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ABSTRACT

In the retina, the activity of ganglion cells, which feed information through the op-
tic nerve to the rest of the brain, is all that our brain will ever know about the visual
world. The interactions between many neurons are essential to processing visual in-
formation and a growing body of evidence suggests that the activity of populations
of retinal ganglion cells cannot be understood from knowledge of the individual cells
alone. Modelling the probability of which cells in a population will fire or remain silent
at any moment in time is a difficult problem because of the exponentially many possi-
ble states that can arise, many of which we will never even observe in finite recordings
of retinal activity. To model this activity, maximum entropy models have been pro-
posed which provide probabilistic descriptions over all possible states but can be fitted
using relatively few well-sampled statistics. Maximum entropy models have the ap-
pealing property of being the least biased explanation of the available information, in
the sense that they maximise the information theoretic entropy. We investigate this use
of maximum entropy models and examine the population sizes and constraints that
they require in order to learn nontrivial insights from finite data. Going beyond max-
imum entropy models, we investigate autoencoders, which provide computationally
efficient means of simplifying the activity of retinal ganglion cells.
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1. INTRODUCTION

The neuron doctrine, first enunciated by Ramón y Cajal, 1888 and Sherrington, 1906,
states that the neuron is the structural and functional unit of the nervous system and
has served as a conceptual foundation for neuroscience for over a century (Yuste, 2015).
Though this doctrine has helped guide progress, its methodological focus on the ac-
tivity of single cells has left emergent properties of populations of cells largely unex-
plored. While significant progress has been made in understanding how single neurons
process signals, we are still far from understanding how populations of neurons col-
lectively process information (Adrianna Renee Loback, 2018). Could statistical models
provide evidence that there are emergent properties of populations of cells that can-
not be explained by our understanding of the individual cells that comprise them, and
furthermore, could these models aid our understanding of these emergent properties?

Savin and Tkačik, 2017 define collective behavior as occurring when the distribution of
activity configurations or states explored by a population of cells has nontrivial struc-
ture that cannot be explained by the statistical properties of individual cells alone. With
the application of new recording techniques that facilitate long, stable recordings from
larger populations of neurons and the creation of spike sorting software for automati-
cally detecting action potentials or ‘spikes’ from electrical signals, we are now able to
better study this collective behaviour (Shlens et al., 2006; Olivier Marre, Amodei, et al.,
2012; Ahrens et al., 2013; Golub, Byron, and Chase, 2015). We focus on work done
in understanding the behaviour of populations of retinal ganglion cells (RGCs) - the
earliest circuit involved in visual processing (Adrianna Renee Loback, 2018). The mo-
tivation behind studying RGCs goes beyond the fact that these cells are experimentally
accessible and that it is possible to record the activity from all relevant cells within this
local circuit, which in itself is an extraordinary feat of engineering. A growing body
of evidence suggests that even at this early stage in visual processing, RGCs exhibit
collective behaviour. For instance, a model which assumes the firing of RGCs as being
independent falls short of reproducing how often pairs of cells fire together (Schneid-
man, Berry, et al., 2006).
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There has now been almost two decades of work (Schneidman, Berry, et al., 2006;
Tkačik, Olivier Marre, Amodei, et al., 2014; Berry II and Tkačik, 2020) in trying to
understand this collective behaviour, and one of the tools that has proved useful in this
body of work is the maximum entropy (MaxEnt) principle (Jaynes, 1957a). The Max-
Ent principle provides a framework for building probabilistic models of systems that
are consistent with what information we know about the system, but that otherwise
makes as few assumptions as possible about its behaviour. Fitting these models can
be framed as a constrained optimisation problem where we attempt to maximise the
information theoretic entropy, a measure of the average information or surprise in the
system. The result of this optimisation is a probabilistic model that reproduces the con-
strained statistics that can then be further used to investigate how well the information
from the constraints accounts for other statistical features of the data. For instance, the
distribution that maximises the entropy while obeying the constraint that the probabil-
ities assigned to each event sum to one is the uniform distribution, which can easily be
derived from the MaxEnt principle and is illustrated in Section A.1.2.

In this thesis, we start by introducing RGCs and explain their role in the visual pathway.
We then dwell on the implications of representing continuous recordings from RGCs as
discrete binary vectors. Having traced how the signals from RGCs get simplified repre-
sentations as vectors, we explain how we might build probabilistic models over these
simplified representations. We start by introducing the maximum entropy principle
and explain how we derive the maximum entropy distribution consistent with a set of
constraints. We then analyse the convexity of this problem and derive conditions under
which the parameterisation of the maximum entropy distribution is unique. Although
finding the distribution’s parameters is often a strictly convex problem, it is not triv-
ial to find these parameters. Thus, we explain how we might numerically determine
them using gradient ascent. As we see, this process involves calculating expectations
involving summations over exponentially many states, which motivates our introduc-
tion of Monte-Carlo methods where we estimate expectations by sampling from the
distribution.

Having established how we derive the maximum entropy description from experi-
mental data, we then note its connection to the Boltzmann distribution from statistical
physics. We define various quantities such as the microcanonical Gibbs entropy and
the heat capacity and derive them from the Boltzmann distribution. These quantities
are later used to characterise the properties of the distribution specified by our MaxEnt
models, and support the hypotheses that the states we see in retinal ganglion cells can
be grouped into discrete clusters with error-correcting properties.
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From a general handling of MaxEnt models, we then introduce some of the specific
MaxEnt models that have been used to model RGCs and discuss how we might assess
their goodness of fit, including whether certain MaxEnt descriptions of small popu-
lations of neurons might be trivial. We propose that one way that we can learn from
MaxEnt models is by using them as null models in hypothesis tests to identify the
significant statistical features of neural data. Returning to the equivalence of MaxEnt
models and the Boltzmann distribution, we also look at what we can learn about the
activity through drawing on concepts from statistical physics such as criticality and
basins of attraction.

Having covered the theoretical groundwork, we then shift our attention to applying
MaxEnt models to actual experimental data obtained from recording the responses of a
population of RGCs to a video clip. We first demonstrate our understanding of MaxEnt
models by writing code that fits them to the activity of a small number of cells and we
show that our implementation learns the same distribution and weights as an existing
implementation. Using a data-set that comes from a recording of the activity of 160
salamander retinal ganglion cells, we then fit MaxEnt models to sub-populations of
different sizes, constraining these models to reproduce lower-order expectations such
as the average probability of individual and pairs of cells firing. We examine how
well these models reproduce statistics in the data-set that they were not trained on
and investigate the population sizes at which the differences between the empirical
and predicted expectations become non-trivial. MaxEnt models that only reproduce
lower-order moments present one means of trying to find a simplified description of
the activity of this population of cells. As an alternative, we investigate auto-encoders
as a means of mapping the activity to condensed latent representations.
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2. FROM NEURAL ACTIVITY TO BINARY WORDS

Retinal ganglion cells lie towards the beginning of the visual pathway and feed in-
formation to the rest of the brain through the optic nerve. The states of these popula-
tions are represented as binary vectors, also referred to as binary words, which indicate
which cells fire, denoted 1, and which do not, denoted 0, within a window of time. As
an example, let us say we record 4 cells for 20 ms. Then, the state σ = (1101) indi-
cates that the 1st, 2nd and 4th cells generated an action potential, or fired, at least once,
whereas the 3rd cell remained silent within the 20 ms window of time. We will focus on
the probability of observing different states p(σ) within a recording, where a recording
is made by projecting a visual stimulus onto the retina and recording the response from
the retinal ganglion cells. We do not look at the probability of observing a state given
the stimulus p(σ|stimulus), nor do we try model temporal dynamics p(σt|σt−1, ...). To
make an analogy to trying to model language, we are trying to model the frequen-
cies of different words, as opposed to modelling how they get strung together or what
inspired a particular choice of words.

Though we start with the above simplified, mathematical description of the state of a
population of cells, the signals that biological cells emit are not neat strings of 0s and
1s. Furthermore, chopping up time into discrete windows is another simplification we
make and different sizes of windows will have implications for the states that we see.
Though our starting point is a pre-processed data-set where someone else has already
decided on how to make these simplifications, it is worth reviewing this process.

2.1. Sources of data

Whereas it was once difficult to record the activity of even a handful neurons, as tech-
nology has advanced, experimental techniques such as multi-electrode array technol-
ogy (Olivier Marre, Amodei, et al., 2012; Shlens et al., 2006), light sheet fluorescence
microscopy (Ahrens et al., 2013) and in vivo two-photon excitation microscopy (Green-
berg, Houweling, and Kerr, 2008) have made recording from populations of neurons
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2.1. SOURCES OF DATA

in various regions of the brain possible. Out of the various regions in the brain that
could be studied, a lot of the literature on modelling populations of neurons centers
around populations of RGCs (Puchalla et al., 2005; Schneidman, Berry, et al., 2006;
Tkačik, Schneidman, et al., 2009; Tkačik, Olivier Marre, Amodei, et al., 2014; Prentice
et al., 2016; Mark L. Ioffe and Berry II, 2017; Berry II and Tkačik, 2020), which are the
earliest neural circuit involved in visual processing. We try and motivate what RGCs
are and why they are worth studying. We start our attempt to place RGCs in context
by explaining what comprises the retina and how visual information flows through the
neural retina.

Retinal pigment epithelium

Receptor layer

Outer nuclear layer

Outer plexiform layer

Inner plexiform layer

Inner nuclear layer

Ganglion cell layer

Optic fibre cell layer

Photoreceptors - rods & cones

Horisontal cells

Bipolar cells

Amacrine cells

Ganglion cells
Light
flow

Information
flow

Figure 2.1: Cartoon showing a cross-section of the retinal layers, with the retinal ganglion cells
appearing in the ganglion cell layer. The direct pathway of transmission of visual information is
photoreceptors→ bipolar cells→ retinal ganglion cells. The horizontal cells modulate synaptic
activity of the photoreceptors and amacrine cells modulate synaptic activity of bipolar and
ganglion cells. Created using BioRender.com based on the figure in Adrianna Renee Loback,
2018.

The retina is the innermost layer of the eye and comprises the retinal pigment epithe-
lium and the neural retina, depicted in Figure 2.1. When light makes its way into the
eye through the cornea, the lens and then through the vitreous chamber, it, perhaps
counter-intuitively, first passes through most of the retinal layers before it reaches the
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2.1. SOURCES OF DATA

light sensitive photoreceptors. When light strikes the photoreceptor cells, it initiates
a biochemical process which reduces the release of glutamate from the axons of the
photoreceptors. The reduced glutamate affects the activity of bipolar and horizontal
cells which synapse with the photoreceptors. Though different bipolar cells will react
differently to signals from the photoreceptors, bipolar cells may in turn release glu-
tamate affecting the activity of ganglion and amacrine cells. For instance, off bipolar
cells will depolarise when the photoreceptors that they synapse with are in the dark.
Glutamate is excitatory to ganglion cells and causes them to depolarise. In compari-
son to the photoreceptors and bipolar cells, ganglion cells generate action potentials.
The axons of the ganglion cells then exit the eye as the optic nerve transmitting infor-
mation to downstream brain areas. The direct flow of information, which happens to
flow in the opposite direction to light passing through the retinal layers, passes from
the photoreceptors to the bipolar cells to the ganglion cells and then through the optic
nerve to the brain. The horizontal cells and amacrine cells provide lateral connectiv-
ity along the photoreceptors, and bipolar and ganglion cells respectively and modulate
the activity of the cells they synapse with, indirectly affecting the transmission of visual
information.

This is a rather terse description of how the retina processes visual information which
skips over many details. One such detail that should be mentioned is that there are a
number of different types of RGCs – one paper (Sanes and Masland, 2015) arguing that
there are around 30 – and there is an ongoing effort to classify them based on phys-
iological, morphological, and molecular criteria. For instance, ON-OFF directionally
selective ganglion cells, initially described in rabbits by Barlow, Hill, and Levick, 1964,
respond to both increases and decreases in light intensity (ON and OFF responses, re-
spectively), and they respond best to motion of a stimulus in a particular direction
(Sanes and Masland, 2015). There are also ON directionally selective ganglion cells,
intrinsically photosensitive melanopsin-containing RGCs, and local edge detectors, to
name a few. We would recommend that those who are interested in finding out what is
known about these types of RGCs refer to Sanes and Masland, 2015 for further reading.

Hopefully, the variety and functionally-derived names of these cells draws your atten-
tion to the fact that groups of RGCs are not merely light detectors but feature detectors
that perform nontrivial transformations on their inputs. Additional evidence of the
complexity of RGCs includes evidence that they are involved in predictive computa-
tion for moving stimuli (Berry et al., 1999), and periodic temporal patterns (Schwartz
et al., 2007), that they exhibit exaggerated responses to unexpected inputs (Deshmukh,
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2.2. PROCESSING DATA

2015) and differential responses to local and global motion (Ölveczky, Baccus, and
Meister, 2003). Importantly, since signals from ganglion cells feed into the brain via
the optic nerve, all that we will ever know about the visual world starts with the activ-
ity of these cells (Sanes and Masland, 2015).

Beyond furthering our understand of their functionality, there are a number of benefits
to studying retinal ganglion cells. Firstly, from a practical standpoint, nearly all of
the relevant cells in a population of RGCs are experimentally accessible and can be
recorded from, using dense multi-electrode arrays, which we explain further in the
following section. Secondly, whereas it can be difficult to study populations of neurons
in other parts of the brain since their behaviour can be effected by unobserved parts of
the brain, there is little known about neural feedback from other parts of the brain that
effects the behaviour of retinal ganglion cells (Adrianna Renee Loback, 2018). Finally,
to our benefit, a lot of the data used in studies of retinal ganglion cell has been made
available online (Tkačik, Olivier Marre, Amodei, et al., 2014; Prentice et al., 2016; Mark
L. Ioffe and Berry II, 2017), which saves us the hassle of having to record the data
ourselves. This also raises the opportunity to look into the reproducibility of previous
results.

As a final note, though we have talked about RGCs at length, the approach to modelling
that we take here is not restricted to them, and has also been applied to modelling pop-
ulations of cells in other parts of the brain, such as the primary visual cortex in macaque
monkeys (Ohiorhenuan et al., 2010), and the hippocampus in mice (Meshulam et al.,
2021).

2.2. Processing data

2.2.1. Recording

We briefly explain how recordings are obtained from retinal ganglion cells, though we
recommend referring to Olivier Marre, Amodei, et al., 2012 or section 2 of Mark L Ioffe,
2017 for further information. The retina is detached from the eye in darkness and kept
in oxygenated Ringer’s solution in order to prevent it from deteriorating. Once the
pigment epithelium is removed, the retina is attached to a semipermeable membrane
bathed in poly-L-lysine and then pressed, ganglion cell side down, against a multi-
electrode array. The stimulus is then presented to the retina and the raw voltage traces
from the array are then digitised and stored using a 252-channel preamplifier for off-
line analysis.
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2.2. PROCESSING DATA

Though we now have a digitised recording of the signals detected by the multi-electrode
array, we are faced with the difficult task of sifting out the noise, detecting the spikes
and finally clustering groups of spikes with similar features corresponding to different
neurons. Overall, this process is called spike sorting (Rossant et al., 2016), a topic worthy
of a thesis in itself. The main steps in spike sorting are:

• Pre-processing where we filter out low-frequency activity, for instance using a
band pass filter (Rossant et al., 2016) or by estimating the low-frequency activ-
ity and then subtracting it from the signal (Olivier Marre, Amodei, et al., 2012),
while trying not to alter the spike waveforms .

