an arbitrary function f(x) and density p(x), we can
f)p()

q(x)
that the second expectation is taken with respect to the distribution of g(x), and this

instead compute E(f(x)) = [ g(x)dx, where g(x) is some density. Notice

distribution could be easier to work with than p(x). We want to choose g(x) such
that g(x) = 0 implies f(x)p(x) = 0. We call g(x) the importance distribution and p(x)
the target distribution. Using this very same idea, we can express the state value
function as

exp(1QY, -, (51,2)
70 (@)

with g, being a possibly arbitrary distribution over actions.

4

ngoft(st) =uwalog IE%,

Observing that for arbitrary functions g; and g» on domain X we have that g1(x) =

DXV € X < IEqu[%(gl(x) — ¢2(x))?]. Hence, the soft Q-iteration is obtained
via an equivalence by optimising

1/ s 2
Jo(®) = e |5 ( st = Qo) |,
where the gs,, g5, are positive over the states and actions, respectively, and

QY pi(st,ae) =11+ VEBs, o [VE 1 (5141)]

is the target Q-value with the ¢ + 1 value estimate given by the above estimate of the

value function.

Remark: Observe that the form of policy given is quite general, and sampling from
such a policy can be difficult. One overcomes this by using a method called Stein
Variational Gradient Descent (SVGD), which will be described in detail later, to
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minimise

Dgr = <7T6("5t)HeXp(%Q:Oft(.’St) _ V;;ft(st))

We leave the discussion of this procedure for later, in a specially dedicated section,
since it is of special importance for this study. In order to generalise this to multiple
agents one follows the algorithm below [5].

Algorithm 3: Soft Q-Learning for Multiple Agents [5]
Initialise: The joint Q function, agent policies, the regularisation coefficient «,

and annealing settings.

for episodes={0,.., M} do
Update the Q function using soft Q-learning.

for agent ={1,..., N} do
| Update joint policy for each agent through SVGD.

end

if episode > t then
| anneal the regularisation coefficient «

else
| pass

end

end

While this has covered entropy regularisation, mutual information based regularisa-
tion seems to help in single-agent reinforcement learning too, for example Zhao et al.
[74] who consider an objective that links states that are tied to the goals with states
that the agent has control over. The link is established through mutual information-
theoretic optimisation, and this inspires the agent to leverage whatever control it
has over the environment for best use. This is one example out of many more.

Moving forward, we see from the algorithm produced above that once one has
obtained results for the single-agent case, extending them to multiple agents is
reasonably straightforward, but there are subtleties as we will see in our studies. The
pseudo algorithms usually seem sensible and robust, but how these are translated
into code matters a lot. For example, it is also possible to do optimisation in this
context of energy-based policies through the so-called soft-actor-critic approach
(SAC) [75] [76]. Upon inspection one can see that the ideas in these papers are not
themselves new, and have been around for at least 9 years [77]. It is, however, the
way in which they are executed with modern machinery (in the form of tricks, and
optimisation methods) that has made them powerful, which is the point that we
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want to make. We will not take this explicit direction, however. Next, we want to
discuss the environment in which we shall be doing our work as well as challenges
that are encountered there-in.

2.6 Relative Overgeneralisation in Team Games

When agents fail to coordinate owing to the learned joint policy being sub-optimal,
this leads to value function estimates of what would be optimal actions being
incorrect (underestimates), and is known as action shadowing,.

Palmer et al. [23] define relative overgeneralisation as a type of action shadowing
which occurs when the expected reward from a sub-optimal Nash Equilibrium ends
up being higher than the optimal equilibrium. In the two agent case this means that
if one player is playing optimally, then the other one can deviate from optimality
and the expected joint returns will still be higher on average for the sub-optimal
equilibrium, by our definition of a Nash Equilibrium. While the origins of this name
are unclear, one may think of this effect as one which points towards phenomena
where agents are prone to wrongfully overestimate the significance of an optima

over competing alternatives.

Following the work by Palmer et al. and Matignon et al. [78], an equilibrium policy
7 is shadowed by a policy 7 in a state s whenever there exists some agent i whose
deviation from the equilibrium 77 incurs a greater cost than the worst cost possible
for deviating from 7.

Next, we define a Pareto-optimal strategy/equilibrium as a joint policy 7t where no
agent can deviate without this having adverse effects on the returns of at least one
agent in the game. To say that v is Pareto-dominated by 7t is equivalent to saying
that for all states the value functions corresponding to 7t are greater than or equal
to those of 71, and, in addition, there exists at least one state where the inequality
is strict[78][23]. A Pareto optimal strategy then is one that is not dominated by any
other. Now we can define relative overgeneralisation as an occurrence where agents
converge to a non-Pareto optimal Nash Equilibrium due to shadowing.

Let us consider the following examples demonstrating these concepts, starting with
Table 2.1. In this very easy context, agents that use an average-based learning
scheme will reason that since ) (A,j) <Y (C,j) and ) (B,j) < }.(C,j) then C should
be preferred for any of the other agent’s actions, where the indices are over columns
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Player 2
A B C

A| (11,11) | (=30,-30) | (0,0)

Player1 B | (—30,—30) (7,7) (6,6)

C (0,0) (0,0) (5,5)

Table 2.1 This table shows an example of an iterative game where the state is always

the same but the agents need to iteratively take playing turns. Both players choose

from three actions A, B and C, and the table shows the pay-offs associated with these

decisions in the form (v piayer—1,7player—2)- Each agent tries to maximise its pay-offs in
this game.

and rows. Then both agents will move towards the shadow equilibrium (C,C). If
an alternate move is played with some small probability, then the expectation is
that player 1 will move from C to B and so will player 2. However they will not
move any further as they will have reached a Pareto-dominated sub-optimal Nash
equilibrium. One can similarly derive a partially stochastic example (see [23]).

Secondly, the diagram in Figure 2.8 is another example from [5] that demonstrates a
simple example of where this pathology can be observed in continuous coordination
games. Since this is the context we use to discuss all ideas moving forward, and that
we use for the testing, we will devote a susbsection to it.

2.6.1 Differential Game : Max of Two Quadratics

Let’s start by looking at Figure 2.8, which shows an environment that we have
mentioned is of immense interest to us. This figure shows what is known as a
differential game, or more precisely The Max of two Quadratics. It is an environment
with two quadratic modes (peaks) that also correspond to the reward function [79].
Two agents are tasked with the duty of finding the mode with the highest pay-off
between the two, with one agent controlling the y-position and the other controlling
the x-position. There are a couple of things to note about this environment. Firstly,
the agents have a continuous action space of [-10,10], and each agent’s reward is
defined as
RY(a',a%,s) = R*(a',a%,s) = max(f1, f2),

eos(- (22 (£1).

where
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reward(ij) = N

200 .
0
—200 .

—400 .

—GUU;._.-"""

Fig. 2.8 Max of two quadratics/The differential game. Here we see two maxima, M
(global) and N (local). This surface defines the reward space for the agents, which is
also what the agents see as they navigate. The agents start at (0,0), and they need to
tind the global maximum.

and

fa= < — (' =5)%—(a" — 5)2),
for any state s, using the same notation for actions and rewards’ labelling as before.

The reward is independent of state here, and so the state structure that the agents
receive can be arbitrary, and is set to a zero vector in practice. This surface gives us
a local maximum that has value 0 at (—5, —5) and a global maximum that attains
value 10 at (5,5). The fact that the agents share the reward function value is what
defines this context as being cooperative. This necessitates cooperation between the
two agents for the reward function to attain maximum value.

Recall that in Subsection 2.1.1, we saw the k-armed bandit problem. We can think of

the current problem as an extension of this problem in two directions :
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* There are two agents instead of one that need to work collaboratively to
maximise the total expected reward.

* We are working with k = 2 levers, but each agent only controls one.

* Lastly, the range of values that each lever can take is a continuous closed and
bounded subset of the reals [—10,10].

In a more concrete sense, one can imagine that there are two people, each with a
lever which can be placed anywhere from [-10,10]. They don’t have an idea of
the reward surface but they (jointly) get a reward based on where each of them has
placed it. This connection is made to establish the fact that we are still within the
reinforcement learning paradigm, but working with continuous spaces and multiple
agents as opposed to the classical single agent, discrete space problem.

Recall that we mentioned in Section 2.1.1 that we have a correspondence between
our context and a context where states are relevant. In particular, suppose that we
have an agent in a one dimensional setting [a,b],a, b € R (a < b) where the agent
chooses actions, 4, and gets rewards R(a,s) = R(a) € [c,d], for some c,d € R (c < d).
In this case we can imagine the states corresponding to the value of R(a). Hence, we
imagine the agent as a probabilistic process in the codomain [c,d], where the state
is in one-to-one correspondence with the action value. In this sense, it still makes
sense to talk about states even though the reward function itself is independent of
the state variable. In the same vein, we can think about the reward surface for our
differential game problem as being a determinant of the state of the agents, i.e., we
can say that the agents take actions a! and a2, which lands them at a point (a!,4?),
as a state. In this sense, the state is then the height of the reward function given an
input of the domain (a',a?).

In this setting, the agents will similarly tend to learn to move towards the suboptimal
equilibrium, N, due to the average payoff there being higher in comparison to that
corresponding to the optimal equilibrium, M, by construction. We are seeing here
that these simple settings pose a reasonable problem for agents that are learning
to coordinate, and we want to investigate the key component that allows agents to
conquer this latter task. In what follows, we want to have a discussion about some
methods of sampling from general policies. We will study these first then move
on to regularisation mechanisms, which will shed insight into what is sufficient for
solving the given problem (given the mentioned challenges).
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2.7 Samplers and Sampling

Recall that one of our research questions (sub-research question 1) asked if the
unsatisfying performance observed on the multiagent soft Q-learning method could
be due to sampling inefficiently from our energy-based policies. Previously, we
also mentioned that the method used to sample from the given general policy is
the so-called Stein Variational Gradient Descent (SVGD). In what follows, we shall
discuss this method as well as alternatives to it. Since these methods perform well
in the literature in terms of accuracy and efficiency, it seems reasonable to think that
if the source of the problem is, indeed, sampling inefficiency then we will be able to
see good performance for one of them.

We start by introducing the necessary context of reproducing kernel Hilbert spaces,
and then we delve into discussing the methods. Reproducing kernel Hilbert spaces
are important to us because the basic theory that we need to talk about efficient
samplers is based on elements of these spaces. In supervised learning, given a data
set X, we can choose a map ¢ : X — F where F is said to be a feature space-usually
a Hilbert space. The function ¢ is called a feature map. Given each labelled example
(x,y) where y is the label, we can consider (¢(x),y), and train our model on these
transformed pairs. Using feature maps this way can make learning much easier,
since the feature maps can be constructed so that they map the data in a meaningful
way [80]. However, working with feature spaces can be expensive, and ideas around
reproducing kernel Hilbert spaces attempt to mediate this challenge by using kernels
instead of explicit feature maps. The theory associated with the efficient samplers of
interest exploits these spaces for the computational efficiency that they enable.

2.71 Reproducing Kernel Hilbert Spaces

We start by introducing kernel Hilbert spaces following [81]. Firstly, we let X be
a nonempty set. A symmetric function k : X x X — R is called a positive-definite
kernel on X if } /! ; 27:1 cicjk(xi,xj) > 0 for any x; € X, ¢; € R, with n € N and the
indices going from 1 to n.

It can be shown that if we are given a kernel as above then there is a Hilbert space H
and a map ¢ : X — H such that k(x,y) = (¢(x),$(y)) . In fact, we can go the other
way around, and this is an equivalence of statements. This Hilbert space produced
here is exactly the so-called reproducing kernel Hilbert space.
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It’s not easy to see how one can recover such a space, H, and how to define the map ¢.
In order to do this, one considers ¢ as a map from RX, then defines P(x) = ky = k(x,-).
One can now consider the set of all these images of elements of x, then define a space
G which is the space of linear combinations of these images. This is a vector space
of functions. At this point, one’s interest is in defining the scalar product. Given
two functions ¢ = ) ;a;k(x;,-) and f = X Bik(yi,-) we define the scalar product as
(f,8) = L jaiBik(x;,y;). Lastly, we consider the closure of this space under Cauchy
limits. So then the reproducing kernel Hilbert space H is the topological closure of
G.

The reproducing property is simply the fact that given a function f as above, then
(f,k(x,-)) = f(x). In fact, any function, k, from X x X — R, and a Hilbert space H
with the additional property that k(x, -) € H, in addition to this reproducing property
inside the Hilbert space, is a kernel, and the space H is a reproducing kernel Hilbert
space.