• Spike detection where we detect where and when the spikes are, for instance based
on finding all signals with local minima which exceed a certain threshold.

• Feature extraction where we extract meaningful features about the shape of the
spikes, reducing the dimensionality of the candidate spikes for downstream clus-
tering.

• Clustering where we groups spikes with similar features together which we as-
sume correspond to the activity of a particular cell.

• Manual curation is typically also involved in this process, for instance in identi-
fying incorrectly clustered groups of spikes, or manually tweaking the threshold
for spike detection.

The data we later consider was processed by a spike sorting pipeline developed for the
dense multi-electrode array, documented in Olivier Marre, Amodei, et al., 2012. Be-
yond the spike sorting process, the data-set we consider has additionally been discre-
tised, which we discuss in the next section. Though our starting point is data that has
already undergone spike sorting, it should be noted that spike sorting has its own is-
sues, for instance varying standards for how spike sorting should be performed (Wood
et al., 2004; Rey, Pedreira, and Quiroga, 2015).

2.2.2. What happens when we discretise?

An important step in moving from spike trains, which we can imagine as a sequence
of the times at which individual neurons spiked, to a collection of states consisting
of 0s and 1s is choosing the width of the time bins that we use use to discretise the
spike trains. If we choose bins that are too large, we end up grouping together distinct
responses, but if we choose bins that are too narrow, meaningful correlations may end
up being spread over multiple bins (Tkačik, Mora, et al., 2015). Though the exact width

12



2.2. PROCESSING DATA

of the time bins may be somewhat arbitrary, it is worth identifying sensible ranges for
their widths, as well as reflecting on the implications of modelling the instantaneous
state of neural data.

Berry II and Tkačik, 2020 point to 3 criteria for choosing the time bin: the temporal pre-
cision, the time-scale of noise correlations and the time-scale that it takes downstream
neurons to process incoming signals. Intuitively, we want to pick time bins that are less
than the time-scale that it takes downstream neurons to process incoming signals, but
that are wide enough to encompass the time-scale of the noise correlations and account
for the combinatorial nature of neural activity. In the case of the retina, Berry II and
Tkačik, 2020 point to 10-20ms as being the correct choice for time bins (Berry II and
Tkačik, 2020). If we decrease the width of the time bins, though it may reduce the total
number of spikes we observe within each bin and simplify the combinations of firing
that we observe, adjacent bins become highly correlated and the assumption of tem-
poral independence becomes increasingly worse (Roudi, Nirenberg, and P. E. Latham,
2009).

Even if we choose this established width of 10-20ms, there are temporal correlations
that exist across multiple time bins. In general, knowing that models are successful in
modelling spike trains under the assumption of temporal independence does not im-
ply that they will be successful in describing temporally correlated spike trains (Roudi,
Nirenberg, and P. E. Latham, 2009). This is something that we must keep in mind from
the onset. There are contexts where the assumption of temporal independence may
be justified, such as recordings of in vitro cells, or anaesthetised animals. However,
when modelling activity in awake animals, the activity of neurons may be affected by
the stimulus and the internal state (Donner, Obermayer, and Shimazaki, 2017). Certain
stimuli, such as recordings of natural scenes, have long range correlations which may
also be present in the recorded spike trains (Roudi, Nirenberg, and P. E. Latham, 2009).
One work that used a hidden Markov model to model neural activity across time bins
in the retina, found that the transition matrix was dominated by self-transitions, indi-
cating that temporal correlations are dominated by the same state persisting over 3-5
consecutive time bins (Prentice et al., 2016).

Though this is not a question we will answer in this work, one does have to ask to
what extent correlations are inherited from either correlations in the stimulus or the in-
fluence of top-down processes from elsewhere in the brain. The activity of the cells that
we study is clearly not modulated by other parts of the brain since it is isolated from
the eye, but correlations could purely be inherited from the stimulus, especially since
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2.3. DEFINING OBSERVABLES

retinal ganglion cells are so close to the beginning of visual processing. There has been
work done into explicitly developing models that distinguish between the intrinsic and
extrinsic interactions (Ferrari et al., 2018), as well as attempts at using MaxEnt models
to model temporal correlations (Tang et al., 2008; O. Marre et al., 2009; Vasquez et al.,
2012; Mora, Deny, and Olivier Marre, 2015; Donner, Obermayer, and Shimazaki, 2017),
though fitting these models to large populations becomes challenging even when using
approximate methods (Nguyen, Zecchina, and Berg, 2017).

2.3. Defining observables

We have briefly looked at the process of recording signals from retinal ganglion cells,
performing spike sorting and simplifying their representation by discretising the data
into binary vectors, which we refer to as states. We now define the quantities we are
interested in deriving from these collections of binary words. Suppose we have a data-
set D which comprises |D| observations, D = {σ(1), ...,σ(|D|)}. We will typically use
the superscript to index the time bin of the observation, andD is ordered in that sense.
However, when we compute expectations, we do so over time, which means that we
lose temporal information and often we will simply write σ without the superscript
which represents that state at some random moment in time. Each state, σ(t), is an N
dimensional vector where N is the number of cells that we model, and each entry of
the state is a binary variable σ(t)

i ∈ {0, 1} representing whether cell i fired within time
bin t. We denote the empirical expectation of some observable O(σ) as

〈O(σ)〉D
.
=

1

|D|

|D|∑
µ=1

O(σ(µ)),

where .
= means “is defined as”, and 〈·〉D denotes a statistic measured from the data as

the average over |D| sample elements. For instance, we can define the empirical average
state of cell i as

〈σi〉D
.
=

1

|D|

|D|∑
µ=1

σ
(µ)
i ,

which we can intuitively think of as counting the number of states that cell i fired in
and dividing by the number of observed states.

Similarly, we can define the pairwise correlation between cell σi and cell σj as

〈σiσj〉D
.
=

1

|D|

|D|∑
µ=1

σ
(µ)
i σ

(µ)
j ,
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which, since σi ∈ {0, 1}, we can intuitively think of as counting the number of times
cell i and cell j fired in the same state and dividing by the number of observed states
|D|. Analogous definitions exist for higher order correlations, where the C th order
correlation will count how many times C specific cells fired together and divide by the
number of observed states.

We are also interested in the empirical population count distribution p(D)(K), also called
the population spike or the spike synchrony distribution. This distribution counts how
many times we observed states where K neurons fire and divides by the total number
of observed states,

p(D)(K) =
1

|D|

|D|∑
µ=1

δ

(
N∑
i=1

σ
(µ)
i −K

)
,

where δ(0) = 1 and 0 otherwise. As you can see, we are interested in relatively intuitive
statistics from the data-set, and the approach to modelling that we take in the next
section explores how making use of reliable estimated statistics from the data can give
rise to probabilistic models for the data.

From a statistical physics perspective, we emphasize that the observables defined here
are equilibrium observables in the sense that all temporal realisations of states are treated
as equally likely (Kardar, 2007). Depending on the type of stimulus, this assumption
of temporal independence may not be valid. For instance, RGC responses to natural
scenes are likely to have long range temporal correlations (Roudi, Nirenberg, and P. E.
Latham, 2009). However, maximum entropy models that include temporal dynamics
are practically unfeasible to fit to even moderate sized populations of RGCs (Gardella,
Olivier Marre, and Mora, 2019), and the above observables still provide interesting in-
sights into the behaviour of RGCs.
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3.1. Maximum entropy models

Having explained the context of the data, we now outline the framework we will use
to model it. In particular, we look at the Maximum Entropy principle for building
probabilistic models from experimental data. We want to find a probability distribu-
tion over the set of states that N neurons can take on, which we represent as the set of
binary vectors of length N . As the length of the binary vectors grows, the number of
possible vectors increases exponentially as 2N . Estimating the probability distribution
over these exponentially many states directly from the data is unrealistic since many of
these states may not even appear in neural recordings of finite duration. The question
then becomes, “How do we choose a model given that many of the higher-order mo-
ments of our distribution are unknown?” The maximum entropy principle provides a
means of making use of the statistics that can be reliably estimated from data to build
probabilistic models.

However, the maximum entropy principle is not just a means of building a proba-
bilistic model. It also allows us to find the probability distribution that avoids bias
while agreeing with the available information. From information theory, the concept
of entropy represents a unique measure of the amount of uncertainty represented by
a probability distribution. We can identify searching for the least bias explanation of
the available information with searching for the distribution that maximises the en-
tropy subject to the available information. This is the maximum entropy principle. It
not only is a means of building a probabilistic model consistent with statistics that we
can reliably estimate, but a means of finding the probabilistic model which makes as
few assumptions as possible, or that has maximum entropy, subject to the available
information (Jaynes, 1957a).

One can view this principle as a bridge between a frequentist and a Bayesian approach
to investigating neural activity (Savin and Tkačik, 2017). The frequentist approach in-
volves finding salient features of neural computation in the form of summary statistics.
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In order to investigate the significance of these features, one might perform hypothesis
testing where the data is compared to a control in which some underlying structure
that is hypothesised to give rise to these features is disrupted by some means of shuf-
fling the data. For instance, the significance of temporal dependence in neural activity
could be investigated by comparing the temporal correlations in data to the temporal
correlations obtained in data where the times of spikes are randomly shuffled. On the
other hand, the Bayesian approach involves building probabilistic models over the full
set of states of the neural activity. In this approach the emphasis is on goodness of fit
of the model. MaxEnt models bridge these two approaches in being probabilistic mod-
els that can additionally serve as null models that can be viewed as generalisations of
frequentist shuffles (Savin and Tkačik, 2017).

3.1.1. Maximum entropy through Lagrange multipliers

We want to find a model of neural activity that reproduces certain observable quanti-
ties, but otherwise makes as few assumptions as possible. A way of achieving this is by
maximising the entropy of our model, while imposing certain constraints on it (Jaynes,
1957a; Jaynes, 1957b). Information theoretic entropy is a measure of the uncertainty of
a system and for discrete systems can be defined as S .

= −
∑
σ p(σ) ln p(σ). The en-

tropy is maximised when a system follows the uniform distribution and is minimized
when it only takes on a single state. In order to maximise the entropy while satisfying
certain constraints, we use the method of Lagrange multipliers, which is a strategy for
finding the extrema of a function that also has to satisfy certain equations exactly.

Suppose we have K observables O1(σ), ..., OK(σ) and we want to find the probability
mass function p(σ) such that expectations of the observables match the empirically
measured expectations:

〈Oi〉
.
=
∑
σ

p(σ)Oi(σ) = 〈Oi〉D.

If we associate the probability of each state with a variable p(σi) → pi, then this con-
strained optimisation problem involves determining the set of values of p .

= {pi}2
N

i=1

that satisfies all the constraints, and that maximises the entropy. This corresponds to
finding the point p where the gradient of the entropy with respect to p is in the span
of the gradients of the constraints. A more detailed explanation of this is presented in
the appendix in Section A.1.1. We can formulate an auxiliary function, called the La-
grangian, by introducing the Lagrange multipliers λ0, ..., λK . Maximising the entropy
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while satisfying our constraints can then be identified with maximising the Lagrangian
with respect to p,λ:

L(p,λ) = −
2N∑
i=1

pi ln pi − λ0

 2N∑
i=1

pi − 1

− K∑
i=1

λi

 2N∑
j=1

pjOi(σj)− 〈Oi〉D

 . (3.1)

Here, the constraint multiplied by λ0 specifies that the probability distribution is nor-
malised. To find the extrema of the Lagrangian, we take partial derivatives of it with
respect to p and λ and equate it to zero. We start by taking the partial derivative with
respect to pk:

∂L
∂pk

=
∂

∂pk
Entropy− ∂

∂pk
λ>Constraints = 0

=− ln pk − 1− λ0 −
K∑
i=1

λiOi(σk) = 0

pk =
1

Z
exp

(
−

K∑
i=1

λiOi(σk)

)
. (3.2)

Note, we absorb exp(−1− λ0) into the normalisation factor Z−1. If we define the argu-
ment of the exponential as the energy E, then this can be identified as the Boltzmann
distribution, with Boltzmann’s constant and the temperature set equal to 1, kBT = 1:

p(σ) =
1

Z
e−E(σ), E(σ) =

K∑
i=1

λiOi(σ).

This exponential form arises from taking the partial derivatives of the Lagrangian with
respect to p. By taking the partial derivatives of the Lagrangian (eq. 3.1) with respect
to the Lagrange multipliers and equating this to zero, we recover the constraints:

∂L
∂λk

= 〈Ok〉 − 〈Ok〉D = 0. (3.3)

Intuitively, at the maximum of the Lagrangian, the expectations of the observables pro-
duced by our model match the expectations measured empirically, and the probability
distribution takes takes the form of the Boltzmann distribution. What remains is to find
the Lagrange multipliers λ which satisfy equation 3.3, which can be done analytically
in special cases, but is often done numerically using an optimisation algorithm. We talk
about fitting maximum entropy models in Section 3.2.
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3.1.2. Uniqueness of the solution

Finding the distribution which maximises the entropy while satisfying a set of con-
straints using the method of Lagrange multipliers is equivalent to maximising the like-
lihood of the data under the assumption that the observations in the data set are inde-
pendent. Likelihood refers to p(σ(1), ...,σ(|D|)|λ) as a function of λ for a fixed set of
observations {σ(µ)}|D|µ=1. We typically work with the logarithm of the likelihood, or the
’log-likelihood’ which is defined as

LD =
1

|D|
ln

|D|∏
µ=1

p(σ(µ)|λ)

=−

 1

|D|

|D|∑
µ=1

K∑
i=1

λiOi(σ
(µ))

− lnZ. (3.4)

Note that taking the partial derivative of the term in the brackets in equation 3.4 with
respect to λi returns the empirical estimate of the expectation 〈Oi〉D and taking the
partial derivative of the logarithm of the partition function returns the negative expec-
tation −〈Oi〉. Hence, we have

∂LD
∂λi

= 〈Oi〉 − 〈Oi〉D.

It easy to see that these two optimisation problems, maximising the entropy subject to
certain constraints and maximising the log-likelihood of the data given that our model
takes the form of the Boltzmann distribution, are equivalent by noting that the equa-
tions of the first partial derivatives in terms of the model parameters or Lagrange mul-
tipliers (eq. 3.3) are equivalent in both cases. Hence, any maxima, if they exist, will
be the same for both problems. In order for the log-likelihood, or equivalently the La-
grangian, to have a unique maximum, we require the existence of a maximum and the
log-likelihood to be a strictly concave function of the parameters λ. One way of deter-
mining the concavity of our objective function is by looking at the Hessian of second
partial derivatives, ∂LD

∂λiλj
. If the Hessian is negative definite, then the function will be

strictly concave and, if the Hessian is only negative semi-definite, the function will only
be concave. As a quick illustration of the difference between concavity and strict con-
cavity, a parabola ∩ is strictly concave whereas a plateau u is concave but not strictly
concave. Working with the log-likelihood and taking its second partial derivatives we
have

∂LD
∂λiλj

= − (〈OiOj〉 − 〈Oi〉〈Oj〉) .

A matrix M is negative definite (negative semi-definite) if for any non-negative real
column vector a, the real number a>Ma is negative (non-positive). Defining Lij

.
=
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− ∂LD
∂λiλj

, notice that for all ai,

a>La =
∑
i,j

aiaj (〈OiOj〉 − 〈Oi〉〈Oj〉)

=

〈[∑
i

aiOi − 〈aiOi〉
][∑

j

ajOj − 〈ajOj〉
]〉

=

〈[∑
i

aiOi − 〈aiOi〉
]2
〉
≥ 0,

thus, the second partial derivatives are all non-positive (recall we consider ∂LD
∂λiλj

=

− (〈OiOj〉 − 〈Oi〉〈Oj〉) which has a minus sign up front) and the Hessian is negative
semi-definite. This implies that the log-likelihood is at least a concave function of the
parameters λ. Note that this does not imply strict concavity. In order for the function
to be strictly concave, we require the Hessian to be negative definite, which is the case
if no non-trivial linear combination of the observables Oi has vanishing fluctuations,〈[∑

i

aiOi − 〈aiOi〉
]2
〉
6= 0.

Thus if the maximum of the log-likelihood exists and no non-trivial linear combination
of the observables Oi has vanishing fluctuations, then this maximum is unique and the
MaxEnt distribution has a unique parameterisation. When some of our constraints are
linearly related, as is the case with the K-pairwise model, which we introduce in Section
3.4.5, we end up with multiple parameterisations that specify the same distribution and
the parameters have to be set according some convention (Gardella, Olivier Marre, and
Mora, 2016).

In summary, the model that reproduces the empirically measured expectations 〈Ok〉D
but otherwise makes as few assumptions about the underlying distribution takes the
form of the Boltzmann distribution. We found this by maximising an auxiliary func-
tion called the Lagrangian, corresponding to maximising the entropy while satisfying
certain constraints. We also found that at an extremum of the Lagrangian or equiva-
lently the log-likelihood, the expectations produced by our model have to match the
empirically measured expectations. If the maximum exists, and no non-trivial linear
combination of the observables Oi has vanishing fluctuations, then this maximum is
unique. In the next section we discuss how to determine the parameters λ so that our
model produces the constrained expectations.
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3.2. Fitting maximum entropy models

As opposed to deriving observable quantities from microscopic laws governing the
constituents of the system as is typical in statistical physics, we start with observable
quantities of a system and try discover the microscopic parameters that give rise to
these quantities. We call such problems inverse statistical problems (Nguyen, Zecchina,
and Berg, 2017). Given the distribution p(σ) ∝ exp

(
−
∑K

i=1 λiOi(σ)
)

, how do we de-
termine the parameters λ1, ..., λK such that the distribution reproduces the empirically
measured expectations? In certain cases such as the independent model, which we de-
fine in Section 3.4.2, we can easily derive analytical expressions for λ in terms of the
observed expectations. In others, such as the pairwise model, determining the model
parameters becomes increasingly difficult with increasing system size, and we have
to turn to sampling methods. Where applicable, we mention the analytic solutions to
specific models in Section 3.4. Here, we discuss general methods that can be used to fit
maximum entropy models.

3.2.1. Gradient ascent

We want to determine the parameters λ which maximise the Lagrangian (Eq. 3.1),
or equivalently the log-likelihood of the observed data (Eq. 3.4). Previously, we de-
termined that the partial derivative of the Lagrangian with respect to parameter λk is
∂L
∂λk

= 〈Ok〉 − 〈Ok〉D. This suggests the following gradient ascent update rule:

λ
(t+1)
k = λ

(t)
k + µ (〈Ok〉 − 〈Ok〉D) . (3.5)

where µ is the learning rate. Updating each parameter λk involves computing the
expectation 〈Ok〉 =

∑
σ Ok(σ)p(σ), which is a summation over 2N states. For small

systems consisting of around 15 or fewer binary variables, naı̈ve gradient ascent is
feasible with standard personal computers, but for larger systems computing these
expectations explicitly becomes unfeasible. This is where importance sampling comes
into play.

3.2.2. Histogram Monte Carlo

In order to avoid working out expectations by summing over 2N states, we can use
Monte-Carlo Markov Chain (MCMC) techniques to generate samples from our distri-
bution, and then approximate these expectations as averages over these samples. In
MCMC techniques, we define an appropriate transition operator, defining the proba-
bility of moving from one state to another, such that the stationary distribution that
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the Markov chain converges to is the probability distribution from which we want to
sample (Newman and Barkema, 1999; Liu, 2008; Binder et al., 2012).

A relatively straightforward learning algorithm that makes use of sampling methods
to fit maximum entropy models on moderately sized populations of neurons was pro-
posed by Broderick et al., 2007. Given a learning rule that updates the model param-
eters and requires calculating expectations, such as the gradient ascent update rule in
Equation 3.5, Broderick et al. used ideas from histogram Monte Carlo (Ferrenberg and
Swendsen, 1988) to recycle samples over multiple updates of the model parameters.
This is in contrast to generating samples following each update, which would be more
computationally expensive.

Though more sophisticated sampling techniques exist, they propose Gibbs sampling (S.
Geman and D. Geman, 1984; Liu, 2008), where we update the ith dimension of the cur-
rent sample by sampling from the conditional distributions p(σi|σ1, ..., σi−1, σi+1, ..., σN ).
These N conditional expressions are straightforward to obtain in the case of binary
variables, and are

p(σi|σ1, ..., σi−1, σi+1, ..., σN ) =
p(σ)∑

σi=0,1 p(σ)
=

exp(−E(σ))∑
σi=0,1 exp(−E(σ))

.

Notice that the conditional probability distribution does not require calculating the par-
tition function Z. In contrast to the Metropolis-Hastings algorithm where we propose
samples from a proposal distribution which are then either accepted or rejected based
on an acceptance ratio (Hastings, 1970), in sampling directly from the conditional dis-
tributions we always accept the proposed samples and thus avoid unnecessary compu-
tations. More recent sampling techniques have been proposed to fit maximum entropy
models (Ferrari, 2016).

Once we have decided on a means of generating samples, we can reuse these samples
for multiple updates as follows. We denote the probability distribution parameterised
by λ as p(σ|λ), and the expectation of some observable Φ(σ) over this distribution by
〈Φ〉λ. We can use the samples generated by the distribution parameterised by λ, the
outdated parameters, to estimate expectations over the distribution parameterised by
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λ′, the current parameters, as follows:

〈Φ〉λ′
.
=
∑
σ

Φ(σ)p(σ|λ′)

=
∑
σ

p(σ|λ)

[
Φ(σ)

p(σ|λ′)
p(σ|λ)

]
=

〈
Φ(σ)

p(σ|λ′)
p(σ|λ)

〉
λ

=

〈
Φ(σ)

exp[λ′ ·O(σ)]

Z(λ′)

Z(λ)

exp[λ ·O(σ)]

〉
λ

=
〈Φ(σ) exp[(λ′ − λ) ·O(σ)]〉λ
〈exp[(λ′ − λ) ·O(σ)]〉λ

≈〈Φ(σ) exp[(λ′ − λ) ·O(σ)]〉MCλ

〈exp[(λ′ − λ) ·O(σ)]〉MCλ
,

where the dot product between the model parameters λ and the constrained observ-
ables O(σ) is denoted ‘·’ and the expectation calculated over samples obtained via
some Monte Carlo method from the model parameterised by λ is denoted 〈·〉MCλ. In
the last line, each of the expectations in the fraction can be approximated as expecta-
tions over the samples generated from the model parameterised by λ. Thus, in a learn-
ing algorithm where updating our model parameters involves computing expectations,
such as gradient ascent, we can estimate these expectations as expectations over sam-
ples generated by our model with outdated parameters and reuse these samples for
multiple updates.

3.3. The Boltzmann distribution

Maximum entropy models represent the most unbiased representation of our knowl-
edge of a system (Jaynes, 1957b), where in practice, ‘knowledge’ refers to the con-
strained quantities that we can reliably measure from data. They also happen to map
neatly onto the Boltzmann distribution, a familiar distribution in statistical mechanics
which describes physical systems in thermal equilibrium (Schneidman, Berry, et al.,
2006). Much of the use of maximum entropy models as a tool to study populations of
neurons is motivated by trying to transfer concepts from statistical mechanics that arise
from the Boltzmann distribution and use them to characterise the behaviour of popu-
lations of neurons (Schneidman, Berry, et al., 2006; Tkačik, Olivier Marre, Amodei, et
al., 2014; Tkačik, Mora, et al., 2015). We now devote some attention to introducing the
Boltzmann distribution and illustrating its relationship to quantities such as energy,
entropy (which has a different definition in statistical mechanics to the one in infor-
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mation theory), free energy, temperature, heat capacity and specific heat so that we can
later facilitate a discussion on how we might bring ideas from statistical mechanics into
analysing neural data.

The Boltzmann distribution over a number of states σ = (σ1, ..., σN ) takes the form:

p(σ) =
1

Z
exp

(
− 1

kBT
E(σ)

)
, Z =

∑
σ

exp

(
− 1

kBT
E(σ)

)
,

where E ∈ [0,∞) is the energy of each state, kB is Boltzmann’s constant and T is the
temperature. The energy function can take various forms depending on the system in
question. However, it is worth noting that states with low energy are associated with
a high probability and states with high energy are associated with low probabilities.
This will later help motivate our definition of energy when we consider models that do
not arise from statistical mechanics.

The partition function Z, which normalises the probability distribution, additionally
encodes many physical quantities. Specifically, we are going to define the free energy
and heat capacity, among other quantities, in relation to it. We start by expressing Z as
an integral over energies:

Z =
∑
σ

e−E(σ)/kBT

=

∫ ∞
0

dEe−E/kBT
∑
σ

δ
(
E − E(σ)

)
︸ ︷︷ ︸

.
=n(E)

=
1

kBT

∫ ∞
0

dEe−E/kBT
∑
σ

Θ
(
E − E(σ)

)
︸ ︷︷ ︸

.
=N (E)

.

In the above, we integrate by parts, noting that the integral of the delta function δ(x)

is the Heaviside step function Θ(x < 0) = 0, Θ(x > 0) = 1. We also define the
density of states n(E), which counts the number of states with energy E, as well as the
cumulative density of states which counts the number of states with energy less than
E. When working with finite data, it is more convenient to work with the cumulative
count than the density of states, since the latter requires defining somewhat arbitrary
energy bins so that we can count how many states have approximately a certain energy.

We can define the microcanonical Gibbs entropy in terms of the cumulative density of
states as

S(E)
.
= lnN (E).
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Looking at the logarithm of the cumulative count is in part motivated by the exponen-
tially many states that arise from N variables (Tkačik, Mora, et al., 2015). It should be
noted that there is also an alternative definition of the microcanonical entropy in terms
of the density of states which is discussed in Franzosi, 2018. This conception of entropy
asks, “As we change the energy of the system, how many states become available to
us?” It is important to keep in mind that n and N are not smooth functions for finite
N , and thus taking derivatives of the entropy S = lnN is problematic unless we are
in the ’thermodynamic limit’ where N tends towards infinity. This is one of the things
one has to be wary of when adapting these ideas to finite populations of neurons.

As the size of our system N increases, we expect the energy E and entropy S to in-
crease proportionally, which defines them as extensive quantities. However, we may be
interested in seeing what happens to the energy and entropy per unit (i.e. per unit in
our system of size N ), or what we call intensive quantities. We define the energy per
unit as ε .= E/N , and the entropy per unit as s(ε) .

= S(Nε)/N . We can substitute these
definitions, along with the definition of entropy into the partition function:

Z =
1

kBT

∫ ∞
0

dEe−E/kBTN (E)

=
1

kBT

∫ ∞
0

dE exp

(
− 1

kBT
E + S(E)

)
=

N

kBT

∫ ∞
0

dε exp

(
− N

kBT
ε+Ns(ε)

)
,

where we made the change of variables E → ε = E/N in the third line. Defining the
free energy f(ε)

.
= ε− kBTs(ε), we arrive at:

Z =
N

kBT

∫ ∞
0

dε exp

(
− N

kBT
f(ε)

)
. (3.6)

We expect this integral to be dominated by the energies close to the minimum ε∗ of the
free energy f(ε). At the minimum of the free energy, we have:

df(ε)

dε

∣∣∣
ε∗

= 0 =⇒ 1

kBT
=
ds(ε)

dε

∣∣∣
ε∗
, (3.7)

where we use f ′(ε)|ε∗ to denote the derivative of f(ε) evaluated at ε∗. If we Taylor
expand the free energy around ε∗ up to the second order and plug this into the partition
function, we obtain:

Z ≈ N

kBT

∫ ∞
0

dε exp

[
− N

kBT

(
f(ε∗) +

1

2

d2f(ε)

dε2

∣∣∣
ε∗

(ε− ε∗)2
)]

=
N

kBT
exp

(−N
kBT

f(ε∗)
)∫ ∞

0
dε exp

(N
2

d2s(ε)

dε2

∣∣∣
ε∗

(ε− ε∗)2
)
.
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Note, the first derivative of f(ε) is 0 at ε∗ by definition. In this expression for the parti-
tion function Z, we integrate over all values of the energy per unit of our system ε. We
can interpret this expression as showing us how the energy per unit ε is distributed and
it suggests that it follows a Gaussian distribution with mean 〈ε〉 = ε∗, and variance:

〈(ε− 〈ε〉)2〉 = − 1

N

[
d2s(ε)

dε2

]−1

ε∗
. (3.8)

For reference, the probability density function f(x) of the Gaussian distribution with
mean µ and standard deviation σ takes the form

f(x) ∝ exp

(
− 1

2

(x− µ
σ

)2
)
.

The notion of ε∗, the minimum of the free energy, being the mean of the distribution ties
in to the earlier suggestion that the partition function will be dominated by ε around
ε∗.

Finally, to introduce the heat capacity C, and its normalised counterpart, the specific
heat C/N , we observe how the mean energy ε∗ changes as we change the temperature
T . Starting from Equation 3.7 and rearranging it in terms of T , we have:

T =
1

kB

[
ds(ε)

dε

]−1

ε∗

dT

dε∗
=− 1

kBT

[
ds(ε)

dε

]−2

ε∗

[
d2s(ε)

dε2

]
ε∗
.

Using the expression for T from the first line, we arrive at the following definition for
heat capacity:

C(T )
.
=
dε∗

dT
= − 1

kBT 2

[
d2s(ε)

dε2

]−1

ε∗
. (3.9)

By making use of the equation for variance (3.8), we define the specific heat C/N as:

C

N
=

1

N

dε∗

dT
=

1

kBT
〈(ε− 〈ε〉)2〉. (3.10)

Notice how, when d2s(ε)/dε2 = 0, the variance (3.8), heat capacity (3.9) and specific
heat (3.10) all become infinite. This is referred to as a critical point. One typically finds
the critical point of a canonical system by varying the temperature T of the system and
looking for a divergence in the heat capacity, and this critical point is indicative that
our system undergoes a phase transition.

This should act as a fairly self-contained introduction to the Boltzmann distribution.
What we now have to address is to which extent these definitions generalise to Max-
Ent models for finite systems of neurons. When modelling finite systems, we are no
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longer in the thermodynamic limit limN → ∞. It would seem that the microcanoni-
cal Gibbs entropy, S(E) = lnN (E), which takes the logarithm of the number of states
with energy less than E, is no longer a smooth function when we deal with systems
of finite size. Thus it would seem that taking derivatives of the entropy is no longer
properly defined. It is possible, however, to work out the variance in the energy per
unit 〈(ε− 〈ε〉)2〉, thus we can still work out the specific heat as

C(T=1)

N
= 〈(ε− 〈ε〉)2〉.