An example of this is the following:

Consider k : R? — R such that

T
X1 n
k(x/y) = X2 Y2 s
X1X2 y1y2

where x = (x1> , and y is similarly defined.
X2

We can realise the reproducing kernel Hilbert space here in the following sense: First

V1
we consider k(-,y) = ) = ¢(x) which means that ¢ : R> — R5.
Yy1y2
T
a
Secondly we observe that if we consider f(x) =ax; +bxo +cx1x2=| b | ¢(x) =
c

f()T¢(x) then f is a mapping from IR? to IR, and so we see from here that in as much
as ¢ : R? — RR? it induces a map from R? — RR.

We then let H be the space of functions from the two-dimensional plane to the reals.
The point above gives us that k(-,x) € H for all x € R?.
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We can see that from the second bullet point above that f(x) = f(-)T¢(x) = (f,k(, x)) u
which is precisely the reproducing property.

This can be done even with an infinite dimensional space of features with some mild
restrictions. Reproducing kernel Hilbert spaces are useful because, amongst other
things, they give us a way to do computations that involve feature maps without
having to go through the trouble of explicitly defining the feature maps or having to
work in spaces that have a greater dimension than the data space.

On a theoretical level once again, we can actually characterise reproducing Hilbert
spaces as those spaces (of functions from X to R) whose evaluation functionals
are continuous. Functions in these spaces are point-wise well-defined. Further-
more, given a kernel the space that one can produce as done above is unique up to
isometries, and given a reproducing kernel Hilbert space the kernel is unique.

2.7.2 Stein Variational Gradient Descent

This quick overview of Stein Variational Gradient Descent (SVGD) follows [82] and
[83]. This method attempts to estimate a probability density with a finite number
of points (which we shall also refer to as particles). This is done by first initialising
the n particles arbitrarily, then updating these estimates using the Stein discrepancy,
defined in what follows, which measures closeness between the target distribution
and the distribution from which the particles are sampled.

Formally, let p(x) be a positive density function X C IR? that we want to approximate
with a set of particles {x;}" ;. The initialisation of these particles is done with a
simple distribution (i.e., easy to sample from) gg, and, given a step size € as well as a
velocity field ¢(x), this is iteratively updated as follows

Xi—xi+ep(x;),Vi=1,--- ,n.

The velocity field (or perturbation direction) is chosen to maximally decrease the
KL divergence between the distribution of the updated particles and the target.
Mathematically, denoting the density of the updated particle ¥’ = x + ep(x) as
qieg1 Wwhen the density of the original particle x is g, and with F being the set of
perturbation directions to optimise over, we would like

d
¢ = argmaxy. »{ — & KL(teql[P)le=o]
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The set of perturbation directions is taken to be the unit ball of a vector-valued
reproducing kernel Hilbert space, which is essentially a product space of regular
reproducing kernel Hilbert spaces.

It turns out that the above objective is a linear functional of ¢, and that

d
— = KL@ieq1|IP)]e=0 = By Tpp ()],

where T,¢(x) = Vlog p(x)Tp(x) + Vy - $(x).

The latter is a linear operator acting on the perturbation direction, and is known as
the Stein operator—in connection with Stein’s identity [84]. Stein’s identity says that

IEqu[’Eﬂ(P(x)] =0 <= p=g.

The optimisation problem then is reduced to minimising
Dg][p) = max{Exq[ Ty ()1}

The quantity on the left hand side is defined as the kernelised Stein discrepancy
between p and g where the ¢(x) are chosen from the space of functions k(-, x').

The solution to the optimisation problem has a closed form

¢*(x") o< Bxg[ Tpk(x, x)].

The algorithm for this method starts with an initialisation of particles, then does
updates based on the Stein discrepancy for a set number of times /. This is detailed
in Algorithm 4.

Algorithm 4: Stein Variational Gradient Descent (SVGD)
Initialise: a target density p(x) and a set of initial sample points (initial estimates)

{x? i1

for iteration | do

A a1
T xh 4 e (xh) where ¢* = - 1 [k(xé,x)vxé logp(xé-) + Vxék(x},x)}
where ¢ is the step size at the [-th iteration.

end
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2.7.3 Neural Stein Sampler

In the discussion above we saw a quantity that we named the kernelised Stein
discrepancy (KSD). Here we use neural networks to do density estimation as we
have just seen it. The neural network is trained to generate data from the target
distribution, using the Stein discrepancy, once again. Now, following [4] : Consider
a reproducing kernel Hilbert space (RKHS) of dimension d, say, denoted #? where
this is associated with a kernel k(-,-), and let S;(x) = Vlogq(x). In this setting, it
can be shown that if the function space on which the optimisation above is done is
the unit ball of the RKHS, the KSD has a closed form that we will denote as

KSD(p,q) = By xrmpitg(x,x'),
where

ug(x,x') = Sg(x) Tk(x, x')Sg(x') + Sq(x) TV k(a, x') + Vk(xt, ') T S (x) + tr(V  wik(x, X))

This follows from Liu et al. [85] who derive it through a lemma which says that

KSD(p,q) = By v pl(Sq(x) = Sp(x)) k(x, ')(Sq(x) = Sp(x))],

which can be algebraically manipulated to the given form.

The corresponding optimal discriminative function f* such that ||f*||,« = 1 and
£ o< By p[Sq(0)k(x, ) + Vik(x, )],

which becomes relevant if one wants to do sampling in a generative-adversarial
network style [86][4], when the data has a high intrinsic dimension, for instance. We
shall not do that here, however, as there is a more straightforward approach through
forward passes.

The empirical KSD measures the goodness-of-fit of samples X = {x1,---,x,} to
a density g(x). The corresponding minimum variance unbiased estimator can be
written as

1
nn—1)

Y Y Tug(xi, x)]-

i=1j#i

KSD =
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The context here is the following. We let g(x) denote an unnormalised target density
with support X C R? and p.(z) be a reference distribution that generates noise
z € R%. We let Gg be a sampler parametrised by 6. If pg(x) is the underlying density
of samples x = Gy(z), then we want to learn network parameters 6 such that py(x)
approximates the target density well. The algorithm is given below.

Algorithm 5: Neural Stein Sampler (KSD) [4]
Initialise: an unnormalised target density g, generator Gy, a reference

distribution p,, number of iterations N, learning rate «, and mini-batch size n.

for iteration t=1,---,N do
Generate i.i.d noise samples z1,- - ,z; ~ pz;

Obtain fake samples GO(z1),- -, Gy(zn);
Compute the empirical discrepancy @(pg,q) ;
Compute the gradients ngS\D(pg,q);

Update 0 <— 0 — szngB(pg,q);

end

Moving forward, we shall refer to the sampler method with the acronym KSD, and
it will be clear when we talk about the sampler as opposed to the mathematical form
of the Stein discrepancy.

2.7.4 Learning the Stein Discrepancy

In this section we explore yet another method similar to SVGD. Recall that Stein’s
identity says that
IEqu[f];ﬂ‘P(x)] =0<=p=y

where

Top(x) = Vilog p(x) p(x) + Vi - p(x).

In our SVGD framework, we find that the optimal perturbation direction is

¢*(x') &< Bymg [ Tpk(x, x)].

In higher dimensions, however, kernel methods tend to be difficult to use, and
learning Stein’s discrepancy is a way to circumvent the difficulties [87]. In particular,
one wants to use a critic fy (replacing the kernel) whose parameters maximise

La(fp, 1,9) = E ) [V logq(x)T fp(x) + Tr(V fp(x)] — AE o [fp(x) fp(x)],
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with the last term being a regulariser that limits the optimisation problem to func-
tions whose squared norm has finite expectation under the distribution of the data.
Notice that what we have on the first term is very similar to the Stein discrepancy.
The difference essentially is that we have replaced the kernel by an arbitrary function
approximator, fy, which we make L, integrable through the regularising term.

The model itself is then trained to minimise the following objective

LSD(fg,p,9) = E [ Vi logq(x)" fp(x) + Tr(Vafp(x))],

called LSD which stands for Learned Stein Discrepancy. This is an alternative to
minimising the ideal

L(o) = sup LSD(fp,p,q6) — AE [ fo(x)T fp(x)],

which would be infeasible since the supremum needs to be computed over a large
space of functions. This resembles the min-max framework of generative adversarial
networks [86]. The formal algorithm is as follows:

Algorithm 6: Learning the Stein Discrepancy [87]

Initialise: Critic with network f¢, a model network gy, and the target distribution
via a density x = {x;}_; ~ p(x), the regularisation parameter A
for iteration t=1,---,T do
for iteration t=1,---,T do
Start by sampling a mini-batch from a buffer x’
Update the ¢ parameters using the phi-gradient on the objective L,.
end
Next sample another mini-batch from the buffer, x’, once again
Now update the parameters 6 with the theta-gradients for the objective

LSD(f(P/ X/, ‘19)

end

For our purposes, we shall focus on the model aspect of things. This means that we
shall retain the updates for the Q function, i.e optimising

1/ ~a 2
Jo(®) = g | 5 ( Qg — Qi) ) |,



2.8 Regularisation in Multiagent Reinforcement Learning 45

where the gs,, 9,4, are positive over the states and actions, respectively, and

QU pi(st,ae) = 11+ VEs, o [VE 1 (5141)]

is the target Q-value with the ¢ + 1 value estimate given by the above estimate of the
value function. The reason is that the updates implicitly minimise the discrepancy
and arguably do so efficiently already given that we are working on the data space.
As with the KSD method, we shall refer to this sampler as simply LSD.

2.8 Regularisation in Multiagent Reinforcement Learn-
ing
2.8.1 Probabilistic Recursive Reasoning

In Probabilistic Recursive Reasoning for Multiagent Reinforcement Learning (Wen
et al. 2019) [6], the authors introduce an agent-reasoning framework that they call
(PR2AC) for the multiagent case. Their recursive reasoning hypothesis states that
it is beneficial for each agent to, as best as possible, account for how it believes its
opponents will respond to its own actions. Notice that this idea of belief modelling
is not new, but again the way in which modern, powerful machinery is used makes
all the difference. For example, one may want to look at Makino et al. [88] where
agents learn policies that incorporate aspects of beliefs (of their coplayers). There is
also a level of sophistication with the new approach of Wen et al. however as it not
only models beliefs but goes a level deeper. As the authors put it, the agent reasons,
"I believe that you believe that I believe ...". While the paper covers only PR2AC,
Wen Y. [89] covers the comprehensive theory and extensions thereof, the latter of
which considers level-k recursive reasoning.

The authors propose that we decompose the joint policy using a Bayes-type rule

(a’,a”'|s) = m(a'|s)rr(a"|s,a),

where the former term, 71(a|s), denotes the agent i’s prediction of the appropriate
action given the state, and the latter, n(a’i|s,ai), denotes the agent’s prediction
of how the other players in the game will react to their action of choice. We call
this a Bayes-type decomposition since Bayes’ rule says that given a probability

measure P, and events A,B and C : P(A,B) = P(A|B)P(B). In particular, we can
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condition C which then yields P(A, B|C) = P(A|B,C)P(B|C), and this looks like the
decomposition we have here. To make the learning more in accord with what the
real world is, the authors propose that the agent should learn the latter, and so they
denote the same decomposition as

(@ a”'[s) = 7'(@[s)o " (a"|s,a),
from agent i ‘s perspective, where p is a network that is parametrised by ¢, and we
write this as p;i(a_i |s,a’) whereas 7t is parametrised by 6. We can also write the

above decomposition from the opponents” perspective, which yields
n(a’,a"s) = ' (a " |s)p'(a'[s,a ),

and we get that if we devise proper training mechanisms, then both of these approx-
imations should converge to the joint policy as it has been defined.

The next two theorems offer similar insights into what we had in the single-agent
case. They are both equivalent statements about the optimisation of the 8-network.
The first one is more theoretical concerning the form of the gradients, and the second
one gives us a mechanism to estimate these gradients in practice.

Theorem 4. In a stochastic game, under the recursive framework defined, the update for the
multiagent recursive reasoning policy gradient method can be written as :

v@’ni = ]ESNp,aiwni Vei log ﬂéi(ai‘s)/ ,ﬂgiii(aiiysrai)Qi(S/ﬂi/ﬂii)dﬂii .
a—i
Proof. See section 4.2 [6] H

Theorem 5. In a stochastic game, under the recursive framework defined, the update for the
multiagent recursive reasoning policy gradient method can be written as :

—i
0

[ (a~|s,a’)
C T Peilp, i a s, al)

VQiT]i =E Qi(s,ai,a_i)} }

s~p,al~mi

Vyilog né,-(ai|s) [IE

Proof. See section 4.2 [6]. ]
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In a similar fashion, it can be shown that we can infer p;fi(a_i |s,a’) via variational
inference. Following Levin [71] one finds that

T . . . . . . . .
Die (PO p(0) = — Y Brp| (5,07 + Hizlta's)oy (o s, ).
t=1

This leads to the following theorem.