We of course have to keep in mind that in MaxEnt models, although we can identify
the argument of the exponential as the energy E, we do not have a temperature nor
Boltzmann’s constant kB in the argument, which implies kBT = 1, and we can only
talk about the heat capacity and specific heat at T = 1. We could introduce a fictitious
temperature T into the exponential, and then varying the temperature while keeping
all other parameters constant. This would correspond to rescaling the model parame-
ters by a scalar, though only the unscaled parameters would correspond to a model of
the actual data, since the rescaled models would no longer reproduce the constraints.
Rescaling the parameters is then a means of placing the actual model into the context
of a broader family of exponential models, because we compare quantities calculated
from our actual model to the equivalent quantities calculated from the models in the
models with rescaled parameters.

If we did decide to introduce a temperature into our model and we monitored the heat
capacity over a range of temperatures, we would no longer expect to see a divergence
in the heat capacity as a signature of a critical point. Instead, a peak in the heat capacity
is an indication of criticality in systems of finite sizes (Berry II and Tkačik, 2020). We
dwell on what this might suggest in section 3.6. In summary, there is a mathematical
equivalence between the Boltzmann distribution from statistical physics and MaxEnt
models when kBT = 1, though we have to be careful in using concepts that apply to
systems in the thermodynamic limit to models of finite systems. We can still define
the heat capacity and specific heat by examining the variance in the energy, or equiv-
alently the log probability, though since our system does not have a temperature, we
would have to introduce a fictitious temperature to examining these quantities at tem-
peratures other than T = 1. Note though, that although the variance of the energy is
equivalent to the variance of the log probability, the energy and log probability are not.
Introducing a temperature T into the exponential and varying it can be seen as rescal-
ing the model parameters and could be seen as a means of placing the actual model
into the context of a family of exponential models.

27



3.4. MODELS USED IN THE LITERATURE

3.4. Models used in the literature

We have introduced maximum entropy models and illustrated their link to the Boltz-
mann distribution from statistical mechanics. Depending on which observables O(σ)

we constrain, maximum entropy models can take different forms. Often the choice of
model is dictated by which observables can be reliably estimated from the data. Thus,
we often see constraints on the averages 〈σi〉, the pairwise correlations 〈σiσj〉 and on
the probability of observingK neurons firing. We start by introducing the full log linear
model, which can reproduce arbitrarily high-order correlations, but assumes that we
can reliably measure arbitrarily high-order correlations from experimental data which
is unfeasible in practice. From here, we introduce the independent, pairwise, popu-
lation count and K-pairwise models which can be seen as special cases of the full log
linear model. For quick reference, we briefly summarise the models we will look at in
Table 3.1.

Model Constraints Parameters
Independent, p(1) 〈σi〉 N

Schneidman, Berry, et al., 2006

Population count, p(K) p(K) N + 1

Tkačik, Olivier Marre, Mora, et al., 2013

Pairwise, p(2) 〈σi〉, 〈σiσj〉 N(N + 1)/2

Schneidman, Berry, et al., 2006

K-pairwise, p(2,K) 〈σi〉, 〈σiσj〉, p(K) (N + 1)(N + 2)/2

Tkačik, Olivier Marre, Amodei, et al., 2014

Table 3.1: Summary of different MaxEnt models, along with seminal references for their
use in modeling RGCs.

3.4.1. Full log linear model p(N)

The full log linear model, which can represent any probability distribution over binary
random variables (Gardella, Olivier Marre, and Mora, 2019), takes the form

p(N)(σ) =Z−1e−E(σ), (3.11)

E(σ) =
∑
i1

λi1σi1 +
∑
i1<i2

λi1i2σi1σi2 + ...+ λ12...Nσ1σ2...σN , (3.12)

where the parameters λ can be identified as the Lagrange multipliers, though we will
frequently refer to them as the interaction parameters. The order of the parameter
λi1...iM is denoted by the number of subscripts. For instance, λi1...iM denotes an M th-
order interaction parameter. The superscript in brackets p(X) relates to the expectations
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that the model reproduces. For instance, the pairwise model, which we define in Sec-
tion 3.4.3, reproduces pairwise correlations 〈σiσj〉 and hence is denoted p(2). The full
log linear model, which can reproduce up to N th-order correlations 〈σ1...σN 〉 in a sys-
tem of N neurons is denoted p(N). Given, somewhat unrealistically, estimates of the
probabilities of each of the 2N states, we can determine the 2N parameters of p(N) by
substituting each state into Equation 3.12 and equating it to its negative log probability.
This gives us a system of 2N linear equations from which we can then solve for the
parameters λ (Martignon et al., 1995). The issue is that we can seldom reliably estimate
the full probability distribution from experimental data.

Before we go on, we should clarify that there is a difference between the interaction pa-
rameters λi1i2..iM and the correlations 〈σi1σi2 ...σiM 〉. The most trivial difference is that
interaction parameters parameterise our model whereas correlations are obtained as
expectations from the model. There is often not an obvious mapping between inter-
action parameters and correlations, though we will elaborate on how to interpret the
interaction parameters in the following paragraph. However, a useful example at this
stage is that we can calculate third-order correlations from models that include only
up to second-order interactions. Where third-order interaction parameters come into
play is that there are certain third-order correlations which can arise that cannot be pro-
duced by models that include only up to second-order interactions, regardless of how
you choose the second-order interaction parameters. Also, it should also be empha-
sized that interactions are not interpretable as physical connections between neurons
(Nguyen, Zecchina, and Berg, 2017).

The full log-linear model has been used in a number of early works (Martignon et al.,
1995; Schneidman, Still, et al., 2003; Yu et al., 2011 and others), and despite the exper-
imental impracticality of determining all the coefficients from empirical data of large
populations, this model provides a theoretical means of exploring the correlation struc-
ture of populations of neurons. The full log linear model represents a decomposition of
the correlations between N neurons where the parameter λi1...iM relates to a correction
to the correlation 〈σi1 ...σiM 〉 that cannot be deduced from knowledge of the marginal
distributions over L < M neurons, or equivalently, knowledge of the Lth-order correla-
tions (Nakahara and Amari, 2002; Amari et al., 2003). To try phrase it more succinctly,
a non-zero interaction parameter of M th-order λi1...iM provides a correction to the pro-
duced M th-order correlation that that can only be deduced from knowing the states of
the M neurons σi1 , ..., σiM . To unpack this statement more rigorously requires a dive
into information geometry, which we leave up to the interested reader – see Nakahara
and Amari, 2002 specifically.
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However, as intuition, consider a system of two neurons firing, where their states are
represented by σ1, σ2. The log linear description of this system would be

p(2)(σ1, σ2) =
1

Z
exp (−λ1σ1 − λ2σ2 − λ12σ1σ2) . (3.13)

Now, the marginal distributions p(σ1) and p(σ2) tell us the probability of neuron 1 and
neuron 2, respectively, either firing or remaining silent. Without any further knowledge
we might assume that these neurons fire independently (and indeed this would be the
assumption that maximises the entropy) which would then lead to us modelling their
joint probability distribution as

p(1)(σ1, σ2) =
1

Z
exp

(
−λ′1σ1 − λ′2σ2

)
=

1

Z
exp

(
−λ′1σ1

)
exp

(
−λ′2σ2

)
,

which is identical to Equation 3.13 when λ12 = 0. This model would predict the correla-
tion between σ1 and σ2 to be 〈σ1σ2〉 = 〈σ1〉〈σ2〉 = p(σ1=1) ·p(σ2=1). Clearly this model
does not account for a variety of scenarios, starting with neuron 1 and neuron 2 never
firing together and ending with them always firing together. The only scenario that this
model does account for is the one in which the neurons fire together with probability
p(σ1=1) · p(σ2=1). The interaction parameter λ12 in Equation 3.13 thus provides the
correction that would allow us to model all these other scenarios ranging from them
never firing together, which would be modelled by λ12 = −λ1 − λ2, to them always
firing together, which would be modelled by λ1, λ2 = 0.

Returning to the full log linear model, by varying the order of the parameters that we
include in the model, we can define a hierarchy over the maximum entropy models
where the model that includes all parameters up to order M will be able to reproduce
up to M th-order correlations (Schneidman, Still, et al., 2003). Although correlations of
all orders in a distribution over N variables can be trivially modelled by a model with
N th-order interactions, it is interesting when we find that they can still be modelled
with only M th-order (M < N ) interactions, which suggests a simpler description of
the distribution. More precisely, it suffices to know the marginal distributions over M
neurons to characterise the full distribution over N neurons.

3.4.2. Independent model p(1)

If we take the full log linear model and keep only the first-order coefficients, we arrive
at the independent model:

p(1)(σ) =
1

Z
exp

(
−
∑
i

hiσi

)
=

exp (−
∑

i hiσi)∏
i (1 + e−hi)

.
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Our change of notation from λ as the model parameters to h is inspired by the Ising
model, which we discuss in Section 3.4.3. The independent model corresponds to the
maximum entropy model that reproduces the averages 〈σi〉. Given the empirical aver-
ages 〈σi〉D, we can analytically solve for hi, to obtain

hi = − ln

[
〈σi〉D

1− 〈σi〉D

]
.

Intuitively, the probability of viewing state σ is just the product of the probabilities
of observing each neuron σi fire or remain silent, p(σ) =

∏
i p(σi). Since we use the

convention σi ∈ {0, 1}, the probability of neuron i firing is just its expected value
p(σi=1) = 〈σi〉D and similarly, p(σi=0) = 1− 〈σi〉D.
The independent model is used as a baseline in a number of works (Schneidman, Berry,
et al., 2006; Köster et al., 2014, etc.) and as a point of departure, we often observe that
this model fails to accurately model features of the data, suggesting the importance of
higher-order interactions in modelling retinal activity.

3.4.3. Pairwise model p(2)

We now consider including the second-order coefficients. This corresponds to the max-
imum entropy model that reproduces the averages 〈σi〉 and pairwise correlations 〈σiσj〉
and can be thought of as a generalisation of the Ising model from statistical mechanics.
It takes the form:

p(2)(σ) =
1

Z
exp

−∑
i

hiσi −
∑
i<j

Jijσiσj

 .

In the Ising model, which models the probability of seeing different states in a set of
spins, as opposed to neurons, the parameter hi is thought of as a local magnetic field
acting on spin i, and the pairwise coupling Jij quantifies the interaction between spin
i and spin j. When we represent binary variables as σ ∈ {0, 1}, since σiσi = σi, we can
alternatively write hi as Jii and represent this model as p(2)(σ) ∝ exp(−

∑
i≤j Jijσiσj).

Unlike the independent model, it is not simple to find expressions for the parameters
h,J in terms of the averages and pairwise correlations. Instead, we have to either use
approximate solutions for the model parameters, or use optimization algorithms such
as gradient ascent (see Section 3.2.1). We can think of the parameter hi as representing
neuron i’s inherent bias towards firing or silence and the parameter Jij as the direct
mutual interaction between neurons i and j that remains in their correlated activity
after we have accounted for other interactions that arise through more circuitous paths
(Tkačik, Schneidman, et al., 2009).
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Determining the model parameters h,J that maximise the Lagrangian for the pair-
wise model, or equivalently, that maximise the log-likelihood, is a concave optimisa-
tion problem with a unique solution since our constraints obey the condition in the
section on the uniqueness of MaxEnt models. This implies that regardless of how we
initialise the model parameters, for a given set of constraints gradient ascent will yield
the same model parameters. This also implies that the energy landscape, defined by
the Hamiltonian of the pairwise model, will be the same for all pairwise models fitted
to reproduce a given set of constraints, and thus we will find the same energy minima
in the landscape.

Though we could theoretically continue including higher-order interaction parameters
to our model, it is increasingly unlikely that our estimates of all higher-order correla-
tions, which we use to fit the higher-order interaction parameters, are accurate, espe-
cially when the number of neurons N is very large. Thus, our next move will be away
from including detailed descriptions of all correlations and towards a description of
the activity of the population.

3.4.4. Population count model p(K)

In the population count model p(K), we only constrain the model to reproduce the
probability of observing K neurons firing. This model predicts all states with the same
number of neurons firing as equally likely, and thus provides only a coarse description
of the neural activity. It takes the form

p(K)(σ) = exp

(
ln p(K(σ))D − ln

(
N

K(σ)

))
=
p(K(σ))D(

N
K(σ)

) ,

where K(σ) returns the number of neurons that fire in state σ. Here, p(K(σ))D is
the population count distribution measured in the data. Similarly to the independent
model, the population count model can be written explicitly in terms of its constraints
p(K(σ))D. Though this model does not provide a detailed description of the proba-
bility of different states, it has been used to explore the hypothesis of criticality in a
population of retinal ganglion cells (Tkačik, Olivier Marre, Mora, et al., 2013).

3.4.5. K-pairwise model p(2,K)

If we take the pairwise model and additionally constrain it to reproduce the population
count distribution p(K), we obtain the K-pairwise model which takes the form

p(2,K)(σ) =
1

Z
exp

−∑
i

hiσi −
∑
i<j

Jijσiσj − VK(σ)

 .
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We derive this model using the method of Lagrange multipliers in the Appendix A.1.3.
Here VK(σ) is referred to as the effective potential, and is a function of the number of
neurons that fire in state σ. The effective potential can be thought of as arising from
placing constraints on all of the moments of the distribution p(K)D, since knowing the
distribution is equivalent to knowing all of its moments (Tkačik, Olivier Marre, Mora,
et al., 2013).

As with the pairwise model, finding expressions for the parameters h,J ,V in terms of
the constraints is difficult and the parameters are typically determined by using opti-
misation algorithms such as gradient ascent. Unlike the pairwise model which has a
unique set of parameters for a given set of constraints, there are multiple sets of param-
eters {h,J ,V } for a given set of constraints which specify mathematically identical
models. This is because adding a constant to all of the parameters h adds a term linear
in K to V , and adding a constant to all of the parameters J adds a quadratic term to
V (Tkačik, Olivier Marre, Amodei, et al., 2014). If one wanted to compare the parame-
ters of different K-pairwise models directly, it is possible to extract all the components
from V that can be equivalently parameterised as offsets to h and J such that V only
constrains correlations that cannot be accounted for by h and J . For instance, when
going from a pairwise model to the K-pairwise model we might want to quantify how
much of an effect including an effective potential in the exponential has (Tkačik, Olivier
Marre, Amodei, et al., 2014).

3.4.6. Other models

Though we focus on the above models in this work, other MaxEnt models exist, as
well as other approaches to modelling neural activity. We briefly go over some of these
below.

We start by going over a variation on the independent and population count model.
This model improves the performance of the independent model by including knowl-
edge of how many neurons are firing in total, while remaining tractable even for large
populations. The so-called population coupling model, which reproduces the joint prob-
ability distribution of each neuron and the population count K, takes the form

p(σ) =
1

Z
exp

(∑
i

hi,K(σ)σi

)
,

where the parameters hi,K(σ) are inferred so that the distribution agrees with the data
p(σi,K) for each (i,K) pair. This model has been used to explore how population
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activity affects the firings of individual neurons and finds that there is a nonlinear de-
pendency between the population activity and the probability of individual neurons
firing (Gardella, Olivier Marre, and Mora, 2016). A simpler model, which only repro-
duces the expectations 〈K(σ)σi〉, is also worth consideration (Gardella, Olivier Marre,
and Mora, 2016).

As we will see in Section 3.5 as well as in our results, both the vanilla independent and
pairwise models fall short in predicting aspects of the population count distribution
p(K). The population coupling model attempts to improve the independent model
through including knowledge of the population count distribution, which is a similar
to what we did when we included the effective potential in the pairwise model, giving
rise to the K-pairwise model. An approach which attempts to generalise the notion
of adding population-level statistics as constraints to models comes in the form of the
semi-parametric energy based model (Humplik and Tkačik, 2017). This model takes the
form

p(σ) =
1

Z
exp (−V (E(σ))) ,

where V is an arbitrary, increasing, differentiable function referred as the “nonlinear-
ity” which is determined nonparametrically from the data, andE(σ) is an energy func-
tion as before which is parameterised and reflects local interactions among neurons.
From this class of models, we can define the semi-parametric independent and pair-
wise models, which have energy functions E(σ) as defined in Sections 3.4.2 and 3.4.2.
In a population of 160 retinal cells, the semi-parametric pairwise model has been shown
to be a more accurate model than both the pairwise and K-pairwise model, though in
including the nonlinearity, these models are no longer interpretable as maximum en-
tropy models consistent with low-order correlations (Humplik and Tkačik, 2017).

We now move on to a model that includes arbitrarily high-order interaction param-
eters. If we think back to the full log-linear model (3.4.1), it is typically unfeasible
to determine all of its 2N parameters from experimental data for large N , particularly
since finite data-sets rarely include states with large numbers of neurons firing together,
making our estimates of higher-order correlations likely to be inaccurate. However, this
does not necessarily imply that there will be no higher-order correlations that can be
well estimated from finite recordings. Whereas our approach up to now has been to
focus on fitting models to all the lower-order correlations, the reliable interaction model
proposes to include any interaction parameters λ that are necessary to fit the most fre-
quent states in the data, and makes no assumption about the maximum order of the
interactions. Thus, the reliable interaction model may include select higher-order in-
teractions and does not require us to learn all of the low-order interactions (Ganmor,
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Segev, and Schneidman, 2011).

The probability mass function for the reliable interaction takes the same form as the full
log linear model’s (Equation 3.12) though only including the interaction parameters
necessary to reproduce the probability of observing the most frequent states. When fit-
ting the reliable interaction model to activity from a population of 100 retinal ganglion
cells, the authors found that the model required fewer parameters (≈ 450) in compar-
ison to the pairwise model (≈ 5000) and was able to more accurately model the data
based on the log-likelihood ratio between the model and the empirical data. The data
that they used came from recording the cells’ responses to stimuli that involved record-
ings of natural scenes. They also fitted the models to responses to white noise, where
the pairwise and reliable interaction models performed similarly. This suggests that
higher-order interactions are at least partially driven by the higher-order statistics in
natural scenes (Ganmor, Segev, and Schneidman, 2011).

In the cascading logistic model, we aim to make the problem of fitting and evaluat-
ing the probability distribution more tractable by assuming that the joint probability
distribution factors with a cascaded structure,

p(σ) = p(σ1)p(σ2|σ1)...p(σN |σ1, ..., σN−1).

This model takes the form

p(σ) = p(σ1)
∏
i>1

P (σi|σ1...σi−1),

where

p(σi|σ1...σi−1) =
1

Z

(
1 + exp

(
hi +

∑
j<i

wijσj

))−1

.

With this model the partition function is tractable to evaluate and each conditional can
be fit independently with logistic regression. However, unlike the pairwise model this
model is sensitive to the order of neurons. In order for the probability distribution
produced by this model to be close to that of the pairwise model, we require sparsity
in the pairwise interaction parameters (Park et al., 2013).

Another approach to modelling higher-order interactions is to introduce hidden or la-
tent variables z which interact with the visible neurons. A simple model that makes
use of latent variables is the Restricted Boltzmann Machine (RBM) (Smolensky, 1986).
In an RBM, a set of visible units σ are connected to a set hidden units z. Each of these
sets have local fields a and b, respectively, and the strength of the connections between
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the visible and hidden variables is quantified by the weight matrixW . However, there
are no direct connections between the visible variables, nor between the hidden vari-
ables, hence the term “restricted”. The probability distribution over visible and hidden
variables is given by

p(σ, z) =
1

Z
exp

−∑
i

aiσi −
∑
i

bizi −
∑
i,j

σiWijzj

 .

The probability of a configuration is obtained by marginalising over the latent variables
which can be computed analytically up to a normalisation constant (Torlai and Melko,
2016). Sticking with our convention of σ, z ∈ {0, 1}, the probability distribution over
the visible variables is

p(σ) =Z−1e−E(σ)

E(σ) =
∑
i

aiσi −
∑
j

log

(
1 + exp(−bj −

∑
i

σiWij)

)
,

whereE(v) is the effective visible energy. RBMs have been shown to outperform many
of the other models mentioned above (Köster et al., 2014; Humplik and Tkačik, 2016;
Gardella, Olivier Marre, and Mora, 2017). However, they risk over-fitting and are not
easily interpretable. Interestingly, any probability distribution over N binary variables
can be approximated with arbitrary precision by an RBM with sufficiently many hid-
den variables (Le Roux and Bengio, 2008).

Finally, we introduce the dichotomized Gaussian distribution (Amari et al., 2003; Yu et al.,
2011; Macke, Opper, and Bethge, 2011), which models the activity of neurons as being
driven by Gaussian latent variables u ∼ N (γ,Λ) of dimension N where neuron i fires
if ui is positive, and is otherwise silent:

σi =

1, ui > 0

0, ui ≤ 0
.

The thresholding operation, letting neuron i fire only if its latent input is positive,
changes the moments, so the distribution over σ will not, in general, have the same
moments as u (Macke, Berens, et al., 2009).

We have introduced the prominent MaxEnt models used to model the activity of neural
data. We started by introducing the full log-linear model p(N), and then introduced the
independent p(1), pairwise p(2), population count p(K) and K-pairwise p(2,K) models
as special cases of the full log-linear model. The independent and population count
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models are simple models and we can derive analytic expressions for their parameters
in terms of their constraints. On the other hand, the pairwise and K-pairwise models
incorporate more detailed interactions, but it is difficult to express their parameters
in terms of their constraints. Instead, we typically use a numerical optimisation algo-
rithm, and for large N , we typically have to turn Monte-Carlo methods to compute the
expectations required in these optimisation algorithms.

We then introduced a number of variations on and alternatives to these models. To
make these MaxEnt models more expressive, we saw the inclusion of additional con-
straints (population coupling and reliable interaction model), the introduction of a non-
linear function in the exponential (semi-parametric energy-based model), and the in-
troduction of latent variables (RBM). Another consideration is how easily we can fit
these models to large populations, and here we saw some authors sticking to either rel-
atively simple models (population count and population coupling model) and others
making simplifying assumptions such as that the joint probability distribution can be
factorised into a cascading structure (cascading logistic model).
We have introduced a number of ways that we might model the activity of neurons.
Next, we have to ask how well these models work.

3.5. Assessing goodness of fit

Given the early promise of pairwise results, a lot of effort has been put into fitting
pairwise models to increasingly large populations (a more accurate title of this Section
would be assessing the goodness of fit of largely pairwise models). Pairwise models
were for a long time considered to be excellent approximations of the activity of popu-
lations ∼ 40 RGCs of all functional types (Berry II and Tkačik, 2020; Schneidman, Still,
et al., 2003; Tkačik, Schneidman, et al., 2006). However, for larger populations of ∼ 100

RGCs, higher-order interactions become more pronounced and pairwise models cease
to accurately reproduce important features of the true distribution. For instance, if we
compare the population count distribution p(K) predicted by the pairwise model to
the empirically observed distribution, the pairwise model predicts significantly heav-
ier tails than what is observed (Tkačik, Olivier Marre, Amodei, et al., 2014). So far, we
have not made the distinction of which type of RGCs we model, and this could be a
distinction worth making. Shlens et al., 2006 modelled the activity of∼ 100 RGCs of the
same functional type and found that the pairwise model remained a good approxima-
tion. Restricting ourselves to modelling the activity of just a particular functional type
is not something that we are able to do given then experimental data we have access
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to, but it remains an important consideration. In order to model larger populations of
RGCs without focusing on particular the functional type, additional constraints such
as the population count distribution p(K) have been included in the model, and these
models yet again appear to be a good fit based on the metrics such as the closeness of
the produced third-order correlations to the actual ones (Ganmor, Segev, and Schnei-
dman, 2011; Tkačik, Olivier Marre, Amodei, et al., 2014). This brief synopsis of the
successes and shortcomings of the pairwise model raises general questions about the
goodness of fit of MaxEnt models. Pertinently, why do certain models become worse
when we move to larger populations?

Determining whether a particular MaxEnt model is a good approximation to the true
distribution of the neural activity p(σ) under the assumption of temporal indepen-
dence is challenging since we can only experimentally sample a fraction of the full
distribution. If we had full knowledge of the true distribution, we could use a mea-
sure such as the Kullback–Leibler divergence to quantify how close our model is to the
true distribution. However, for a population of 100 neurons, there are approximately
2100 ∼ 1030 possible states while the experimental data that we look at includes only
283041 samples, many of which are repeated samples (Tkačik, Olivier Marre, Amodei,
et al., 2014). Thus, assessing the fit of MaxEnt models to experimental data is often done
heuristically, for instance by looking at observables that can be reliably measured from
the data but that are not included in our MaxEnt models as constraints. For instance,
we could assess whether the independent model might be a good approximation by
comparing its predicted pairwise correlations 〈σiσj〉 = 〈σi〉〈σj〉 to the experimentally
measured pairwise correlations.

However, these heuristic measures of goodness of fit, where we ask whether our model
succeeds in capturing an aspect of the true distribution that can be well-sampled from
finite data, may be misleading since our model might very well reproduce this partic-
ular aspect, yet it could still fail to reproduce other aspects that we do not consider,
or are unable to estimate from finite samples. It is a lot easier to say that a particular
model does a bad job of modelling the activity when it fails to capture certain aspects
of observed activity. There is also the question of whether a model that does a good job
of modelling the activity of a small population of neurons will remain a good model
for larger populations, as in the case of the pairwise model which, although a good
approximation for small populations of neurons, becomes a worse approximation for
larger populations (Tkačik, Olivier Marre, Amodei, et al., 2014). This question of ex-
trapolating performance has been answered in part in the case of the pairwise model
whose good performance in modelling small populations of neurons does not imply
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good performance for larger populations (Roudi, Nirenberg, and P. E. Latham, 2009).
We also need keep the cautionary remarks from Section 2.2.2 in mind, which arise from
modelling discretised neural data under the assumption of temporal independence. In
this section, we address which metrics suggest that MaxEnt models are good approxi-
mations, and where we might be skeptical about the generality of these results.

3.5.1. Proportion of multi-information captured

One way of determining whether a MaxEnt model provides an effective description
of experimental data is by looking at whether the reduction in entropy from includ-
ing certain constraints in a MaxEnt model accounts for the difference in entropy be-
tween the independent model and the data distribution (Schneidman, Berry, et al.,
2006). Looking back at the log-linear form introduced in Section 3.4.1, by varying the
order M = 1, 2, ..., N of the interaction parameters that we include in our model we
can define a hierarchy over the MaxEnt models. For each model, we can compute its
information theoretic entropy:

SM = −
∑
σ

p(M)(σ) ln p(M)(σ).

As we consider models with increasingly higher order correlations as constraints, the
corresponding entropy decreases monotonically, S0 ≥ S1 ≥ ... ≥ SN = SD, starting
from an unconstrained model, which predicts each state as equally likely which will
have the maximum entropy S0, and ending with the model which includes arbitrarily
high-order interactions and is an exact description of the data which will have entropy
equal to the data distribution SN = SD. Adding additional constraints to the model
can only decrease the entropy, since it gives us fewer and fewer directions in which
we can move to maximise the entropy (refer back to the original formulation in terms
of Lagrange multipliers and the proof of concavity in Section 3.1.2). We can quantify
the reduction in entropy caused by including M th order correlations as constraints as
IM = S1 − SM . The difference in entropy between the independent model and the
data distribution IN = S1 − SN can be thought of as a measure of the total amount
of correlation in the data, which we call the multi-information. By looking at the ratio
IM/IN , we can then quantify the proportion of the multi-information that is captured by
including M th-order correlations in our model:

Proportion of the multi-information captured by p(M) =
IM
IN

=
S1 − SM
S1 − SN

.

Though there is not normally an obvious relationship between entropy and correla-
tions, in the case of MaxEnt models, which reproduce up to M th-order correlations,
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we can interpret this relative difference in entropy as relating to un-modelled correla-
tions that would still further constrain the optimisation problem and thus reduce the
entropy.

The proportion of the multi-information captured by pairwise models was measured
in a number of different sub-populations of 10 RGCs, where it is still computation-
ally feasible to fit pairwise models without sampling, and was found to be around
I2/IN ≈ 0.9. These calculations were repeated with models trained on data recorded
from a number of different settings, including data from both salamander and guinea
pig RGCs, and from cultured cortical neurons, and similar proportions were observed,
though in all of these settings the pairwise models were only fitted to sub-populations
of 10 cells (Schneidman, Berry, et al., 2006). Results like these helped fuel the early en-
thusiasm around using pairwise models for modelling neural data. Estimating entropy
from MaxEnt models has to be done with caution as our entropy estimates can be sig-
nificantly different from the entropy of the true distribution, especially when the true
distribution does not come from the same distribution as our specified model, which
happens when higher-order correlations in the true distribution cannot be captured by
our model (Macke, Murray, and P. Latham, 2011). Although this decomposition of the
entropy appears in the early literature (Schneidman, Still, et al., 2003), such calcula-
tions rarely appear in the more recent literature. Instead, unconstrained observables
are often used to assess goodness of fit, which we discuss in the next section.

3.5.2. Unconstrained observables

As we try and model larger populations of neurons, the number of states grows ex-
ponentially and our sample statistics become increasingly unreliable. While it may be
possible to estimate the full probability distribution from experimental data for very
small populations of neurons, we are no longer able to do this reliably for populations
of 100+ neurons. Thus, we often have to turn to heuristics in order to assess goodness
of fit. For MaxEnt models, one such such heuristic is how well they predict observables
that the models are not constrained to reproduce. We introduce some of the common
observables that have been used to assess MaxEnt models, and then summarise where
different MaxEnt models succeed or fail to reproduce these observables.

The first heuristic we identify is the population count distribution p(K), where K is
the number of neurons that fire within a time bin. As we will see, this heuristic is use-
ful in assessing the performance of the independent and pairwise model. As p(K) is
also used as a constraint in MaxEnt models, such as the K-pairwise model, we need to
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consider alternative heuristics for goodness of fit. One such heuristic is the correlation
between triplets of neurons 〈σiσjσk〉, or 〈(σi − 〈σi〉)(σj − 〈σj〉)(σi − 〈σk〉)〉 depending
on whether we are interested in fluctuations relative to the means. Finally, more recent
work also uses MaxEnt models to try predict the probability of neuron N firing given
the states of the other N − 1 neurons, p(σN |σ1, ..., σN−1). This conditional distribution
is not used in assessing goodness of fit as much as it is used in trying to support hy-
potheses of a robust neural code (Tkačik, Olivier Marre, Amodei, et al., 2014), which
we discuss further in Section 3.6.2. Based on these heuristics, let us now turn to look at
the performance of different MaxEnt models.