Theorem 6. The optimal Q-function for agent i that satisfies the minimisation of the above
equation is formulated as

Qry(s,a) :108/»@‘?( to(s,at,a)yda,

and the corresponding optimal opponent conditional policy reads

a5 a) =  exp(Qly 5,a,a7) — Qi (5,0).
This theorem gives us a sense of what the policies we would like to learn look
like, which we can use to derive convergence guarantees. This theory leads to two
algorithms. The first one is strongly reminiscent of Q-learning as we know it from
classical literature but for continuous games and for multiagent settings (Algorithm
7) while the second one is based on the same theory but uses actor-critic machinery
(Algorithm 8). We give the algorithms, respectively, as Algorithm 7 and Algorithm 8.
Observe that the former does its Q-updates in a way that is consistent with what
we deemed Q-learning type updates earlier. The difference here is that now we
are considering a case where the agents are not trained separately as Littman [15]
did in our previous demonstration. Here, each agent is aware of others, and has
to learn to compute the best response of the opponents. This variant works well
with a small state space since it can be tabularised. On the other hand, Algorithm
8 employs functional approximation tools with the so-called experience replay to
handle higher dimensional state spaces. The actor is updated using policy gradients—
modifications of what we saw previously. We see that SVGD is used to update the

response estimates.

Moving forward, we now look at another implementation that has proven itself as a
robust alternative for solving the problem than the others we have seen so far, and
we will see that it is closer to what we are trying to implement in terms of a practical
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Algorithm 7: MAPR2-Q [6]

Start by initialising each agents” Q-function (arbitrarily), and then fix a learning
rate,«, and the usual discount factor.

while not having converged do

for iteration t=1,---,T do

For the present state (for the agent, i), sample action a’ based on
p;i(a_i |s,a’) by marginalising over the possible opponent actions.

Step on the environment with the joint action and observe the received
reward value ' and the subsequent state s.
Now, at this point do

Q(s,a’,a) « (1 —a)Q'(s,a',a™") + a(r' +vV'(5)),

Q'(s,a") «~ (1 —a)Q'(s,a") + a(r' + yV'(s)),

where.Vi(s') takes the best action a' after having marginalised
Q'(s,a',a™") over the opponent actions.

end
end

structure. We will also discuss the differences at a later stage but go over the basic
ideas here. We will also give results of implementations as well as reason about why
it works better than the other alternative in our discussion section.

2.8.2 Regularised Opponent Modelling with Maximum Entropy
Objectives

Tian et al. [7] focus on cooperative multiagent reinforcement learning. The algorithm
produced in the paper is called Regularised Opponent Modelling with Maximum
Entropy Objectives (ROMMEQ). We know that in the cooperative setting, the maxi-
mum reward is attained if all players work together meaningfully. Letting O denote
the optimality variables in the multiagent context. Agent learning can be guided
towards cooperation by allowing each agent to believe that its opponents are playing
within the agent’s view of optimality. Here, each agent (i, say) can then reason that
the probability that its own actions are optimal takes form P(OI =1 | O~ 1=1). We
can thus define the maximum objective to be optimised as the logarithm of this
given probability.
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Algorithm 8: Multiagent Probabilistic Recursive Reasoning Q-Learning (PR2AC)

[6]

Initialise the needed parameters of networks 6/(policy), ¢' (for opponent model),
w' (Q-function weights) for each agent i, and a process N for action exploration.

Next initialise target variables W' — w (Q-function), and 0" «— o (for the policy)

Initialise an empty buffer for each agent, i, under naming D!

for iteration t=1,---,T do

Initialise the exploration process.

for each step t do

For a state s, for agent i, choose a' = yéi (s) + Nt (an action)

Step on the environment with the joint action then observe the reward,
next state, and update the buffer for each agent.

for agent id, i do

Query the replay buffer for a collection {(s,a;:,aj_i,r;:,s;-)} ]I\L 0

Sample a;-’ = plgi for all s;
Get opponent model samples {a ="/ }k 0~ P (P‘,( \s],a ') for all action

./
values a;. and state values s;-
Set

. ) 1 M . P
yi=r+y— Z Qy(s,a",a ;)
I TM & J

Update the critic by minimising

‘ 1 N
L) = 5 Y0~ Q' . )))?
k=0

Next, perform updates for the actor
.1 N . 1 M
I~ l(a. 1 i
Vel = Z:V(;zy (s)Va'~ ) Q, (s',a" ak] )
j=0 k=0
At this stage compute Ap(;i using empirical estimations

AP;fi(-|s,ai)=1E [k(at ,qul( 351,00))V i Q' (st ak, 3, 1) - i

+V-ik(a, zP¢Zz( St'af))’a*”ﬂt

where k denotes kernel function as we have introduced them.
Get the gradient estimates @cp_i J,-i then update o
end
Lastly, update the target parameters across all agents.
end
end
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This leads to the following lower bound :

log P(O} .1 = 1|(’)1f§ﬂ =1)> ZIESt [IEaiNﬂ/a_in[ri(st,ai,a;i) + H(n(aﬂst,a[i, Ol = 1,(’);i =1))]
f

E, i [Di(p(a; s, 07 = || P(a; [s1, O = )],

which essentially takes the standard reinforcement learning objective and subtracts a
a NP[DKL(p(at_l|st,(9t_l =1)||P(a;"|st, O; ' = 1)). The inequal-
ity follows from prec1se1y the fact that we are making this subtraction. It is not

non-negative term : [E

clear what the motivation behind this lower bound is from Tian et al. [7], as they
do not define an objective from which they then deduce this logically. We know
what it does, in the sense that the KL-divergence regularisation will do distribution
matching between the distributions being passed as arguments. However, its origins
or motivations are a mystery.

We rewrite this more compactly as

log P(Ohir = 1O p =1) 2 Y BBy i [r (ot 0l ) + Hiretailsi, oy )

NP[DKL(P(ﬂfi\StN|P(ﬂfi!St))]],

where on the right-hand side we are also conditioning on optimality, but this is
omitted in notation for compactness. The context is similar to what we had before
where the agent is estimating its own policy while also estimating the behaviour of
others through p. Here P denotes the prior, which is set to the observed empirical
distribution of opponents” actions given states. We parametrise the networks as
before.

We give the following result that demonstrates essential features of the algorithm
that are of interest for comparisons and coding.

Theorem 7. We define the soft action value function of agent i as

Q*(st,a,a; ") =re +EBLY v (rray + aH(7w (@} y a1, 5140) — Dreo* (@) s [ Pa Isi4))]
=1

and soft state value function as

Vi(s) = logZP(a*i]S) < Zexp(%Q*(S/ﬂi,ﬂi)o :
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The optimal conditional policy and opponent model for the variational problem are respec-

tively
1 o
. . exp(=Q*(s,a’,a™"))
*(a'|s,a”") = & 1 ,
Y i exp(;Q*(s, ai,a=t))
and , .
y P(ai|s)<2aiexp(;Q*(s,ai,ai)))
p*@als) = (V" G))
Remarks :

* The value function can be shown to satisfy Bellman-type equations, in the
sense described in Section 2.5.3.

* There is proven convergence for symmetric games with only one global opti-
mum, but not a lot of work has been done beyond this.

The approach to the rest of the algorithm follows actor-critic methodology, and we
shall give the objective functions defined and from this gradients can be extracted by
analytic computation (if needed), and these are given explicitly in the paper. After
this, we shall proceed to state the algorithm for this method in a compact sense, but
(again) the explicit version can be found on the paper itself.

First, we parametrise the networks representing the Q-function, conditional policy
and opponent model by Qu(s,a’,a™"), rrg(al|st, a; ") and pg(a; ’|s¢). Then we let ai =
folel;se,a;"), where 8, = gp(e; ';51).

We have the following objective functions. These are derived by looking into the
KL-divergence definition, then applying the so-called reparametrisation trick.

1 S S _
]Q(w) = ]E(St,ailat*i),\/p[iQw(st/aiiat l) - T(St,ai,at l) - r)/lESH_les[V(Sf-Fl)]]Z/
where
V(st1) = Qust1,af 1,8, 1) — 10gpg(; ) st11) — alog mo(at 1 [se1,4,) ;)

—i—logP(zﬁ:1 ISt11)-
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Observe that this looks like the typical update for the Q-function except for the fact
that the form of the state value function has been modified since we use the lower
bound given above. Furthermore, for policy optimisation, we can write

Jr(0) = By, _p i aminp @108 7o folelise, 7 Dlst) — Qulst, fletist a; ), a;7),  (2.2)

This equation ensures that the policy is optimised considering the entropy term (first
term) and the rewards computed through the second term.

Jo(P) = E(St,at)wp,€;1NNUOqub(gMG[i;St)\St) —log P(a; '[sr) — Q(st, at, gp(€; 51))
2.3)

+ alog rre(al|s, gpe; i)

Lastly, this equation optimises entropies of multiple distributions namely, and
respectively, the distribution of best responses, a learned distribution for the prior,
and the policy entropy. This, in addition to the reward term computed using the
Q-function once again. These correspond to all the updates we have to make. We
merely need to collect data, and constantly update the parameters using the above
equations. We give the simplified algorithm on the next page.

Notice that this is similar to Grau et al. [90] who provided further insights into the
modelling of soft Q-learning with mutual information regularisation. The authors
show strong ties between mutual information regularisation and standard reinforce-
ment learning optimisation with an extra term to optimise the prior distribution
over actions. The argument is that this aids learning by correctly assigning proba-
bility mass to actions according to importance. This is a single-agent specification,
however, which does not deal with the complexities that we shall see—for example
with value functions.

2.9 Evaluation of Previous Work

In this section, we would like to explore results that are of relevance to us in the
literature that we have discussed so far. We will start with comparison between
two of our samplers, KSD by Hu et al. [4] and SVGD by Liu et al. [82]. Figure
2.9 demonstrates a toy example with multimodal 2D Gaussian mixtures. The red
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Algorithm 9: Pseudo algorithm for ROMMEQO [7]

Initialise the network parameters @' for policies, ¢' for opponent models , w' for
Q functions and ' for the prior estimates for all agents, and an exploration
process N.

Assign W' w' for the joint Q-function.

Initialise learning rates, « and <y and replay buffer D

for iteration t=1,---,T do

Initialise the exploration process.

for each step t do

Given the present state s;, sample the agent action and
opponents “action(s) by first selecting an action Al g(Pfi(e_i ;St) with
the noise variable sampled as e~/ ~ N

Then following this by assigning a} < f(el;s¢,4; ")

Update replay buffer with observed quantities

Update the replay buffer prior via

P = argmaxlEDi[—P(a_i|S)10gP¢'(ﬂ_i|5)]

for agent id i do
Get a collection {(s,a;,a;i,r;,
Compute the gradients.
end
Update target network parameters for all the agents.
end
After a set number of gradient descent steps, reset the target network
parameters.

5;)}]‘Z\L o from the replay buffer

end
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contour shows the target distribution and the green dots are generated sample(s)
/ particles at iteration 0, 1k, 2k, 5k and 10k respectively. It is to be noted that this
mixture of Gaussians is “uniform’ in the sense that we cannot distinguish between
the quadratic components. This is important because in our case, as demonstrated
by Figure 2.10, we have only two quadratics but they are very much distinguishable,
which is what makes learning in this environment non-trivial. Hence, it is not clear
how these two methods should compare in this case in the context of the literature.
Experiments in Grathwohl et al. [87] focus on perturbations and RBM size, which
does not give us results that we can compare to.

5Ny i
‘%,.‘, o~ @ ® ° o " e s " @
SVGD o ®e G % i O @ & = =
. . & 8 ® @ e & LS &
L L & o et ()
L
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Fig. 2.9 This is a demonstration from Hu et al. [4], which compares SVGD with
KSD. This is a toy example with multimodal 2D Gaussian mixtures. The red contour
shows the target distribution and the green dots are generated sample(s) / particles
at iteration 0, 1k, 2k, 5k and 10k respectively. Notice that this context in Hu et al.
isn’t about reinforcement but merely probability density estimation.

Having seen the differential game, we now show what a successful episode of this
looks like. Here a successful run is one that discovers the optimal equilibrium.
A sample path is shown in Figure 2.10. Below, we show some results on this
environment from the literature with which we are concerned. In the literature, the
number of steps for training in this problem is set to a maximum of 25 while the
number of epochs has varied from 150 in Wei et al. [5] to 350 in Wen et al. [6]. The
first 1000 steps were used for exploration then learning begins after with annealing
coefficient (to balance reward and entropy maximisation) set to 0.5 and a noise
variable set to 0.1. Let’s now look at results from the previous work.

Wei et al. [5] show Figure 2.11 which demonstrates the training curves of multiagent
soft Q learning (MASQL) and the baseline at the time, MADDPG (multiagent deep
deterministic policy gradient learning). The solid lines demonstrate averages over
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Action of Agent 1

=100 =75 =50 -25 00 25 50 75 100
10 Action of Agent 2

Fig. 2.10 Differential Game Demo. The colour gradient represents height differences,
and the dark-blue line represents a learned trajectory by the agents from the ini-
tialisation. The dots that are not on the line represent sampled actions during the
exploration phase.

50 independent trials. We see that MADDPG did not do well, at all, converging
on average to the zero reward optimum. On the other hand, we see that MASQL
convergences more often, and it is said to converge 72% of the time.

On the other hand, Wen et al. [6] plot training curves for their method probabilistic
recursive reasoning (PR2AC) given in Figure 2.12. This method is compared to
MADDPG variants as well as MASQL. Here however, there are no details about
which runs are plotted here. It is evident that single runs are plotted, and there is no
interest in observing how often each of these methods converges, or does not, which
is in contrast to the previous example by Wen et al. We see that the other methods
(baselines) seem inadequate, and converge to suboptimality for the particular runs.
However, in light of the single run focused results it is hard to say more than this
here.
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Convergence Results
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Fig. 2.11 Results for MASQL [5]. This figure shows training curves for MADDPG
and MASQL. We see that MADDPG only converged to the suboptimal solution,
while MASQL attained optimality every so often. This is over 50 independent trials.
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Fig. 2.12 Results for PR2AC [6]. We see training curves for PR2AC, MADDPG
variants as well as MASQL. We see that on the plotted runs, PR2ZAC does better than

all their competitors.
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Fig. 2.13 Results from ROMMEQ [7]. Results for PR2AC [6]. We see training curves
for ROMMEQO, PR2AC, MADDPG variants as well as MASQL. We see that on the
plotted runs, PR2ZAC and ROMMEQO do better than all its competitors.

Lastly, Tian et al. [7] evaluate their method regularised opponent modelling with
maximum entropy objective (ROMMEQO) against MASQL, PR2AC, and MADDPG
variants, shown in Figure 2.13. Once again, they plot training results for individual
runs. We observe the previous behaviour once again, but this time we observe that
the convergence rate of PR2AC is slower than ROMMEOQ, and the two methods are
the ones that attain the maximal score in their respective runs. The implementa-
tion of ROMMEO is done via actor-critic methods, hence we should be calling it
ROMMEOAC to highlight this fact, but we will abbreviate this to ROMMEO.

What we see here is that the policy decomposition based methods with regularisation
are somewhat effective, in the sense that they can achieve the maximum score when
compared to others. It is not clear, however, how these plotted trials were selected.
It is also not clear how these methods perform on average, which where are details
that are explicitly shown in Wei et al., who introduced MASQL. We will take very
good care to look at not just convergence for our studies, but also the statistics of

convergence behaviour, in the mentioned sense.

In this chapter we introduced reinforcement learning, which we extended to multiple
agents. After this, we discussed ideas about mutual information and entropy, whose
usage we saw with regards to communication and coordination, and that we also saw
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when we reframed reinforcement learning as inference. This paved way to entropy
regularised multiagent reinforcement learning methods, which we mentioned are of
interest to us. Along the way, we also saw density estimation methods that we used
to sample from what we referred to as general policies. We lastly introduced the
differential game, which is a game comprised of two agents that need to coordinate
in order to find a global maximum, and we saw that learning in this context is
hard due to the agents being prone to relatively overstate the importance of the
local minimum (relative overgeneralisation). What we would like to do moving
forward is introduce our methodology for solving the problem, give results, and
then end with a discussion. Our methodology takes inspiration from the policy
decomposition based alternatives, and we extend these methods by regularising
differently than what has been done-using mutual information. We will see that
this greatly improves convergence and stability, numerically, and we will also give a
rigorous discussion on why this helps.



Chapter 3

Methodology

The goal for this chapter is to introduce the methodology that we used in trying to
answer our research questions. Recall that our set-up considers the differential game
wherein we have two agents trying to jointly locate a global maximum, from Subsec-
tion 2.6.1. We noted that this is hard because agents are prone to overestimating the
importance of the suboptimal (local) maximum. Our goal was then to understand
the literature surrounding this problem, the nature of the pathology leading to this
breakdown, and to extend the ideas in this space. Our research questions were
inspired by this, in the context of multiagent soft Q-learning, and we reiterate them
below.

Research Question : If we know that the policies we learn should be general enough
to model arbitrary distributions, then what is the cause of inconsistent convergence
in multiagent soft Q-learning?

Sub-research Question 1 : Assuming that the policies learnt by the agents are general,
is the way we sample from these general policies the cause of the problem?

(Corresponding) hypothesis 1 : Assuming that the policies learnt by the agents are
general, it must be the case that the way in which we sample from them is inefficient
and can be improved by better performing sampling strategies.

Sub-research Question 2 : If the sampling strategies do not improve convergence,
then are we simply not learning the policies well (i.e are we not doing the correct
optimisation)?
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(Corresponding) Hypothesis 2 : If the sampling strategies do not provide insight,
then we not doing the correct optimisation for the learning of policies.

Notice that we are interested in soft Q-learning because we believe that soft Q-
learning agents should be capable of learning policies given the literature on soft
Q-learning [20], and we are interested in getting to the bottom of whatever could
be causing this. So, we are aware that there may be other methods that are more
different but that solve the problems, but we are interested in discovering the
potential flaw in the multiagent extension of soft Q-learning.

Before we begin we would like to discuss some terminology to ensure that our
ideas are coming across clearly. In Section 2.7, we discussed samplers which are
mechanisms for extracting sample points from a target distribution that is defined.
In Section 2.8 we started talking much less about sampling but more about objectives.
What's the difference? The difference is that objectives define functions that we
want to maximise. Usually, maximising objectives maximises the reward function
by construction. In single-agent reinforcement learning, we want an agent to learn a
sequence of actions that maximise this reward, and we refer to a function that outputs
either this exact sequence or an approximation thereof as the policy. The analytical
form of this policy is defined by the objective. In contrast, when we talk about
sampling we have a target model (usually approximate) that we want to query in
order to get sample points. These sample points enable us to build sample trajectories
in order to evaluate the expectations during the learning process. Evaluating these
expectations is important since we want to maximise their value in building our
optimal behaviour models/optimal policies. To this end, we provide a table that
summarises these elements. We state each of the mentioned samplers and objectives
mentioned in the literature review as well as the optimisation procedure that we
have developed, and give a brief summary about each. All of this information is
provided in Table 3.1.

Method Brief Description
SVGD This is a sampling method that learns

a target distribution by updating a set
of initial estimates in the direction that
minimises the Stein discrepancy, via

kernels.
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KSD

This is a sampling method that learns
a target distribution by updating a set
of initial estimates in the direction that
maximises the gradient of the Stein dis-
crepancy, via kernels.

LSD

This is a sampling method that learns
a target distribution by updating a set
of initial estimates in the direction that
minimises the Stein discrepancy, but
doesn’t use explicit kernels.

MASQL

This is a model building method that
is based on the naive generalisation
of Maximum Entropy Reinforcement
Learning to multiple agents. This
method assumes that the actions are
independent given the state.

PR2AC

This is a model building method that
generalises MASQL. In contrast to
MASQL, this method assumes that
the policy takes what we have called
a Bayes-type decomposition (as op-
posed to being independent given the
state).

ROMMEO

This is a model building method
that specialises PR2AC. In contrast
to PR2AC, the objective here has KL-
divergence for regularisation in light
of the learned opponent model.

MI

This is the method that we developed
which builds on ROMMEO. In contrast
to ROMMEO, the objective here links
the joint policy to the learned model
of opponents and the policy of the spe-

cific agent.
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Table 3.1 This table aims to disambiguate samplers from the actual mechanisms
that determine the models/forms of policies that we work with. We start by listing
the three samplers that we worked with, and providing brief description of these,
then we move on to the optimisation descriptions (that determine the way we learn
the policies/behaviour models, as we mentioned above) and, again, describe these
briefly.

In our pursuit, we will start by giving a description of the optimisation procedure
that we devised for this problem. This will be followed by a description of the
experiments we designed based on the subresearch questions. It should be noted
that in both experiments we only consider the situation where both agents in a
given trial share the same algorithm for learning as these have been proven to
be more effective, in our context, in the literature [5][6][7]. This chapter will be
slightly short because the results chapter, Chapter 4, will contain quite a lot about
the methodological exploration as well. We found that this design allowed us to
better present the current work.

3.1 Proposed Extensions of the Information Framework

What we would like to do in this section is establish an optimisation procedure that
performs best given the differential game. Mutual information-based optimisation
seems reasonable because when each agent, instead of optimising this, only focuses
on its own entropy then this may make it hard for the other agent to reason about
how its opponent will react to its actions, which we see in our context through
the observed inconsistent convergence [20]. Hence, often coordination doesn’t
follow from this case and, instead, we get inaccurate gradients for non-convex
reward functions. However, focusing on maximising the mutual information allows
the agents to explore, as needed, while also paying close attention to how their
opponents are doing by the definition of this quantity [43].

We propose that the objective that solves this problem in the context of the previous
chapter is

' =Elr(st,ar) + I(T'(-|s); 0~ (-|se,a}))],
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Notice that again, the state information is not really important in this case, since the
reward function only depends on the actions. This is written from the perspective
of agent i, looking at the mutual information term. However, we know from the
earlier discussion that mutual information is symmetric. Hence, the perspective
from which we look at things does not make a difference.

This was inspired by the papers we discussed in Section 2.4 which sought to under-
stand skills discovery, emergence of coordination and communication, respectively,
He et al. [41] and Lazaridou et al. [42], who used mutual information based opti-
misation in this endeavour in Section 2.2. Still in the former section, we saw that
Jacques et al. [66], van der Heiden et al. [64] and Krupnik et al. [67] use mutual
information to improve agent learning in Section 2.4. Lastly, we saw Kim et al.
[46] who also consider mutual information but optimise via derived lower bounds,
which we gave in Section 2.3. Motivated by the results obtained in these studies, we
modified the objective and considered mutual information instead.

Notice also that we are considering the decomposition of the policy as is given in
Wen et al. [6] and Tian et al. [7] so that we do not have the agnostic agents that we
had earlier, which we found were insufficient to solve the game consistently when
we looked at the original MASQL implementation (refer to Chapter 4, Section 4.1).
Numerical results also show however that PR2ZAC on its own is also lacking, which
we shall see in Chapter 4, Section 4.2. We demonstrate this in the upcoming results’
section. Hence, we make this assumption on that basis.

In order to gain more insights from this, we expand the mutual information term,
and we see that this will be exactly

I(7T' (- se); 0" (- st,ak)) = E[log 7' (- |s¢) — log o' (-|st,a})],

in the context of our optimisations. We get this directly from the definition. Follow-
ing the approach in Haarnoja et al. [20], we find that what this tells us is that agent i
should optimise the objective defined by

eXp((l/Dé)Q(St,uﬁfi)))P_i(ﬁfiISt,-)>

J«() = Dyt ('l ) 7
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while similarly the other agents are seen by this agent as optimising

Jo() = D (i sp)| QLI Dlatlsn D)

Using the reparametrisation trick [91], we can rewrite everything here as

1 o . _
]Q(w) = IE’(St,ai,a;i)ND (E[Qw(slal/a 1) - r(st/a;/at 1) - ’)/IEStJrleS[V(SH_l)]]Z),
where

V(st1) = Qulst41,4 1,4, 1) — a(log pp(d; /1 [st1) — log (@) 11|51, 8 1))-

Furthermore, the objective for agent i’s policy optimisation becomes

Jr(8) = Eq, p i n -imp @108 TTo(foletist, 8, 1) |st) —log pg(a; ' 51)) — Qu(st, foletsst iy 1), 4;)),
(3.1)

and that for its opponents becomes

Jo(¢) = ]E(Stﬂt)wp,e;in(“(logfhp(g(p(€t_i,‘St)|St) — log tg(ai|st, gp(€; '551))) — Qu(st at, e '551)))-
(3.2)

We are not doing anything complicated here. What we have done is defined our
objectives, then we see from this that the agent and its opponent model should be
trained by minimising the stated KL-divergences, which translates by definition to
the above forms. This is to say that the reparametrisation part comes in when it
comes to estimating actions, but the forms of these objective functions themselves
are ultimately informed by the decision to consider KL-divergences as they are
given above, inspired by Haarnoja et al. [20]. In a sense then, the algorithm should
follow [7] closely except the fact that we have new objective functions, and simpler
gradients to compute. We give the algorithm in Algorithm 10.
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Algorithm 10: Pseudo algorithm for MI. Our algorithm.