Early work that focused on subsets of 10 cells from a population of 40 RGCs, found
that the majority of pairwise correlations 〈σiσj〉 are weak and very close to the prod-
uct of the expectations of the individual cells 〈σi〉〈σj〉 (Schneidman, Berry, et al., 2006).
Though this suggests using the independent model, this model falls short in predict-
ing the population count distribution p(K). Specifically, the probability p(1)(K=10)

predicted by the independent model was 103× smaller than what was observed in the
data. Generally, if N independent binary variables fire with probabilities p1, ..., pN ,
then we expect p(1)(K) to follow a Poisson binomial distribution with probability mass
function,

p(1)(K) =
∑
A∈FK

∏
i∈A

pi
∏
j∈Ac

(1− pj),

where FK is the set of all subsets of {1, ..., N} of size K, Ac = {1, ..., N} \ A. However,
Schneidman et al. noted that the observed distribution p(D)(K) instead resembled an
exponential distribution.

As this early work only considered a relatively small population of 10 cells, the authors
were able to compare the predicted and observed frequencies of different states. Again,
the shortcomings of the independent model became apparent as it failed to accurately
predict the frequency of common states. For instance, the state (1011001010) which
occurred once per minute in the recording was predicted by the independent model to
occur only once per three years (Schneidman, Berry, et al., 2006).

Later works which consider larger populations of neurons re-iterate the shortcomings
of the independent approximation. For both populations of N = 40 and N = 100

cells, we observe a big difference between the observed population count distribution
p(D)(K) and the Poisson binomial distribution predicted by the independent model,
especially at large K (Tkačik, Schneidman, et al., 2009; Tkačik, Olivier Marre, Amodei,
et al., 2014). In 40 RGCs, approximately a third of the correlations between triplets of
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cells 〈(σi−〈σi〉)(σj−〈σj〉)(σi−〈σk〉)〉D were observed to be significantly different from
zero, whereas an independent approximation would predict these correlations to be
identically zero (Tkačik, Schneidman, et al., 2009).

Can the observed population count distribution p(D)(K) and the triplet correlations be
explained by including pairwise interactions? Initially, when pairwise models were
fitted to small populations of 10 cells, the pairwise model appeared to be a good ap-
proximation based on its accuracy in predicting the frequency of common states, the
proportion of the multi-information that it captures, and the Jensen-Shannon divergence
DJS (Schneidman, Berry, et al., 2006), where the Jensen-Shannon divergence is a sym-
metrised version of the Kullback-Leibler divergence DKL:

DJS(p‖q) .
=

1

2
(DKL(p‖q) +DKL(q‖p)) , DKL(p‖q) .

=
∑
σ

p(σ) log
p(σ)

q(σ)
.

However, from N = 40, we begin to see significant differences between the pairwise
and data distribution, though these differences are not as extreme as with the indepen-
dent model.

At N = 40 cells, we already see deviations between the predicted and observed popu-
lation count distribution p(K) (Tkačik, Schneidman, et al., 2006). The pairwise models
predicts a distribution with noticeably heavier tails for p(K) than what is observed,
and it also underestimates the probability of silence as p(2)(K=0) = 0.502, whereas it
is measured to be p(D)(K=0) = 0.55. The pairwise approximation becomes worse at
N = 100 where its prediction for p(2)(K=0) is off by a factor of three and it contin-
ues to exhibit much heavier tails at large K than what is empirically observed (Tkačik,
Olivier Marre, Amodei, et al., 2014). The silent state (00...0) is a well-sampled feature
even in the activity of large populations of RGCs, and the pairwise model is unable to
accurately capture it.

The pairwise model also overestimates triplet correlations by 7% on average in a pop-
ulation of 40 cells (Tkačik, Schneidman, et al., 2009). From 40 through until 100 cells,
the absolute difference between the observed and predicted triplet correlations 〈(σi −
〈σi〉)(σj−〈σj〉)(σi−〈σk〉)〉 is around 10−3. Though the pairwise model represents a sig-
nificant improvement to the independent model, there are still significant differences
between its predictions and the experimentally observed activity of large populations
of RGCs (Tkačik, Olivier Marre, Amodei, et al., 2014).

Some of these difference have been overcome by using the K-pairwise model which
additionally includes the population count distribution p(K) as a constraint (Tkačik,
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Olivier Marre, Amodei, et al., 2014; Tkačik, Mora, et al., 2015; Berry II and Tkačik,
2020). Of course, this means we can no longer use p(K) as a heuristic for goodness
of fit. Instead, we start by looking at how well the K-pairwise model reproduces the
triplet correlations 〈(σi − 〈σi〉)(σj − 〈σj〉)(σi − 〈σk〉)〉. In a population of 100 RGCs, the
mean absolute difference between the predicted and observed triplet correlations was
significantly below 10−3, in contrast to what we saw above with the pairwise model,
though this is still greater than estimates of the experimental error (Tkačik, Olivier
Marre, Amodei, et al., 2014). K-pairwise models have also been shown to be fairly
accurate in replicating the conditional probability of neuron N firing given the states
of the other N − 1 neurons, p(σN |σ1, ..., σN−1) (Tkačik, Olivier Marre, Amodei, et al.,
2014).

We have briefly summarised how well the independent, pairwise and K-pairwise mod-
els capture the activity of RGCs based on heuristics such as the population count distri-
bution and triplet correlations. Though the K-pairwise model appears to be most accu-
rate model, it still does not faithfully reproduce all the features of the activity of RGCs.
One question that is worth asking is whether we can still learn from an approximate
model, or even models that do not attempt to model the full joint distribution, such as
a model of the population count distribution (Tkačik, Olivier Marre, Mora, et al., 2013).
Fitting MaxEnt models often involves a compromise between the computational com-
plexity associated with including many constrains in the model, and including enough
of the well-sampled observables as constraints to obtain an accurate model. Assessing
the goodness of fit is then a game of searching for significant features in the data that
we have not (yet) included as constraints.

3.5.3. Overfitting

The use of MaxEnt models is motivated by building models out of statistics that we can
reliably estimate from finite sets of data. However, how can we be certain that a sample
statistic is sufficiently close to its true population parameter? Even if we are certain that
all of our sample statistics are close to their true parameters, does a MaxEnt model built
on the basis of many such statistics remain an accurate approximation to the distribu-
tion, or does the cumulative effect of many small discrepancies in our sample statistics
result in a model that is very far away from the true distribution? We examine some of
the techniques that allow us to assess whether the distributions specified by our mod-
els are generally good approximations to the activity of cells, or whether they are only
representations of the data they are trained on.

In a data-rich context, the most straightforward way to assess how well a model gener-
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alises is to reserve a set of the data from the training procedure as a test set with which
we can use to evaluate the model. When we have a number of different models that
may explain the data, it is common to split the data into separate training, validation
and testing sets and then following training, use the validation set to select a model,
typically the one that best models the validation set. Once a model has been selected,
one can then evaluate its performance on the withheld test set. Thus one distinguishes
between the processes of model selection and model evaluation.

In the context of MaxEnt models, we cannot blindly apply this procedure. Firstly, we
need to consider that our data-set is a time series and that we made the simplifying
assumption that we can take time averages of this data. Secondly, we need to consider
that MaxEnt models are a product of their constraints, and it may only suffice to show
that these constraints generalise across different subsets of our data in order to show
that the same is true for the MaxEnt models that reproduce them. Finally, the model
selection part of this procedure might not be necessary since there are cases where we
may not want the most accurate MaxEnt model, for instance if we wanted to construct
a null model that includes only low order moments. Rather than wanting to select the
model which best describes the data, we more likely want to observe what changes as
we move from one model to another. Thus our focus is not so much on model selection,
but on model evaluation.

We try to tackle the above considerations in what follows. However, we first mention
how this question of overfitting has been previously tackled. Since we try to maximise
the log-likelihood of the data, to evaluate whether the model overfits to the training
set, we could compare the log-likelihood of the training set to the log-likelihood of a
withheld test set. If the log-likelihood of the training set is significantly larger than the
test set, then we are likely overfitting to the training set. This has been the tactic used
by Tkačik, Olivier Marre, Amodei, et al., 2014 where they randomly chose 90% of the
repeats in the data to train the model and then compared the log-likelihood of the train-
ing data to the log-likelihood of the remaining 10% of the repeats. Each stimulus was
presented to the retina multiple times producing multiple recordings of similar activ-
ity and we refer to the discretised, binned versions of these recordings as repeats. They
constructed error bars around the ratio of the test and training log-likelihoods by look-
ing at the standard deviation of models trained on different subsets of cells. Broadly,
this tactic of resampling data and comparing statistics across the different samples falls
under resampling methods. Before we discuss resampling further, it should be noted
that when Tkačik, Olivier Marre, Amodei, et al., 2014 split their data-set they kept each
repeat intact.
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Bootstrapping is a resampling method which allows us to calculate measures of ac-
curacy of statistics such as standard errors, particularly when we are not sure which
distribution our data comes from. In the above case, it is not immediately clear which
distribution the ratio of log-likelihoods follows, thus it makes sense to use bootstrap-
ping to estimate error bars around our estimates. We can obtain B bootstrap samples
{D∗1, ...,D∗B} by randomly sampling with replacement from the data D. If Φ(D) is
a quantity computed from the data, then we can use our bootstrap samples to estimate
aspects of the sampling distribution of Φ(D) (Davison and Hinkley, 1997). For instance,
we can work out the variance in the quantity Φ as

〈(Φ− 〈Φ〉B)2〉B =
1

B − 1

B∑
b=1

(Φ(D∗b)− 〈Φ〉B)2,

〈Φ〉B
.
=

1

B

B∑
b=1

Φ(D∗b).

We can use bootstrapping as both a means of obtaining standard errors around aspects
of model performance and a means of assessing the accuracy of the statistics that we
use to constrain our MaxEnt models. Whereas reserving portions of data from the
training procedure can be used to assess the generality of what our model has learnt,
bootstrapping allows us to quantify uncertainty of both the model’s constraints and
predictions.

When we assess how well our model generalises to unseen data, how we split our data-
set has certain implications. Firstly, in choosing to train our model on data recorded
from repeated presentations of the same stimulus to the retina and then testing it by ex-
amining its performance on unseen recordings but again involving the same stimulus,
we ask whether the distribution obtained from expectations taken over the duration
of the stimulus is similar across different presentations of the stimulus. In this case, if
our model does appear to generalise well, it only suggests that what we have learnt is
fairly consistent across different presentations of the same stimulus. Alternative ways
of training and testing the generality of MaxEnt models are worth further investiga-
tion. For instance, could a MaxEnt model trained on the first half of an experiment be
a good model for the activity in the second half? What could we learn if we trained a
MaxEnt model with data from a variety of different stimuli? Ultimately, we are trying
to build a distribution over all the states that appear in the activity of RGCs and it is
not clear how close MaxEnt approximations of this distribution, estimated from finite
samples of data, come to representing it fully.
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3.5.4. Skepticism within the perturbative regime

In the previous few sections, we observed that the pairwise model seemed to be an
accurate model for small populations of neurons but fails to account for significant
features of the activity of larger populations such as the population count distribution
p(K) and the triplet correlations 〈(σi − 〈σi〉)(σj − 〈σj〉)(σi − 〈σk〉)〉. These empirical
results suggest that it is unwise to extrapolate results obtained in small populations to
larger populations. These observations bring the usefulness of what we learn in small
populations into question. We now touch on a result which explains why we trivially
observe the pairwise model being a good fit in small populations.

We start by defining the perturbative regime as the regime where the product of the
mean probability δ of observing a neuron spike and the number of neurons N is very
small. More accurately, δ is shorthand for the product of the mean firing rate 〈v〉 and the
size of the time bin δt, δ .

= 〈v〉δt. When at most a single neuron fires within each time
bin, we can identify δ as the mean probability of observing a neuron spike. Thus we
can express the perturbative regime as δ .

= 〈v〉δt � 1. Within the perturbative regime,
Roudi et al. found that relative to the Kullback-Leibler (KL) divergence between some
true probability distribution p(N) and the independent model p(1), the KL divergence
between the true probability distribution and the pairwise model p(2) is linear in Nδ

(Roudi, Nirenberg, and P. E. Latham, 2009). To be in line with their results, we define
the KL divergence here using base 2:

DKL(p‖q) .
=
∑
σ

p(σ) log2

p(σ)

q(σ)
.

Using this definition of the KL divergence, we can write their result more formally as

∆N
.
=
DKL

(
p(N)‖p(2)

)
DKL

(
p(N)‖p(1)

) ∝ (N − 2)δ +O
(
(Nδ)2

)
.

Note that ∆N will be close to 0 when the pairwise model p(2) is close to the true distri-
bution p(N), and ∆N will be close to 1, when the pairwise model is barely better than the
independent model p(1). As we increase the system size N while keeping δ fixed, ∆N

will scale linearly and the pairwise model becomes a worse and worse approximation
regardless of the true distribution, provided that we remain in the perturbative regime.
Though one seldom reads the appendix, we have gone to great lengths to re-derive and
explain this result in Section A.2. We would consider the fact that have made this result
more accessible as one of the significant contributions of this thesis.

The importance of this result is that the true probability distribution p(N) could have
arbitrarily high order correlations and in fact be very different from a pairwise model.
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However, by choosing to discretise our data with relatively small time bins, and by only
considering small populations of neurons, the pairwise model will, almost trivially,
seem like a good fit, at least based on the relative KL divergence. Roudi et al. make the
even more severe statement that if we find that ∆N scales linearly withN , then one has
no information about the true distribution.

What are the dangers of choosing a very small time bin so that our model appears to
be a good fit? We make the assumption of that all our states are temporally indepen-
dent when we chose to model the instantaneous activity of neurons, where temporal
independence is defined by p(σt,σt+1) = p(σt) · p(σt+1). Although decreasing the
width of the time bins makes the pairwise model appear to be an increasingly better
model, in doing so the pairwise model becomes a worse and worse approximation for
temporally correlated spike trains, and in binning our data into narrower bins we end
with stronger temporal correlations (Roudi, Nirenberg, and P. E. Latham, 2009). For
instance, if we had two cells which always fire together, but one lags slightly behind
the other, then once our bin width is less than the lag, we end up with successive states
where observing one of the cells firing in state t implies that we will see the other cell
firing in state t+ 1. This relates back to what we discussed in Section 2.2.2 about want-
ing to capture the combinatorial nature of the activity.

Given these cautionary remarks, how do we know when our model is actually a good
fit for large populations of data? As N increases for fixed δ and we move out of the
perturbative regime, if we observe that ∆N no longer scales linearly withN and instead
saturates, then what we learn may indeed be meaningful. This would require that
we are able to calculate ∆N and its associated KL divergences, which requires either
access to the full true distribution, or accurate estimates of the KL divergence from
finite samples of experimental data.

Though these remarks serve as a cautionary tale in the case of the pairwise model, it
is worth asking whether we could generalise these results to other MaxEnt models.
Going beyond pairwise models, it is common to then include the population count dis-
tribution p(K) as a constraint, and it might be tempting to try to define a perturbative
regime for the K-pairwise model. Though this may be possible through other means,
we briefly outline the difficulty with adapting the current calculation to the K-pairwise
model. As we see in the appendix, deriving results for the KL divergence between
some true probability distribution and the pairwise model involved calculating multi-
nomial expansions up to the sufficiently high order such that we observe differences
between the true distribution and the pairwise model’s third order correlations. What
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would complicate adapting this method to the K-pairwise model is that due to its con-
straint p(K), which reproduces aspects of the true distribution relating to correlations
of all orders, there is no obvious order at which we can truncate the expansions. Thus,
finding a means of defining the perturbative regime for the K-pairwise model remains
an avenue for future research.