Start by initialising the parameters ¢’ for the policy, ¢ for the opponent models,
and w' for Q function weights for all agents, and an exploration process N.

Assign w' < w' for the joint Q-function.

Initialise learning rates, « and vy and replay buffer D'

for iteration t=1,---,T do

Initialise the exploration process.

for a given step t do
Given a present state s;, choose an agent action and then proceed to find

opponents’ action(s) via the following assignments :
Start with 477! < g¢_i(€";st) wheree '~ N
Followed by similarly assigning ai —f (elt' ;st,ﬁt_i)
Update replay buffer with observed quantities
for each agent id, i do

Query the buffer for a collection {(s, a;'-,aj_i,r;:,s;)} ]Ii 0
Compute the gradients Vi Jo(w'), Vi J2(67), V <pi]p(¢i)-
end
Update target network parameters for each agent .

W W' — AgV i Jo@)

0" < 0" — Ay Vi ] (6"

¢ — ¢ = AV yilo(9)

end
Given a fixed number gradient descent steps, do a reset for the target
network parameters, w. Compute

Wi+ Bw' + (1 — p)w

end




66 Methodology

3.2 Sub-research question 1: Experimental Design

Looking into the literature informed us about a promising direction to investigate
for the sampling experiments. In particular, sampling via reproducing kernel Hilbert
spaces has been established as being very efficient above other known techniques
[82]. Hence we focused on techniques that leverage the ideas in this space. Moreover,
the key feature of methods in this space is that they exploit Stein’s discrepancy, which
is a measure of the difference between two distributions that we may think of [83].
The key then is that the literature often tries to optimise objectives by sampling in a
way that minimises this discrepancy.

There are three methods that we investigated :

¢ Stein Variational Gradient Descent : The updates here are based on the first
derivative of the KL divergence using kernels.

* Kernelised Stein Discrepancy : The updates here are based on the second
derivative of the KL divergence using kernels.

* Learning the Stein Discrepancy : The updates are based on the first order
derivative of the KL divergence but the kernel is replaced by a critic.

The important thing for our investigation is that we were interested in finding out
which method provided convergence in a way that is consistent. What this translates
to is learning to converge to the optimal solution every time. The way in which we
did this was as follows :

* code up each strategy for sampling,
¢ do multiple experiments for the given strategy,

* then looking at aggregated expected returns and their associated statistical
variables.

In our case, there is knowledge of exactly how the reward function should behave
when we are converging, and so we plotted the average reward function over epochs
as well as the average maximum episode return over the epochs as well. The used
specifications are as covered in [6], and the number of performed separate runs is 50,
from which one would expect to see convergence 36 times [20]. We computed the
average for the mean path returns as well as the average for the maximum episode
returns to make the plots. The number of iterations/epochs was 2000, with the
number of steps bounded by 100 as done in the literature [20][6][7]. This number of
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epochs is larger than what is used in the already cited literature to give a fair chance
of convergence for the methods. We provide the said plots each method, and also
show the relative levels of the suboptimal and optimal reward levels where this is
relevant.

3.3 Sub-research question 2 : Experimental Design

The experiments for this hypothesis were informed by the literature once again. The
first thing to note is that the probabilistic recursive reasoning method by Wen et al.
[6] essentially only imposes the Bayes-type decomposition of the policy, wherein
the agent models the beliefs of other agents using varying degrees of reasoning. We
chose level k = 1 because :

* This level gives the agent much less extra information than k > 1.

* The paper focused on this level for demonstrating the results in the game, and
so this is the fair choice for making comparisons with literature.

Secondly, the method on regularised opponent modelling by Tian et al. [7] is
related to probabilistic recursive reasoning in the sense of having this Bayes-type
decomposition of the policy, but it adds an extra layer in the optimisation state
wherein the agent maximises the reward and entropy while also trying to explicitly
sharpen its prior beliefs about the other agents through a regularising KL-divergence
term.

Again, we get the sense from these three methods that at each stage we are chang-
ing one aspect of multi-agent soft Q-learning, or the subsequent method that was
demonstrated to work. It is worth stressing that the other two methods mentioned
above, unlike the original extension, were not studied well in terms of convergence
behaviour, which is what we are trying to consolidate here. The focus there was
on evaluation, but it wasn’t clear whether the methods were given a fair chance at
convergence, which we strongly believe is important for the question that we are
asking.

The method we propose takes the kind of modelling done through the regularised
opponent modelling channel, and modifies it. We change the way we optimise the
functions of interest by doing mutual information regularisation. So, to be more
precise, we only add a regularising term on the reward for mutual information, and
we adapt the value functions and policies appropriately as given before, in Section
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2.8. In essence, again, we are adding minimal building blocks, and observing the
behaviour for convergence.

For the experiments, we performed 50 runs for each model (dropping multi-agent
soft Q-learning since it is already inefficient) similar to Wen et al. [20]. The number
of epochs was 3000 for probabilistic recursive reasoning, and 1750 for the other two
methods (the number of steps was bounded 350). This is higher than Wen et al. [6],
Tian et al. [7] and Wei et al. [20]. We wanted to give all the methods a fair chance at
convergence, because it was important to us whether a method ultimately solves a
problem or not. We then plot the maximum path returns and mean path returns as
well as associated standard deviations as before, and observe the behaviour. We also
analyse the number of runs that converged to optimum, suboptimum, or did not

converge.

The design choice for presenting these results sheds additional elements that will
allow us to talk about the quality of our results. We plot the standard deviations
because they give us a sense of how the mean path returns behave across the
trials. Notice that the standard deviation plots do not show the exact distribution of
rewards along the training curve (currently assumed to be normal but it need not be).
It does, however, demonstrate clearly the bounds of observed behaviour, and allows
us to see whether or not convergence is consistent-which is what we care about.
We also choose to use the aggregated maximum path returns. The latter allow us
to essentially ask the following question : How often could the agents find optimal
trajectories across the trials? If the agents could find optimal paths in their runs,
could they also learn to converge with as high probability as we would expect? This
seems to be a relevant because it tells us about the efficiency of gradient updates,
which is relevant for our second sub-research question.

Having reiterated our research question as well as the sub-research questions we
derived from this, and stated how we further proceeded to investigate these ques-
tions, our next stop is the results’ section where we demonstrate the observations we
made while testing our experimental designs. This will be followed by a discussion
of these results, after which we will draw our conclusions.



Chapter 4

Results

4.1 Results: Sub-research Question 1

Recall that in terms of the dynamics of the game itself, we expect the behaviour

detailed on Figure 4.1 from the agents. This is from a successful run that discovers
the optimal equilibrium.

Action of Agent 1

-10.0 -7.5 -50 -25 00 25 50 75 100
Action of Agent 2

Fig. 4.1 Differential Game Demo. The colour gradient represents height differences,

and the dark-blue line represents a learned trajectory by the agents from the initiali-
sation
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Below, we provide not visuals of this simulated behaviour (which is sometimes done
in the literature), but the associated learning curves of the methods which allow us
to comment on not only whether there was convergence-which we know is the case
when we achieve a desired score-but also the statistics from independent trials. For
this reason, they are the more preferred mechanism for displaying the results.

Now, let’s look at aggregated behaviour to understand average performance. In the
following (recall from the methodology), we did 50 separate runs, then computed
the mean for the plots. We focus on the aggregated mean reward as well as the ag-
gregated maximum reward for our analyses but we also provide standard deviation
plots. The number of iterations was 2000 to give a fair chance of convergence, and
to also test for stability of the mechanisms. The first method that we look into is
SVGD whose results are found in Figure 4.2. We plot the averaged rewards over
the trials, and the averaged maximum reward attained by some trajectory over the
independent trial.

The way by which we obtain this plot is the following. First, we start with aggregated
mean and maxima plots for the runs of the methods, i.e. we plot the mean reward
using the independent trials, and we also keep the maximum reward attained over
the runs (/episodes) of each trial and we take the mean similarly. The first plot for
SVGD (Liu et al. [82]) demonstrate this in the already mentioned Figure 4.2. What
we see here is overlay of the mentioned curve means, with the mean path return in
blue and the maximum episode return in green.

Training Data - SWVGD

25 4 —— mean-path-retumn i
=== max-episode-return I:

0 250 500 750 1000 1250 1500 1750 2000
episodes

Fig. 4.2 SVGD aggregated performance. This figure shows aggregated mean path
return curves for 50 runs of SVGD (blue line), and it shows the aggregated maximum
episode return (green).
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This curve shows that the average reward tended towards the zero reward reference,
which is the suboptimal equilibrium. This, in our case, means that at programme
termination the curves were getting closer and closer to the zero reward value.
Looking at the standard deviation associated with the mean path returns, we obtain
Figure 4.3.

Training Data : SVGD

— mean-path-return

0 250 500 750 1000 1250 1500 1750 2000
episodes

Fig. 4.3 SVGD mean path return aggregate and standard deviation. This plot shows
the mean path return aggragate over the 50 independent trials (solid blue line) as
well as the standard deviation associated with these returns (light blue shading) for
SVGD.

We see in Figure 4.3 that the convergence of the average around zero (solid blue
curve) has an associated standard deviation for each point (demonstrated by the
light blue region), which gives us a sense of how different the mean path return
outcomes could be for the trials in consideration. The next result we look at, Figure
4.4, is that of the learned Stein discrepancy mechanism.

Here we consider the LSD-variant (Grathwohl et al. [87]), where the reward signal is
quite noisy, as we can see on Figure 4.4. This method equally did not do too well, as
can be seen. In the set of runs intended for this evaluation there was no optimal run.
We provide the aggregated mean path returns (blue) as well as maximum episode
returns (green).

Here, unfortunately, the results were not as clear as we would have liked. This
might have been caused by a couple of things, which we discuss later. We see
that the signal was two noisy, and when aggregated we actually get a signal that
converges to something slightly less than zero, which is not good. Again, the blue



72 Results

Training Data : LSD
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Fig. 4.4 LSD aggregated performance. This figure shows aggregated mean path
return curves for 50 runs of LSD (blue line), and it shows the aggregated maximum
episode return (green).

curve represents the mean path returns and the green curve is the maximum episode
return.

Training Data : LSD
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Fig. 4.5 LSD mean path return aggregate and standard deviation. This plot shows
the mean path return aggragate over the 50 independent trials (solid blue line) as
well as the standard deviation associated with these returns (light blue shading) for
LSD.

Similar, we see from Figure 4.3 that the convergence of the average around zero
(solid blue curve) has an associated standard deviation for each point (demonstrated
by the light blue region) for the particular method. Here the signal is noisy, as
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mentioned above but the bounding light blue region seems to fall within similar
bounds to what is observed in Figure 4.3. Lastly, the results for KSD (Hu et al. [4])
are found in Figure 4.6. We see that the performance is similar to that of SVGD. In
particular, this method merely makes it to the suboptimal equilibrium.

Training Data : KSD

254 — mean-path-return i
. ]
=== max-episode-return ]

return

0 250 500 750 1000 1250 1500 1750 2000
episodes

Fig. 4.6 KSD aggregated performance. This figure shows aggregated mean path
return curves for 50 runs of KSD (blue line), and it shows the aggregated maximum
episode return (green).

When looking at the standard deviation associated with the curve in Figure 4.6, we
observe similar behaviour to Figures 4.3 and 4.5. However, the notable difference
here is the smaller bounding region for the mean path curve, meaning that the
curves behaved consistently to a greater degree than the other methods we have
seen above. This information is encapsulated by Figure 4.7.

For the statistics we look at Table 4.1. This table qualifies the behaviour seen on the
plots according to counts on the trials, which is also informative. We see, from here,
that KSD and LSD did not converge optimally, while SVGD converged optimally
twice, did not converge twice and converged suboptimally the rest of the time.

Table 4.1 should be taken as an instrument that provides more details by means of
counting. So, while we were interested in averages before, here we look at the counts
for possible observable behaviours. There are three such behaviours — convergence
to the optimal solution, convergence to the suboptimal solution and no convergence
at all at programme termination. Since non-convergence can offset the final reward in
the average in unpredictable ways, it becomes meaningful to know exactly what the
convergence numbers are in their respective bins of optimality and suboptimality.
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Training Data : KSD

51 — rean-path-return

0 250 500 750 1000 1250 1500 1750 2000
episodes
Fig. 4.7 KSD mean path return aggregate and standard deviation. This plot shows
the mean path return aggragate over the 50 independent trials (solid blue line) as

well as the standard deviation associated with these returns (light blue shading) for
KSD.

Converged | Converged Suboptimally | No Convergence
KSD 0/50 50/50 0/50
SVGD 2/50 46/50 2/50
LSD 0/50 50/50 0/50

Table 4.1 This table shows the convergence statistics as proportions. In particular, it
demonstrates the percentage of trials that converged optimally, converged subopti-
mally and that did not converge, for each of the three methods we looked into -LSD,
KSD, and SVGD.

4.2 Results : Sub-research Question 2

This section explores the experiments regarding the methods that do some form of
opponent modelling. We start with pure opponent modelling, wherein the agents
are trained using PR2AC (Wen et al. [6]). Recall that the only assumption here is that
the agent merely assumes that the opponents are able to act in a way that is informed
about the actions that the agent might take. This does not happen explicitly, but
the agents themselves have to build a model for how they think the opponents are
behaving.

We obtain the results in Figure 4.8. Firstly, we see that PR2AC grossly underper-
forms compared to the other models explored previously. This model certainly did
converge to the optimum a number of times, but for most part it simply did not even
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converge to an equilibrium. This is precisely why the value is below zero. When
there was convergence, it was optimal but it was not a usual occurrence.

Training Data : PRZAC
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— rean-path-return
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Fig. 4.8 Aggregated performance for PR2AC. This figure shows the aggregated
training curves of PR2AC (blue) and the aggregated maximum episode returns
(green) for each of the corresponding 50 trials. The mean path returns denote the
average reward over episodes in a run, while the max episode returns denote the
maximum reward that has been attained at each episode given a run.

Moving forward from this, we consider ROMMEQO (Tian et al. [7]). Recall that the
difference between this method and PR2AC is that the former behaves from an
optimality assumption. Each agent assumes that its opponents are acting optimally,
and it optimises the objective resulting from this through a lower bound that has
an extra KL-regularisation on the prior distribution. This optimality assumption is
not explicitly present in the former. We obtain good results here as demonstrated by

Figure 4.9.

Lastly, looking into our own method we see quite an improvement from ROMMEO.
It appears that the gradient updates are always good enough to move the agents
towards the maximum at some point (or for some trajectory), and it seems that it is
likely the case that when the agents find a maximum trajectory they learn from it
and succeed. We see that this is not always true since there is a discrepancy between
the maximum episode return and the mean path return in Figure 4.10.
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Training Data : ROMMEO
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Fig. 4.9 Aggregated performance for ROMMEQ. This figure shows the aggregated
training curves of ROMMEQO (blue) and the aggregated maximum episode returns
(green) for each of the corresponding 50 trials. The mean path returns denote the
average reward over episodes in a run, while the max episode returns denote the
maximum reward that has been attained at each episode given a run.
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Fig. 4.10 Aggregated performance for MI. This figure shows the aggregated training
curves of MI (blue) and the aggregated maximum episode returns (green) for each
of the corresponding 50 trials. The mean path returns denote the average reward
over episodes in a run, while the max episode returns denote the maximum reward
that has been attained at each episode given a run.

The important thing is, of course, the statistics. We find the number on Table 4.2.
This table is quite revealing in the sense that we see that the method proposed only
failed minimally on our trial, and in this case it did not even converge. Because we
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Converged | Converged Suboptimally | No Convergence
PR2AC 2/50 33/50 15/50
ROMMEO 39/50 9/50 2/50
MI 48/50 0/50 2/50

Table 4.2 This table shows the convergence statistics. In particular, it counts the
number of trials that converged optimally, converged suboptimally and that did not
converge, for each of the three methods we looked into - PR2ZAC, ROMMEQO, and
MI.

truncated the experiment runs at a fixed time (to allow for these comparisons), it
is not clear whether this is due to that or whether the agents were just not going to
converge. This is promising, however, especially given the method’s good conver-
gence track in the other runs, and we suspect that this doesn’t violate claims that we
could make about robustness.

At this point, we have seen that ROMMEQ and MI seem to be close in performance
with each other (but not equivalent) and better than the previous methods we have
considered (MASQL and PR2AC), so we can look closely at their performances in
Figure 4.11.

Combined Training Data
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Fig. 4.11 Comparison of ROMMEO and MI agents. The figure shows the aggregated
mean path return curves above for ROMMEO (green) and MI (blue) agents. The
references for maximum reward (orange) and the suboptimal convergence zero
reward (black) are plotted for ease of comparison.

The main purpose of this visual is to show that the proposed method performs
better than ROMMEO, with ROMMEO being the best stable alternative in the list
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of methods from the literature. We put everything together in Figure 4.12 for some
overall perspective.

Returns from Logs
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Fig. 4.12 Our Comparison of PR2ZAC, ROMMEQ and MI agents. The figure shows the
aggregated mean path return curves above for PR2AC (yellow), ROMMEQO (green)
and MI (blue) agents. The references for maximum reward (red) and the suboptimal
convergence zero reward (black) are plotted for ease of comparison. We only plot the
tail of the PR2AC vector since this method required more time for convergence, and
we wanted to present the methods on the same x-axis scale (otherwise the lengths
for the axes would have been different, since PRZAC would have more points than
the other methods). This means that we are looking at what PR2AC eventually
converges to here, but the behaviour at start time can be viewed in Figure 4.8.

Nothing is new here, once again, we just put in PR2AC for perspective on how badly
it behaved.

Notice here that we have only incorporated means, absolute maximum rewards,
and we have not focused much on standard deviations. We find that the information
captured by standard deviations is something that we can infer from the figures that
we have focused on up to this point. However, we include this part for completeness.
To this end, we give plots with the mean and standard deviation.

We start by giving a chart that shows the training curve for the mean returns of
PR2AC as well as its standard deviation in Figure 4.13. Notice here that the region
for the deviation of points along the curve is big compared to what we will see
below. A standard deviation as huge (at the end of the episode horizon) means that
the method was not consistent in its convergence, but we see that it did converge
optimally, but sometimes not so optimally or not at all.
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Training Data : PR2AC
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Fig. 4.13 Aggregated performance and standard deviation for PR2AC. This figure
shows the aggregated training curve of PR2AC (solid blue line) and the standard
deviation (shaded region) corresponding to the training curve for the corresponding
50 trials.

Next we look at the same data for ROMMEQO in Figure 4.14. We see here that the
standard deviation is better behaved, as one would expect for a more consistently
converging method. The region as seen to be slightly breaching into negative values
denotes non-convergence, but we see that the average signal lies in the positive
quarter of the 2D plane eventually, and this tells us that there is convergence to the
optimal solution on some runs—-in agreement with the numbers in Table 4.2.

Lastly, we observe that MI gives similar a similar standard of points along the
reward curve to ROMMEQO, except for the fact that the aggregate line is closer to the
maximum edge of the shaded "deviation region” on the plot. Again, this is what one
would expect for a more consistently converging method. The standard deviation
region is similar to that of Figure 4.14 except that the region is further constrained,
and this (again) tells us that there is convergence to the optimal solution occasionally
but for a greater number of times than ROMMEOQ (Figure 4.14)-in agreement with
Table 4.2.
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Training Data : ROMMECQ
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Fig. 4.14 Aggregated performance and standard deviation for ROMMEQO. This figure
shows the aggregated training curve of ROMMEO (solid blue line) and the standard
deviation (shaded region) of the curve for the corresponding 50 trials.
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Fig. 4.15 Aggregated performance and standard deviation for MI. This figure shows
the aggregated training curve of MI (solid blue line) and the standard deviation of
the curve (shaded region) for the corresponding 50 trials.

The last point is that this is mostly information that we observe when we look at
Figure(s) 4.9 and 4.10. The huge standard deviation of Figure 4.13 is also captured
very well by Figure 4.8. Hence, we shall continue our discussion with the Figure(s)
4.8,4.9 and 4.10. So, what have we learnt? We have learnt that mutual information
is actually quite efficient when it comes to efficiency with coordination, and that it
allows us to learn even in contexts that are usually difficult to learn in due to relative
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overgeneralisation-based pathologies. We will discuss why this is the case in the

discussion.



Chapter 5
Discussion

In this section, we consolidate our results with the literature. The starting point,
Section 5.1, seeks to address the first research question wherein we asked whether
the part of the algorithm that was failing was the sampling mechanism, from the
perspective of Section 4.1 and Section 2.9. The second part, Section 5.2, addresses
the second questions which was asking whether or not the agents are learning the
policies well to start with. In the same vein, we discuss this section looking at the
literature we provided and previous results in the literature (Section 2.9) as well as
the results we produced in Section 4.2. Each of these will be discussed separately
after which we will conclude the work.

5.1 Research Question 1: Discussion

In the first part of the experiments sections, Section 4.1, for the first hypothesis,
we saw results for different samplers implemented on the naive multiagent soft
Q-learner. Here we notice that the behaviour for LSD (Figure 4.4) and KSD (Figure
4.6) was very similar. Both methods converged suboptimally in all the 50 runs that
we did, showing very similar behaviour to each other, while SVGD in Figure 4.2
converged twice, did not converge twice and converge suboptimally the remaining
times. Additionally, we noticed that for LSD (Figure 4.4) the signal was noisy.

Let’s discuss this further. This behaviour could be due to a couple of reasons.

e The first is that we did not train the critic as detailed on Grathwohl et al. [87],
which involves learning a function by an explicit adversarial process. Instead
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we used a value function that is derived from the learning process of the agent.
There is little reason to believe that this should have a significant impact on
the results.

* Secondly, it could just be the fact that the method is approximation-based,
and need not necessarily trump the other options (SVGD and KSD) in lower
dimensions without it having to do much work (but it should do well in higher
dimensions), especially given the first point.

Going back to the other observation above, we mentioned that there is very similar
behaviour between KSD and LSD. Is this to be expected? While KSD was shown
to perform best in multimodal (quadratic mixture) settings in Hu et al. [4] through
Figure 2.9, recall that the context we have for the differential game is different in that
the modes are not uniform, as we demonstrated in Section 4 using Figure 4.1 (from
our discussion in Section 2.9). This is, in fact, what makes this aspect challenging.

The first point here is that the Stein discrepancy is the key element of optimisation.
For SVGD, the action updates are done in the direction that minimises the discrep-
ancy. It is also worth noting that if we denote the discrepancy between distributions
p and g as S(p,q) then

VDxr(qllp) = —S@l|p).

We noted that, for LSD, we are doing the same thing in essence but trying to learn
the kernel part of the expanded discrepancy.

So, by optimising in this direction we are essentially using the KL-divergence in our
updates. The KSD optimises based on the gradient of the discrepancy, which we can
now see is the second derivative of the KL-divergence [82]. However, interestingly
enough this is the so-called Fisher information matrix. This hence, leads to a second
order optimisation. Second order methods, when they converge, converge very
fast. This is demonstrated, for example, in Ferreira et al. [92] on a discussion about
Kantorovich’s theorem on Newton’s Method. The standard deviation plots show us
the consistency of reward gains through which each method converged, and we see
that KSD was more consistent from Figure 4.7, which we suspect is owed to these
second-order, deterministic properties (as opposed to SVGD in Figure 4.3 and LSD
in Figure 4.5).

This brings us to the following point about equivalence. The plots for KSD and LSD
show similar behaviour, however these methods are not equivalent. Theoretically,
the two methods should converge to the same distribution (when there is conver-
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gence), and they should perform very similarly in lower dimensions (which we can
see is the case) [82]. On the other hand, we see that SVGD performs better in some
ways (two optimal convergences) but not great in others (two non-convergences).
We should note that SVGD and LSD are quite similar to each up to the part where
we have to learn a kernel-like function (the critic), so one would expect similar
behaviour from these two which we don’t observe here.

Recall that Wei et al. [5] demonstrated that MASQL converges 72% of the time in their
experiments, which we saw in Section 2.9 on Figure 2.11. Our results, from Section
4.1 in Table 4.1, did not demonstrate the same behaviour in terms of convergence
proportions, if we interpret the way the word converge is used in that work to
mean ‘convergence to the optimal solution” (which we assume is what the Wei et
al. was using, instead of ‘convergence to some solution’). We found a much lower
convergence ratio, which was 2/50, as opposed to 36/50. It also seems like the
subsequent work done on this problem by Wen et al. [6] and Tian et al. [7] confirms
this since the experiments demonstrated in this work seems to show consistent lack
of convergence for MASQL. However, these two papers focus on arbitrary runs
rather than multiple trials aggregated, so we don’t get to understand the behaviour
over a number trials. The code that they provide, however, gives us results consistent
with our own regarding MASQL, and the modifications in consideration.