3.6. What can these models tell us?

Once we have fit a MaxEnt model to neural data and assessed its goodness of fit, what
can we then learn? If our model appears to be a good approximation to the inaccessi-
ble true distribution, are the properties of our model inherently properties of the true
distribution? Is there anything that we can learn from a MaxEnt model which does
not do a good job of reproducing certain significant features of the data? Are there
insights from statistical physics that can be brought into this discussion due to the sim-
ilarity between MaxEnt models and the well-studied Boltzmann distribution? These
are some of the broader questions we will attempt to answer as we elaborate on the in-
sights we can gain from using MaxEnt models to model the activity of retinal ganglion
cells. We start by explaining how we can use MaxEnt models with increasingly higher
order interaction parameters as a means of identifying the statistical features of neural
activity. This relates to the question of how many N-body interactions we require to
model neural data, and whether we are likely to find simpler probabilistic description
of the neural data. We then explore the hypothesis that retinal activity is organised into
discrete clusters and how the properties of MaxEnt models support this. This prompts
a discussion on the controversial topic of criticality in MaxEnt models and what this
suggests about retinal activity. This discussion will attempt to bring in both the main
results that arise from applying the maximum entropy principle as well as the main
critiques of these results.

3.6.1. Hypothesis testing

MaxEnt models provide a systematic way of exploring the statistical features, or regu-
larities, of neural activity. Within hypothesis tests, we can use MaxEnt models as null
distributions. If we define a MaxEnt model with simple statistics as constraints, we can
then compare the value of an unconstrained quantity produced by the model to the value
of that quantity observed in the data. By unconstrained quantity we mean a quantity
that the MaxEnt model has not been constrained to reproduce. When we find a signif-
icant difference between the two, this suggests that there is statistical structure within
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our data that is not accounted for by the constrained statistics in our MaxEnt model
(Savin and Tkačik, 2017). For instance, we may be interested in whether the pairwise
correlations observed in the data can arise from a system where neurons fire indepen-
dently. In this case, by using an independent model as the null distribution, we could
compare the pairwise correlations produced by the distribution to the correlations ob-
served in the data. The idea of using MaxEnt models in hypothesis testing dates backs
to Martignon et al., who proposed using the full log-linear model to analytically test
whether higher-order effects could be explained by lower-order moments (Martignon
et al., 1995). Unfortunately, in practice fitting the full-log linear model to data requires
knowledge of the full probability distribution.

An alternative approach to identifying important statistical features involves starting
with a simple MaxEnt model, and then adding a further constraint to the model. If
this model then better models the data, this suggest that the additional constraint may
be an important feature of the data. However, one must keep in mind that refitting
a MaxEnt model with additional constraints may not be trivial, for instance including
all triplet correlations adds an additional

(
N
3

)
parameters to the model that have to be

determined, and hence the hypothesis testing approach may be preferred (Savin and
Tkačik, 2017).

3.6.2. Clustering activity

We know that the activity of RGCs that we observe is noisy, in that the same stimulus
will produce different states from one repeat to another, suggesting that the responses
of the RGCs are inherently probabilistic (Berry II and Tkačik, 2020). We can easily
illustrate this by looking at the responses of RGCs to two different repeats of the same
stimulus. Though many of the same cells fire at the same time in these two different
repeats, there are also cells which fire at particular times in one of the repeats but not
the other. This is illustrated in Figure 3.1.

Although the exact state σ elicited by a stimulus may vary from one repeat to an-
other, we might make the assumption that these different states represent the same
thing, such as the detection of a particular visual feature, since the same stimulus gave
rise to them. The question we have to ask ourselves is, “Are we justified in assuming
that certain different states might represent the same thing, and if so, can we find a
way of grouping together the states which represent the same thing?” Taking a brief
step back from retinal states, we should highlight that grouping together different data
points that are similar in some way is a classic problem in unsupervised leaning. This

49



3.6. WHAT CAN THESE MODELS TELL US?

Only fired 
in 1st 
repeat

Only fired 
in 2nd 
repeat

1st repeat 2nd repeat Differences

Which
cell

fired

Similarities and differences between responses from two different repeats 

When it fired; 100 bins of 20ms = 2s of activity

0

160

80

40

120

0 8040 0 8040 0 8040

Figure 3.1: Binned recordings of the responses from 160 RGCs. The same stimulus
is projected on to the retina repeatedly, and we show responses from two different
repeats. The responses from these two different repeats are visually similar. However,
in the third plot we highlight which cells fired at certain times in the first repeat but not
in the second and vice versa. In the first repeat, we had 1 715 spikes and in the second
we had 2 655. Only 245 of these spikes occurred in the same cell and within the same
time bin. This highlights the noisy nature of the activity. The data for these results are
introduced formally in the methodology section.

50



3.6. WHAT CAN THESE MODELS TELL US?

is broadly known as clustering and involves mapping each data point to a finite set
of clusters. Clustering can also be thought of as a dimensionality reduction technique
when we begin mapping higher-dimensional data points to lower-dimensional repre-
sentations, for instance assigning binary vectors of length N to integers from 1 to M
where M < 2N . Later in our results, we will explore the use of autoencoders as a
means of mapping the states of RGCs to lower-dimensional representations. For now,
we want to explain the existing approach to clustering the activity of RGCs, as well as
unpack why it might be useful to think of the activity through this lens.

The existing approach to clustering the activity of RGCs involves modelling a sequence
of states in time (σ(1), ...,σ(T )) using a hidden Markov model (HMM) (Adrianna Renee
Loback, 2018). Although the individual states are the same as the ones we have been
modelling, unlike the models we have been using, in the HMM we no longer ignore
temporal dynamics. We view the sequence of observed states (σ(1), ...,σ(T )) as arising
from a hidden sequence of latent states (h(1), ..., h(T )). We further make the assumption
that the probability of each observed state σ(t) only depends on the latent state h(t),
and that each latent state h(t) only depends on the previous latent state h(t−1), which
makes this process memoryless, in other words obeying the Markov property. We can
graphically model a hidden Markov chain as follows:

h1 h2 hT

σ1 σ2 σT

h3

σ3

If we know the probability of transitioning from one latent state to the next p(h(t)|h(t−1)),
and the probability of observing a particular state given the latent state p(σ(t)|h(t)),
then we can determine the probability of observing a particular sequence of states by
marginalising over all possible sequences of latent states, which we denote

∑
(h(t
′))T

t′=1
:

p(HMM)(σ(1), ...,σ(T )) =
∑

(h(t
′))T

t′=1

T∏
t=1

p(σ(t)|h(t))p(h(t)|h(t−1)).

Up until now, we have casually introduced latent states h(t) into our model without
much explanation. Firstly, unfamiliar readers may be put off by the term “latent” which
in this context is really just a fancy way of saying hidden. Though latent states can rep-
resent many different things in a model, such as unobserved effects or even a change of
basis, in this application, each latent state can be thought of as a simplified description
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of the observed state. In fact, we can define a mapping from each observed state σ
at each point in time to the latent state h∗ which maximises the probability of the ob-
served state. This is that state’s cluster. Importantly, we choose the number of possible
latent states at each moment in time to be less than the number of binary vectors of
length N . In this brief overview, we have skipped over many details, and recommend
referring to Prentice et al., 2016 which first introduced this latent variable model to
modelling RGCs. To recap this approach to clustering, we introduce a number of pos-
sible latent states that the population can be in at each moment in time, and instead of
caring about the detailed transitions from one state σ(t) to σ(t+1), we assume each state
can be mapped to a simplified latent state and that it suffices to model the transitions
between the latent states. For emphasis,

a state’s cluster ≈ a latent state of a HMM.

Having outlined one mechanism of clustering retinal activity, we need to take a step
back and ask why it is interesting to think of activity in terms of clusters. Berry II and
Tkačik, 2020 propose three properties that we might expect from clusters:

1. Clusters exhibit error correction where the same stimulus maps to the same cluster
despite variation in the exact responses.

2. Clusters encode qualitatively different visual features than their constituent cells.

3. Clusters can be learnt by downstream neural circuits in an unsupervised fashion.

Clearly these properties go beyond what can be inferred from HMMs and indeed, this
line of research draws on results beyond HMMs. For instance, it also involves look-
ing at the geometry of the clusters (A. Loback et al., 2017), and proposing biologically
plausible means by which downstream neural circuits might recognise clusters (Adri-
anna R Loback and Berry, 2018). Pertinently, this hypothesis was greatly inspired by
interpreting MaxEnt models through the lens of statistical physics. Although exploring
all of these directions is clearly beyond the scope of this thesis, we strongly believe that
it worth re-examining the role of MaxEnt models in this hypothesis.

The link between MaxEnt models and clusters is as follows. The distributions that arise
from fitting MaxEnt models to the activity of RGCs are thought to have a probability
landscape with many well-separated local peaks (Berry II and Tkačik, 2020). Since
the energy function in MaxEnt models is proportional to the negative log probability
E(σ) ∝ − ln p(σ), we also talk about the energy landscape having many well-separated
local minima because the logarithm is monotonically increasing. Each local peak in the
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probability landscape is then thought to relate to a distinct cluster of activity. At this
stage we say “thought to”, because many of these assertions have not been rigorously
demonstrated, and this what we want to explore. We explain the current line of rea-
soning as to why this might be the case and highlight areas which require additional
justification.

The assumed shape of the probability landscape of MaxEnt distributions relates to two
observations. We mention these briefly now, though we will explain them in more
detail below. The first observation is that in MaxEnt models trained on populations of
RGCs, the pairwise interaction parameters, J , seem to follow a Gaussian distribution
with zero mean, and the fact that we observe both positive and negative interaction
parameters gives rise to frustration (Schneidman, Berry, et al., 2006). The second is that
if we re-scale the model parameters, so as to explore a family of MaxEnt models, the
phase that the actual model (i.e. the model with unscaled parameters that reproduces
certain aspects of the time-averaged activity) seems to be in is close to a critical point,
characterised by a peak in the fluctuations of the energy per cell, or alternatively the
specific heat.

Clearly these observations leave much to be explained, such as what frustration is, or
what it means for a model to be in a particular phase, and we will have to carefully
borrow concepts from statistical physics and ask whether these concepts are sensible
in the context of RGCs. Although much of the promise of using MaxEnt models to
model neural data is in the possibility of drawing on insights from decades of studying
models such as Ising models in statistical physics, a lot of the confusion in interpreting
these models arises from statistical physics concepts being used in a context where
they were not developed without proper justification. To recap, we want to explore if
a MaxEnt model is frustrated and if it is close to a critical point, then does it have many
well-separated peaks in the probability landscape specified by its distribution.

We first elaborate on frustration. Frustration is said to arise when, due to the structure
of our model and the values of its interaction parameters, no single combination of
spiking and silence is able to minimise all the terms in the energy function and thus
we have several equivalent lowest energy states (Tkačik, Olivier Marre, Amodei, et
al., 2014). Typically, the presence of both positive and negative pairwise interaction
parameters J in MaxEnt models has been taken as a sign that the model is frustrated
– an assumption we will shortly question. A simple example of a frustrated triplets
of cells is illustrated in Schneidman, Berry, et al., 2006, though we contrive our own
illustration below. If we have three interacting cells σ1, σ2, σ3 ∈ {0, 1} with interaction

53



3.6. WHAT CAN THESE MODELS TELL US?

parameters J12 = −1, J13 = −1, J23 = +1 and without local fields h = 0, then our
pairwise model takes the form

p(σ) =
1

Z
e−E(σ), E(σ) = −σ1σ2 − σ1σ3 + σ2σ3.

Notice that the system has three states yielding the lowest energy,σ = (110), (111), (101),
and thus this distribution has multiple equivalent maxima.

Though this particular toy model exhibits frustration, the existence of both positive and
negative interaction parameters alone is not a guarantee of frustration. For instance,
consider the above toy example with interaction parameters J12, J13 = 1, J23 = −1, in
which case there is a unique minimum at σ = (011). In the literature, frustration is
largely assumed on the basis of observing interaction parameters with both positive
and negative values (Schneidman, Berry, et al., 2006; Tkačik, Olivier Marre, Amodei,
et al., 2014; Berry II and Tkačik, 2020). Importantly, the question we ask with MaxEnt
models is not whether we can find a set of parameters that gives rise to frustration, but
given the parameters of our model determined by the data, is the MaxEnt model frus-
trated, and thus has multiple local minima in its energy landscape. Currently, we are
unaware of a general proof that MaxEnt models with both positive and negative inter-
action pairwise interaction parameters will necessarily be in a frustrated state. Unlike
typical spin glass models where spins are placed on a lattice and interactions are limited
to the nearest neighbours, in MaxEnt models with pairwise interactions, we typically
include all possible pairwise interactions. Hence, the topology of the system is a fully
connected graph.

Despite many gray areas in the argument that frustration can be inferred from the signs
of the pairwise interaction parameters J , there have been other, more direct attempts
to show that MaxEnt models have multiple minima. Tkačik, Olivier Marre, Amodei,
et al., 2014 were able to use Monte Carlo methods to descend the energy landscape of
a trained MaxEnt model from different initial states and arrive at a number of distinct
locally stable states. These locally stable states had the property that changing the value
of any single cell in the state only increased the energy. This work not only provides
evidence that MaxEnt models trained on retinal data can indeed have multiple local
minima in the energy landscape, but also defines what it means to have a local min-
imum in a function over binary variables, i.e. states where changing the value of any
single cell will only result in us moving to a state with higher energy. Though we speak
of an energy landscape, a more appropriate metaphor for the domain would be an en-
ergy hypercube QN where a hypercube is a graph with 2N vertices labeled with binary
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vectors σ of length N and edges connecting two vertices whenever the Hamming dis-
tance

∑
i[σi · (1−σ′i)+(1−σi) ·σ′i] of their labels, sigma, sigma′ is one. The Hamming

distance simply counts the number of positions where two binary vectors of length N
differ. We should also point out that so far frustration has been an observation about
the MaxEnt distribution learnt from data, as opposed to the actual data. Hopefully, this
discussion on frustration has highlighted that it is still not exhaustively covered in the
literature.

We now elaborate on how we might characterise the phase that a MaxEnt model is in.
The mathematical form of a MaxEnt model resembles the Boltzmann distribution, and
if we identify the argument of the exponential as the energy E(σ), then the MaxEnt is
isomorphic to the Boltzmann distribution at kBT = 1 (See Section 3.3 for more on the
Boltzmann distribution). Note, we are not assuming that we are modelling a system in
thermodynamic equilibrium, but purely noting the mathematical equivalence between
MaxEnt models and the Boltzmann distribution. However, due to this equivalence, it
is interesting to ask whether we can perform similar analyses on MaxEnt models as
we would with Boltzmann distributions. One interesting question that we can ask is
which phase our model is in. To investigate phase transitions in a system modelled
by Boltzmann distribution that is in the thermodynamic limit, we would adjust the
temperature T and look at how this effects the heat capacity C or specific heat C/N . A
divergence in these quantities indicates that our system undergoes a phase transition,
and the temperature at which the divergence happens is referred to as the critical point
(see Section 3.3).