The key takeaway here is that while improving sampling will aid learning very often,
essentially without extra cost, it will not automatically lead to better performance in
cases where there are underlying game-theoretic pathologies. In such cases, we need
to think about the pathology in consideration, and possibly devise a method that
accounts for the kind of "thinking’ that is needed given the pathology, because the
problem does not seem to be based on sample quality [83]. The general policies that
are possible in multiagent reinforcement learning certainly benefit from the study
of samplers, as we have seen that by increasing the order of optimisation we can
gain more consistency in convergence. With the advent of scalable methods (such as
LSD), it looks like there are promising prospects towards the direction of scalable
joint policy searching, where there are large state and action spaces, especially in
the context of entropy regularised multiagent reinforcement learning [93] [94]. Of
course, care needs to be taken here for the optimisation as naive implementations
may not be efficient, which we see above. We now talk about the next question that
we asked.
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5.2 Research Question 2 : Discussion

Let’s now look at the methods for investigating the second sub-research question.
The second sub-research question was stated as follows : If the sampling strategies
do not provide insight, then are we simply not learning the policies well? For this
we hypothesised that if the sampling strategies do not improve learning, then the
problem has to be that we are not learning the policies well (in terms of the under-
lying optimisation). The first method is PR2ZAC (Wen et al. [6]), which we see does
suboptimally compared to other methods in question from results in Section 4.2,
looking at Figure 4.12. The decomposition of the joint policy in this method, we
might remember from Subsection 2.8.1, takes a Bayes-type form. Beyond this, noth-
ing else changed from the original MASQL. It is clear from these experiments that
this is not sufficient for consistent convergence, in the sense that we are interested in.
The statistics related to convergence were not discussed in the original paper, but
the code for the experiments detailed in the paper was made available. Hence, we
are confident that the results we are obtaining are exactly as the authors had them.
The focus in the paper, instead, was on demonstrating that the agents can perform
well when compared to other methods based on selected single runs.

Recall from Section 2.8.1, Theorem 5, that for this method it was established that

(@ s, a')
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We know that the direction of the scaled expectation of
—Vyilog néi(ai|s)

is what we want to update the gradients towards from Subsection 2.5.1. The other
important part of this is the scaling of the gradients, which we see is a scaled Q-
function. We would hope that this Q-function scaling will behave in ways that are
‘aware’ of the underlying pathology [5]. However, this is not the case from Section
4.2 as shown in Figure 4.12. We should recall that in this section, we obtained the
Figure 4.8, which shows suboptimal performance for this method. Hence, it seems
that the gradients are constantly scaled in a way that leads to the same fate as the
original extension of soft Q-learning. It is hard to say why this is, theoretically.
However, we can make the following remark about the objective function used. We
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would further expect that this method would not be as robust as one might hope,
because the objective itself,

T
Die () [p(e) = — Y. By | F(s,a',a )+ HOmhta's)o, (a5, a)
t=1

seeks to maximise the entropy of the approximate joint function. In the early stages,
an agent trying to maximise the joint policy in the multiagent setting—-which is
non-stationary-will take a lot of time to learn, since (in addition to the difficulty to
learn with non-stationarity) entropy optimisation on its own incentivises exploration
[47]. That is if the agent has sufficient capacity to learn anyway. We are making this
remark drawing from the non-stationarity as well as the way in which we introduced
entropy in Section 2.3. This is to say that while the method seems convincing, and
while it converges sometimes to the correct solution there are aspects of it that are to
be questioned as far as efficiency and stability are concerned. What we see is that
this forced entropy regularisation leads to gradient updates that are not necessarily
aware of the pathology in question. We use the word aware loosely here to mean
that the gradients are not being computed correctly, which has to be because the
objective functions being optimised are not suitable for the problem.

Moving on, we consider ROMMEQ (Tian et al. [7]). Recall that for this algorithm the
objective was given as a lower bound of a log-probability as follows

log P(0l;r = 1foy.p =1) > ZlEst[1Ea§~n,mpr[Ri(St,ai,at_i) + H(m(a}|st, a;7))]
t

~E, i._,[Dxc(o@a; ' sp)|[P(a; " [se)]],

and here the agent tries to maximise its own entropy while minimising the KL
divergence between what its opponents are doing as well as its model of the other
agents. The form of the log probability itself is not given in Tian et al., however,
as discussed in Subection 2.8.2, which would have been informative (in the sense
of telling us more about the optimisation being done to achieve good results for
ROMMEOQO). The strength of this method (as demonstrated clearly in Figure 4.9,
which we saw in Section 4.2) lies in the KL-divergence term, which ensures that the
agent links directly to its policy optimisation the need to know what its opponents
are doing—as opposed to doing this implicitly as we saw previously in MASQL and
PR2AC in Subsections 2.8.1 and 2.5.3, respectively. While ROMMEOQO seems to work
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well, one aspect to the method that is worth looking into is its motivation in the
context of its complexity. For example, it is not clear why each agent’s maximisation
of entropy should be helpful in a non-stationary setting with multiple agents. The
intuitive effects of this term, which we feel should be non-desirable (as we have
already discussed), are seemingly cancelled by the KL-divergence term.

We also saw that the objectives for the policy and Q-function were (from Subsection
2.8.2, equations (2.2) and (2.3)), respectively, the following

]71'(9) = ]EStND,e;‘NN,ﬁ*iNP(‘XIOg 7T9(f(€f‘;st/ﬁt_i)) - Qw(st/f(ei;stlﬁt_i)/ﬁt_i)l

and
Jo(p) = E(St,at)wplet—iNN[logP¢(84>(€t_i;St)|St) —log P(@; '[st) — Q(st, a1, (e '551))

—i—oclog7t9(a§|5t,g¢(€t_i}5t))]-

The first two terms of objective function, [;(8), are (as one would expect) merely
doing reward-entropy maximisation. The construction of the latter, J,(¢), however,
is not clear. Again, the question that we ask is:

QO If we look closely to the J,(¢) objective function, then we see that the Q-function,
which corresponds to the reward, and the prior are being optimised. However,
it is not clear what role the entropy terms play in the multiagent setting.

The way in which these function are presented in the paper are as “derivatives’ (in
the sense of being derived) of a process that uses the reparametrisation trick on
KL divergence-type objectives, but these objectives themselves are not too well-
motivated. One might be skeptical here because the way the form of the policies are
given is a theorem. The argument we make here is that what that theorem does is
provide argument that a certain function will provide monotonic improvements to
the policy. It doesn’t say whether this function is the best one can do, or anything
of that form—merely that it should work in improving the policy. This is all to
say, beyond the diligently derived objective, there are many questions we can ask
about this method, which ultimately lead us to making improvements. It turns out
(however) in this case, that the objectives, [z(0) and ],(¢), improve the policy quite
impressively in the face of the adversity that the agents face in our environment.
This is clear from the experiments as we saw in Section 4.2, and as we once again
demonstrate in Figure 4.9. From the figure, we see the following :
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* The agents converge to optimality 39 out of 50 times (which we also see from
the high aggregated rewards as well as the closeness of the max- and mean-
returns, which tells us about the efficiency of the gradient updates), then there
are runs that converge to suboptimality and runs that do not converge. While
we may express slight dissatisfaction about the results and motivations of the
method, this is still an immense improvement from previous methods. This is
evident from Table 4.2, which we saw in Section 4.2.

* We see that there is increased likelihood from previous methods that if agents
can find an optimal trajectory then they can exploit it (learn from it). This is
visible from the tight gap between the curves on Figure 4.9. This is related to
the efficiency with which we compute our gradients.

So, with all the points of concern discussed and the results above, we have shown
that ROMMEQ is quite competitive. This is because it converges more often than
methods previously could (it is consistent in this sense), and more than that we see
the gradient efficiency mentioned above. In addition to this, the method is actually
quite efficient in terms of convergence. It could converge much more quickly than
the other methods that we present, and this can be observed in Figure 4.11 and
Figure 4.12 from Section 4.2. When taking the averages, we don’t really observe the
sharp gradients, which tell us convergence rates, however we still see quite clearly
from Figure 4.12 that it converges faster in comparison. To make things concrete the
difference between the needed time for convergence in ROMMEO compared to MI
was around 300 runs, all else being fixed. That being said, each run was very fast, as
can be observed from the steep gradients in Figure 4.12, and moreover we saw that
convergence rate is something that can be improved if we choose a good sampler
using the work on sampling methods, as we saw them in Section 2.7.

We see that ROMMEOQO was exactly as advertised in the results of Tian et al. [7].
Recall that in Section 2.9 we saw how the results of each of these methods were
spelled out in the original papers, and we discussed these results. Recall once
again, that we saw that ROMMEQO was very competitive compared to both PR2AC,
which converged to optimality, and MASQL, which converged suboptimally. These
results are encapsulated in Figure 2.13 which we saw in Section 2.9, where we see
ROMMEO being very quickly convergent, followed by PR2AC, then everything else
being suboptimally convergent. Our main concern with the figure was that it was
not clear which runs were selected for these experiments.
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Lastly, we are focusing on the method being introduced and advocated for in this
thesis. Inspired by the fact that we are doing mutual information regularisation, as
discussed in Chapter 3, we will refer to this as the MI algorithm (and MI in plots
and tables). Recall that in Section 3.1 we propose that we should consider opponent
modelling objectives of the form

Jw(0) = Eq e i-imp @108 Ta(f (€l 51, 07 st) —0g0p(8p(e; 550)l50)) — Quilse, f(elsse, iy 1),2;),

and
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In the specific section, these equations are labelled (3.1) and (3.2).

The first observation here is that in the spirit of the energy-based policies” context,
we are optimising the reward along with some entropy terms. The reward function
manifests itself as the Q-function, consistent with the single-agent soft Q-learning
approach [20]. The appearance of this term in both optimisation objectives gives
insight into why this method should work. In particular, the agent models its
opponents in a way that is aware that the opponents are trying to also maximise
the same reward. This is not unique to this method, however, as all the previously
mentioned methods here make this assumption-the previous alternatives being Wei
et al. [5], Wen et al. [6] and Tian et al. [7]. The reason why this makes sense is that
we are not really interested in the emergence of behaviours, which we mentioned
was a wide branch of research in the literature review (Section 2.4). In that section,
we looked into work which sought to understand skills discovery, emergence of
coordination and communication, respectively, He et al. [41] and Lazaridou et al.
[42] We also saw that Jacques et al. [66], van der Heiden et al. [64] and Krupnik et al.
[67] use mutual information to improve agent learning in Section 2.4. We are more
interested, in contrast, in being able to perform tasks well in the cooperative space,
especially with pathologies like the one that impedes learning in our environment.

Secondly, we notice that both objectives, [-(0) and J,(¢) carry terms that can be seen
to be differences of entropies. As previously discussed in Section 2.3, these terms are
responsible for the mutual information computation. In particular, we mentioned in
the methodology (Section 3) that we would like to maximise the mutual information
in the sense of works like Kim et al. [46] who also consider a similar form but
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optimise via derived lower bounds, which we gave initially in Section 2.3. One is
likely to ask : “Are these optimisations reasonable? Should we allow both objectives
to have access to both entropy terms?” The answer to these questions is a yes. The
key thing to notice here is that the opponent model is an agent’s own estimate of
how the other agents will behave, and we are not explicitly providing access to this
to the agent-instead, it learns it. Hence, having learnt this the agents should be
allowed to do with it what they want to.

Moreover, it is important to remember that mutual information is symmetric in its
variables, which is to say that for any two random variables X and Y

I(X;Y) = H(X) — H(Y|X) = H(Y) — HX|Y) = I(Y; X).

Hence, the objectives above (J(¢) and J,(¢)) are essentially maximising the same
quantity here, and this is important to strengthen the way we encode cooperative
dynamics. Remember, simply allowing the agent to assume that the opponent also
has intentions of maximising the reward was not enough for Wen et al. [6]. In this
case, we are adding something extra but which the agent believes the opponents
share-the desire to maximise mutual information. But why is the above chain of
equalities true? The key to understanding this comes from looking at the definition
we gave for mutual information, i.e that if X and Y are random variables with joint
probability distribution P(X,Y) then

P(x,y)
I(X;Y)= P(x,y)log ——"—.
XM= b B P08 popy

From this definition, it is clear that we can interchange the variable without conse-
quence. This is also clear from Figure 2.4 in Section 2.3.

The other question that may come to mind is the following. So far in our arguments
we have seemingly been making a case that entropy terms may lead to instability, as
discussed above, but problems with maximising entropies also came up in Section
2.5.2. Recall that here we saw that while the maximum entropy approach presented
is very convenient and powerful it has been shown that it has its weaknesses [73].
This work by O’Donoghue, we said, brings up a key shortcoming in the approach,
and clarifies the sense in which reinforcement learning can be coherently cast as an
inference problem. The discussion is that in all but the most simple settings, the
resulting inference is computationally intractable so that practical algorithms must
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resort to approximation. The big concern then might come from the fact that, for
our method, we just introduced another entropy term, so the question becomes :
What is really the mechanism which makes this method functional? To answer this,
we observe that there is actually a connection between mutual information and KL
divergence. This is derived in equation 5.1 following [95].

What we notice here is that what the mutual information term does is try to reconcile
the assumed product decomposition with observations of how the other agents are
behaving. So, for example, the term p(x,y) is a joint distribution that will reflect the
actual behaviour of the agents, and p(x) and p(y) are the parts that the agent and its
opponents try to learn. One can map this directly to our discussion earlier concerning
PR2AC (which we mentioned is carried through the methods that followed). We said
that the assumed that we could learn an agent’s policy and its opponents” model in
a way that leads to
m(a',a”',s) = 7' (@'|s)o " (a""|s,a’),

from agent i s perspective, or equivalently

i i |

n(at,a”l,s) =@ |s)p'(a'[s,a”),

from the opponents’ perspective. It would seem like previous methods could not
consistently achieve this, and the mutual information term is merely enforcing this.

I(X;Y) = H(X) — H(X|Y)

1
= ;P(X)logw - ;P(y)IOgH(XW =Y)

1
= )]log —— — ) log ————
gp(x Mlog s gp(x Plog 1

p(x|y)
p(x)
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Is this reasonable, or too constraining with respect to the literature? The truth
is that we are not really doing something extreme here. Recall that the objective
lower-bound for ROMMEOQO had a term

E, i [Dxepa; s)l|P(a;[s0)],

which sought to capture the dynamics in the actual environment, and reconcile them
with the agent’s beliefs/model for the opponents. However, it seems like this is not
sufficient to achieve stability. Looking at everything we have so far, it seems that the
biggest problem could be that the learned parts do not always converge to the joint
distribution in product as we would hope. In particular, we see that ROMMEQ is
maximising a reward term with conditional entropies, which is not enough from the
results we presented above in Table 4.2 from Section 4.2.

This connection to the KL divergence offers a radical shift in perspective, however.
The worries about entropy slowing down learning, are suddenly swept away by
recognising that we are actually doing optimisation of the form that we are used
to—i.e., just regularising with KL divergence. Regularisation, as we know, is just a
mechanism to offer extra guidance to a model [96]. It allows us to inject preferences
into the model, which is exactly what we are doing here. Now, is this satisfactory?
Wouldn’t it be much better to strive towards something that can do this learning
without what seems to be too much of a helping hand? This latter is definitely
something that is of immense interest. However, seeing that the literature body
inspiring this work itself needed to make extra assumptions to achieve progress
informs us that there are adjustments to be made (added assumptions). Whether
or not these are the best we can do (in a sense necessary and sufficient) is a huge
question that we shall not attempt to delve into.

We can, however, find comfort in the fact that the method seems to work exceedingly
well. This is demonstrated in Table 4.2 and Figure 4.12 (Subsection 4.2). In Figure
4.12 we see that the average reward across multiple runs is quite high. Moreover, we
get the sense that whenever the method could find an optimal trajectory it exploited
it without a doubt (look at the closeness between the max- and mean -episode-
returns). This is quite remarkable, given that previously the other methods could
not do this. We confirm this by looking at Table 4.2 as given, where we see that
this method actually converged to the optimal solution, and one run when this did
not happen. We suspect that this is because the number of steps is bounded, which
means that it is important for the agents to not wander around too much. However,
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we cannot be certain about this. With all this said, we also see on Figure 4.12. That
the method performs exceedingly well compared to the previous alternatives. We
expected our method to work because we know that regularisation helps establish
communication when the policies are defined reasonably (Siu et al. [22]). Siu et
al.’s work argues that instead of learning redundant structures which are removed
during agent execution, we should leverage shared experiences of the agents to
regularise the individual policies in order to promote structured exploration, which
is what this regularisation does.

Recall that our second hypothesis was as follows. (Corresponding) Hypothesis 2
: If the sampling strategies do not improve convergence, then we are not doing
the correct optimisation for the learning of policies. This work has beyond doubt
confirmed this in two ways.

* Firstly, in a weak sense, we see that it is this step that may have led to massive
improvement for the ROMMEQ algorithm.

¢ Secondly, in a more convincing sense, we note that putting extra constraints to

help with learning the joint policy produces remarkable results.

This is all to say that the results confirm this hypothesis. We now move on to the
conclusion, which summarises our work and the progress that we made. We also
outline in the following chapter what the key takeaways are as well as the limitations
of our work.



Chapter 6
Conclusion

Recall that this entire journey was motivated by Wei et al. [5] who sought to extend
soft Q-learning to multiple agents. In this paper there was an inconsistency with
theory that lead to us being curious about what the cause of the inconsistency might
be. Essentially the problem was that for the given extension, in the context of the
differential game [79], optimal convergence occurred less than 75% of the time. This
seemed to be in contradiction with the theory which says that energy-based policies
are general, and they should be able to learn arbitrary distributions well. We wanted
to know why this was happening, and/or what we could improve in the implemen-
tation to get good convergence behaviour (consistent optimal convergence).

Our research question was : If we know that the policies we learn should be general
enough to model arbitrary distributions, then what is the cause of inconsistent
convergence in multiagent soft Q-learning? In order to make progress with this
question, we started by hypothesising that if indeed the agents are learning optimal
policies then the only part where they could have been struggling in the learning
process was when we tried to sample from these general policies. We made this
assumption since it seemed like the method described in Wei et al. [5] was, indeed,
learning the policies well. We found, in the first part of the results (Section 4.1), that
this was not true. The study that we did for this research question is incomplete as it
stands, but it certainly offers some direction into an interesting and useful research
track. When it comes to things we would have liked to do (in this corner of the
investigation) the list is as follows:
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* 1. An experiment-based study on the usage of different kernels. This study
used a Gaussian Kernel with a dynamic width similar to Wen et al. [6] and
Tian et al. [7].

* 2. Continuing the study on methods of training energy-based models, in partic-
ular using Variational Entropy Regularised Approximate maximum likelihood
by Grathwohl, W. et al. [97] as well as on samplers outside the Stein class.

* A study on the samplers themselves as well as possible generalisations of the
methods, as a much bigger theoretical task.

We make note that the methods within the Stein class are on equivalent standing
with everything we have explored. Hence, we do not expect to see convergence
improvements in terms of optimality but we may get some variations in convergence
rates. On a similar note, it may have been informative to do an in-depth statistical
analysis with the data collected, but our approach got us to a point where we could
evaluate our hypothesis, and hence was sufficient for our purposes.

In conclusion, we notice that our first hypothesis has not been verified by the data.
Recall that this hypothesis was stated as :

* Assuming that the policies learnt by the agents are general, it must be the case
that the way in which we sample from them is inefficient and can be improved
by better sampling strategies.

We then got the sense that our assumption about the generality of the policies being
learnt by the agents (in practice) is not true. That is, the assumed decomposition of
the joint policy in the algorithm by Wei et al. [5] is not quite right. Hence, it looked
like modified opponent-modelling-type approaches, such as PR2ZAC (Wen et al. [6])
and ROMMEQ (Tian et al. [7]), are necessary to make a significant difference in
the learning from the original method used for multiagent soft Q-learning, and we
explored this discussion in Section 5.2. We moved to this point having statistically
ruled out the need to do an investigation into what exactly the difference was in
the runs that were successful in the experiments related to this hypothesis, since
such a study would be meaningful if there was a reasonable number of convergent
runs—-which is not the case here. That is to say we steered away from pursuing the
path that seeks to answer the question: What was different in the starting behaviour
that led to a win? We were aware that identifying the essence of what is required
for functionality would provide insights towards a reliable prescriptive mechanism
for extending single-agent algorithms to multiple agents—for cooperative settings.
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Peeks into the data in this regard, however, would have demanded a lot of work
to the algorithm itself, whose productivity trajectory was uncertain. The evidence
would have clearly lead to the updates essentially not being accurate (since, if these
are accurate, then we are guaranteed convergence)-thereby leading to the kind of
failure that we saw in Section 4.1.

The previous study then lead to the second hypothesis, which said that if the
samplers do not improve learning then it has to be the case that we are not learning
good policies to start with. We made this hypothesis because the sampling step was
the only non-standard step (comparing to the broad literature at the time). Hence,
it made sense to think that if that step was working well, then we must be failing
to learn the policies. This hypothesis was confirmed by experiments in Section
4.2, and we actually gained insight into what the missing element was. We saw in
the previous discussion section (Section 5.2) that we needed to make a connection
between the components of the assumed policy decomposition and the joint policy
itself. In this sense, we answered the question that we posed in the research question.
To put this answer concretely : The flaw with Wei et al.’s MASQL was that the agents
seemed to either learn independently [5], or they learned policies in a way that was
aware of other agents but where these learned policies were not properly tied to
the joint policy. It was assumed that this will happen automatically [6] [7]. Hence,
the required mechanism was a way to facilitate this connection to the joint policy,
which we found can be achieved by KL regularisation between the observed joint
behaviour and the product of the learned components.

This is a step towards prescriptions for extending single-agent algorithms to multiple
agents in cooperative games. We have shown the key aspects of what is required for
building strong extensions of algorithms, and we summarise them below.

* We can use energy-based policies in cooperative games, which we know are
general enough to learn any distribution.

e We have a vast pool of methods for sampling from general distributions, and
they are very efficient. Hence, we should leverage these when needed (for
instance, in high dimensional settings).

* In addition to naively defining an objective that focuses on reward, we need to
ensure that each agent is able to model the other agents clearly. One can do
this by assuming the Bayes-type decomposition of the policy. Moreover, it is
imperative to ensure that the parts of the decomposition obtained in training
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are connected to the joint policy of interest. This is done by adding a mutual
information term, or equivalently a KL-divergence term.

In doing all the work in the literature for this thesis, a guide like this is something
that was not present in any of the papers. Each paper offered a method that seemed
to work, but there were no prescriptive guides, in this sense. The relevance of this
work then, in a nutshell, is that it outlines a common flaw in naive extensions of

methods to multiple agents in the sense that we have described.

With all that being said we acknowledge the following limitations, which can also
be phrased as questions for further studies :

* This study only focuses on the simplest environment that exhibits the specific
pathology, but also opens doors for future work that could focus on generalis-
ing the ideas to other environments.

* Itis unclear whether the mutual information term is necessary and sufficient,
or if we can achieve the same results by minimising something that is, loosely
speaking, simpler.

* There is a huge connection between multiagent reinforcement learning and
game-theory, and game-theory has seen a lot of similar pathologies. It is
not immediately clear whether or not this method could be robust against
a reasonable set of those pathologies. In this case the pathology destroyed
gradient computation and efficiency, but another pathology that we could
look into relates to state exploration (Wen [89])- in particular, it is sometimes
hard to find a balance between optimising the reward and exploring states.
This is especially hard but crucial if there are many states. In this case, the
problem would not be gradient computation, but rather having to deal with
the exploration-exploitation balancing efficiently.

* Itis also unclear what kind of inference we could be doing in this case, in the
sense of Gupta et al. [98] who attempted to establish a probabilistic framework
for multiagent reinforcement. For example, Sergey’s survey [71], presents a
graphical model from which we see the emergence of an optimisation pro-
cedure that seeks to minimise the KL divergence of two given distributions,
which results in the maximum entropy reinforcement learning objective. Given
an objective, however, it is not easy to trace back whether this comes from
some form of inference over a graphical model in the same sense.
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* It should be possible to verify the claims in the work by potentially studying
simulated behaviour on the surface, and then using that to make a point
about what it means to have efficient gradient updates/for agents to do ‘good
optimisation’, which we did not get to in this work.

The work we have done here has shown us that energy-based policies in multiagent
reinforcement learning are very useful. We have learnt that the way we extend these
models, from single-agent reinforcement learning, is important. In our approach,
we carefully pulled apart the naive extension that seemed to underperform, and we
studied this in order to devise a better extension. We also shed light into why our
extension works, which allowed us to see the gaps that the literature had. If there is
one thing that someone who's reading this should take away, it is the importance of
caution when extending single-agent algorithms to multiple agents. Here we provide
a template of how to go about extending mechanisms, and how to study extensions
that fail. We think that multiagent reinforcement learning needs more principled
approaches to algorithms” development. We certainly have a lot of inspiration to
take from reinforcement learning, but we need to put in effort into understanding
ways of extending single-agent algorithms effectively. This will allow us to better
leverage the developments that have been made on the single-agent case.
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