MaxEnt models do not have a temperature T and, as they model finite systems of neu-
rons, are not in the thermodynamic limit. In order to ask whether a MaxEnt model is
close to a critical point, we would firstly have to introduce a fictitious temperature to
the model and then as we vary this temperature while keeping all other parameters
constant, look for a peak in, as opposed to the divergence of, the heat capacity. We
could think of introducing a temperature into the argument of the exponential as intro-
ducing a means of rescaling our model parameters. As we move through this exponen-
tial family, we can then ask ourselves how the other models in this family compare to
the model with unscaled parameters, corresponding to the actual model. We attempt
to place the properties of our model in context by juxtaposing it with the other models
we can obtain through rescaling the model parameters. The major difference between
what we do here and what we do in models of phase transitions in statistical physics is
that in statistical physics we vary the temperature of the actual system, which in turn
may vary the temperature-dependent parameters in our model of the system. Here,
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we change the parameters of our model of the system, while the system remains un-
changed, and of course the moment we start changing the parameters of our model it
is no longer an accurate description of the system.

Despite the questionable foundations of this analysis, it has been conducted in a num-
ber of works (Schneidman, Berry, et al., 2006; Tkačik, Schneidman, et al., 2006; Tkačik,
Olivier Marre, Mora, et al., 2013; Tkačik, Mora, et al., 2015) where MaxEnt models have
been fitted to populations ranging from N=10 to N=120. In all of these works, it has
been observed that the actual MaxEnt model that fits the data, in comparison to ver-
sions of this model with re-scaled parameters, is poised close to a peak in the specific
heat, or equivalently, the variance in energy per cell 〈(ε − 〈ε〉)2〉 (both of these become
functions of the re-scaling parameter T ). Although a number of early works that looked
at criticality in small populations of neurons speculated that larger populations will be
poised at a critical point (Schneidman, Berry, et al., 2006), Berry II and Tkačik, 2020
revises this hypothesis and instead suggests that the population is in a marginally sub-
critical state, where the population is poised just below a critical point. Other than the
fact that this finite system is not in the thermodynamic limit, a reason to doubt that
we are exactly at a critical point is that criticality is associated with long-ranged cor-
relations, however, measurements show that correlations between RGCs vanish when
the cells are sufficiently far apart (Berry II and Tkačik, 2020). However, being poised
close to a critical point still has certain implications for the shape of the energy land-
scape. Way above the critical temperature, minima become washed out, whereas way
below the critical temperature, the probability distribution will be concentrated in a
few peaks suggesting a low representational capacity, if we assume each local peak en-
codes a particular visual feature. Just below the critical temperature, we have many
well-separated peaks (Berry II and Tkačik, 2020).

Interestingly, another work which looks at a K-pairwise model and re-scales the pair-
wise interaction parameters and the potential VK while refitting the local field so that
the model reproduces the averages 〈σi〉, i ∈ {1, .., N} still finds that the un-scaled
model is poised close to a critical point (Tkačik, Mora, et al., 2015). As opposed to the
somewhat arbitrary re-scaling we saw above, in this approach we scale how much of
a contribution the terms associated with higher-order interactions have in our model.
This re-scaling allows us to go from a purely independent model to a model where
higher order interactions completely dominate the energy function. This work pro-
vides another way of exploring the space of possible MaxEnt models and still found
that the actual model was poised close to a critical point (Tkačik, Mora, et al., 2015).

While the hypothesis that we can cluster the activity of RGCs was inspired by the
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suggestion that the energy landscape (or hypercube) specified by MaxEnt models has
many well-seperated local minima, the current approach to learning these clusters re-
lies on HMMs. The suggestion about the shape of the energy landscape arose through
treating MaxEnt distributions as Boltzmann distributions in statistical physics, and try-
ing to make the argument that the models we fit exhibit frustration and are close to a
critical point. This could still be a valuable avenue of research, and there are promising
results such as work by Tkačik, Mora, et al., 2015 which instead of introducing a fic-
titious temperature varied the extent to which we include higher-order interactions in
our model. However, more time needs to be spent assessing whether concepts such as
temperature, phases and frustration are well-defined in the context of retinal ganglion
cells.
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4. APPLYING THEORY

4.1. Methodology

We now move on to fitting different MaxEnt models to actual RGC data. First, we have
to describe the RGC data, and we begin by visualising and summarising various as-
pects of it. We want to illustrate that the theory written out in the previous chapters
does indeed translate into MaxEnt models that can practically be applied to modelling
RGCs. To this end, we have implemented different MaxEnt models in Python which
can be constrained to reproduce various observed statistics and are able to predict the
probabilities of other states. These models are compared with an existing implemen-
tation written in Matlab that has been used in the literature (Maoz and Schneidman,
2017). We show agreement between the learned model weights and their predicted
distributions for N = 10 cells.

Having shown agreement between our implementation and the existing implementa-
tion, we train independent and pairwise models on experimental data, detailed below
in Section 4.1.1, and look at which features these models manage and fail to capture.
We recreate the figures seen in Tkačik, Olivier Marre, Amodei, et al., 2014 showing the
discrepancy between the distribution p(K) predicted by the models and the empiri-
cal distribution. Although we do see differences between the predicted and empirical
distributions in our results, it is not clear how these differences change as we vary the
number of neurons N . To clarify this relationship, we fit models over a more finely
sampled set of values for N and plot the difference between the model and empirical
predictions.

In the literature, the fact the pairwise model seems to be a good approximation to RGC
activity for small N and δ has been attributed to the fact that the pairwise model is in
a perturbative regime where the normalised distance measure ∆N , which tells us how
far the pairwise model is from the true distribution, trivially scales relative to N · δ
(Roudi, Nirenberg, and P. E. Latham, 2009). Previously, Roudi, Nirenberg, and P. E.
Latham, 2009 have illustrated these results by comparing a pairwise model to a third
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order model with randomly initialised weights for systems of size N ∈ {4, ..., 10} and
for fixed values of δ. We now apply these results to our pairwise models trained on real
RGC data for systems of size N ∈ {5, ..., 20}.

We finish by presenting some early results of another approach to simplifying the ac-
tivity of RGCs. This approach takes inspiration from image compression and makes
use of autoencoders, a type of artificial neural network which aimed at finding efficient
representations of data. We outline each of these procedures in more detail below.

4.1.1. Data

Many of the recordings used in the papers mentioned thus far have been made publicly
available. In this work, we make use of data from the paper Searching for Collective
Behavior in a Large Network of Sensory Neurons (Olivier Marre, Tkacik, et al., 2017). This
data has been made available on research explorer1 (Olivier Marre, Tkacik, et al., 2017).
It comprises a recording of 160 salamander retinal ganglion cells responding to 297
repeated presentations of a 19 second long so-called “natural” movie. We suspect this
movie is of a fish moving since the title of the file is “...fishmovie32 100.mat” and is
most likely the same movie of the fish that Gašper Tkačik shows in this online talk2,
which fits the description and time length.

Once the data-set has been downloaded from research explorer, we want to summarise
and visualise various features of the data. Firstly, we want to show what the activity
looks like. We can plot the binned retinal activity as a binary matrix where the (i, j)

entry of the matrix indicates whether the ith cell fired within the jth time bin. We have
already mentioned that the responses arise from repeated presentations of the same
stimulus, and have briefly shown in Figure 3.1 that there is similarity across the re-
sponses from different repeats, but also a fair amount of noise in the responses. We
supply further illustrations of how consistent activity is across different trials in our
results, for instance by plotting how regularly individual cells fire. We also want to
show the sample distribution of the averages 〈σi〉D, pairwise correlations 〈σiσj〉D, and
population count distribution p(K)D. We plot various summaries of these statistics in
our results.

Finally, we apply Principal Component Analysis (PCA) to the activity, which we use
as both a visualisation technique and a benchmark for dimensionality reduction of the
activity. PCA involves computing a set of orthogonal unit vectors {v1, ...,vM},M ≤ N ,

1https://research-explorer.app.ist.ac.at/record/5562
2youtu.be/m80prUNCn2g?t=1151
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called the principal components, and then projecting the data-set onto the space spanned
by the principal components. We search for the principal components such that ith

principal component explains as much of the variance in the data-set as possible while
being orthogonal to the first i− 1 principal components. Though there are many ways
to compute the principal components, one way of obtaining them is by computing an
eigendecomposition of the sample co-variance matrix Q. Representing the state of cell i
in the tth sample in our data-set as σ(t)

i , the entries of the sample co-variance matrix can
be computed as

qij =
1

|D| − 1

|D|∑
t=1

(σ
(t)
i − 〈σi〉D)(σ

(t)
j − 〈σj〉D).

The eigendecomposition of the sample co-variance matrix can be written as

Q = V ΛV −1,

where V is a square matrix whose columns are the eigenvectors v1, ...,vM and V −1 is
its inverse. Λ is a diagonal matrix whose ith diagonal element is the associated eigen-
value of eigenvector vi. The eigenvectors can be identified with the principal compo-
nents and the eigenvalues as relating to the proportion of variance explained by each
eigenvector (Hastie et al., 2009).

Having outlined the methods used in the exploratory data analysis, we now turn our
attention to how we should prepare the data-set for our models. We want to create
training data-sets which we can fit models to, and test data-sets which we can use
assess the generality of what we have learnt on the training sets. Where model selection
and hyper-parameter tuning is necessary, we may elect to further reserve a validation
data set. It is worth reflecting on how we should reserve a portion of the data, because
different ways of dividing up the data-set have implications for what type of generality
we asses.

The data involves recordings of the RGCs reacting to multiple presentations of the same
stimulus. In reserving a portion of the data for training and validation sets, there is the
question of whether we should randomly shuffle all the states and then split them into
training and validations sets, whether we should keep the states associated with dif-
ferent presentations of the stimulus intact and randomly assign entire repeats to train-
ing and validation sets or whether we should use the first portion of every repeat as
training data and the latter portion as validation data. We test whether there is any dif-
ference between these three approaches by looking at how many samples, repeats and
the proportion of each repeat that we need to average over before the expectations sta-
bilise. Although we do not expect this to be a system at equilibrium, we do expect the
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responses of the cells to be similar for each presentation of the stimulus. The question
then becomes how many presentations we have to average over before the estimates
stabilise. The code that was used to process the Matlab data can be found here3 and the
code we wrote to investigate this question among many others can be found here4.

4.1.2. Proof of concept

For the independent, pairwise and population count models, we compare our own im-
plementation to the implementation in Maoz’s MaxEnt toolbox (Maoz and Schneidman,
2017). We work with a subset of the data outlined in the previous section, looking at
the activity of 10 cells. For each model, we compare the corresponding fitted model
parameters from each implementation as well as the corresponding predictions for the
probabilities of each of the possible states. We aim to show that the model parameters
and the predicted probabilities of each state are the same for both implementations.

We can further quantify how close the corresponding models are in the two implemen-
tations by looking at the KL divergence between them:

DKL(p(Maoz)‖p(ours)) =
∑
σ

p(Maoz) log
p(Maoz)

p(ours)

=〈log p(Maoz) − log p(ours)〉p(Maoz) .

We phrase the KL divergence like this to emphasize that it is an expectation of the dif-
ference in log probabilities, and when two distributions predict identical probabilities
over the state space, the KL divergence is zero. These results are presented in Figure
4.12.

4.1.3. Comparing distributions

We now move on to to fitting models to experimental data and comparing the predicted
and the observed population count distributions p(K). We do this for different sub-
populations of sizeN . For each numberN , we randomly selectN cells from the total of
160 cellsB times to give usB bootstrap sub-populations at eachN . We have previously
introduced bootstrap sampling in Section 3.5.3. For each sub-population of size N ,
we fit independent and pairwise models to the activity of those N models. Since we
want to use the population count distribution as a metric for goodness of fit, which
is unconstrained in the independent and pairwise models, but not in the population

3github.com/abramschon/maxent/blob/main/matlab/readData.m
4github.com/abramschon/maxent/blob/main/notebooks/EDA.ipynb

61

https://github.com/abramschon/maxent/blob/main/matlab/readData.m
https://github.com/abramschon/maxent/blob/main/notebooks/EDA.ipynb


4.1. METHODOLOGY

count or K-pairwise model, we restrict this analysis to the independent and pairwise
models.

We make use of the MaxEnt toolbox implementation (Maoz and Schneidman, 2017)
which, we have observed, manages to find the optimal model weights for the pair-
wise model faster than our Python implementation. The MaxEnt toolbox implements
computationally intensive methods such as importance sampling in C++, which has a
considerable impact on performance. Whereas the independent models can be fitted
analytically for each N , we iteratively fit the pairwise model until its expectations are
all within 1 standard deviation of their experimental counterparts. Our code for fitting
the various MaxEnt models can be found here5.

Once we have the fitted models we can then determine their predicted population
count distributions. Analytically, computing p(K = 1), for instance, would involve
summing together the probabilities of all states where only one cell fires. As comput-
ing this distribution analytically involves predicting the probabilities of exponentially
many states this becomes unfeasible for large N . It is much more convenient to deter-
mine the population count distribution using Monte Carlo methods. Hence, we use the
Metropolis-Hastings algorithm to sample states from the learnt model distribution and
then we compute the population count distribution from the samples, which involves
computing the relative frequency that K cells fire within a state. The code for working
out the expectations from the trained models can be found here6.

We now can go on to comparing the predicted and observed distributions. We start
by plotting the distributions predicted by the independent and pairwise model and
the empirical distribution for N = 10, 40, 100, reproducing the result seen in Tkačik,
Olivier Marre, Amodei, et al., 2014. We have fitted 10 different models at each N over
this range, and thus we can get a sense of the variability of the predicted p(K)s. Fitting
pairwise models to the activity of 100 cells takes several days, which placed practical
restrictions on the number of sub-populations we could fit models to. We can plot
five number summaries of the predicted p(K)s at each K. The five number summary
of a set of values is the minimum, first quartile, median, third quartile and maximum
value of the set. By looking at the distances between these summary statistics, we can
get a sense of the spread of the values.

When we consider the population count distributions on a logarithmic scale (and ex-
clude the probabilities exactly equally to zero), which makes the differences between

5github.com/abramschon/maxent/blob/main/matlab/trainModel.m
6github.com/abramschon/maxent/blob/main/matlab/compareMarginals.m
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the predicted distributions more clear, it becomes apparent that the independent and
pairwise models fail to capture the shape of the empirical distribution. However, it is
not clear how this changes with N . Early papers claim that the pairwise model is a
good approximation to the experimental data for small N , typically around N = 10.
Can we quantify how this approximation breaks down with N?

To explore this, we plot the differences between the predicted and observed population
count distributions for N = 5, 11, ..., 20, i.e. p(K)model − p(K)exp. Since the probabil-
ity of observing many cells firing decreases as K increases, these differences trivially
become small as K increases. Whereas previously, we could better visualise the dif-
ferences between the tails of the empirical and model distributions by looking at the
probabilities on a logarithmic scale, we are now working with a difference which can
be negative and we have to consider another way of exploring these small differences.
Though we could take the absolute value of the differences, this would erase infor-
mation about which parts of the true distribution our model over-predicts and which
parts it under-predicts. We choose to scale these differences relative to the sizes of the
predicted and empirical probabilities.

The relative differences are worked out as follows. For each N , we have B = 20

predictions of the whole population count distribution p(K) obtained from models
trained on 20 different sub-populations. The absolute differences for a particularK ′ are
p(K ′)model − p(K ′)exp, of which there will be 20. We can work out the mean difference
at each K by averaging over the 20 differences associated with each sub-population
〈p(K ′)model − p(K ′)exp〉B . Notice, we use the subscript B to denote an average over es-
timates from theB = 20 sub-populations. We can also work out the mean of p(K ′)model

and the mean of p(K ′)exp, and then take the sum of the two means, (〈p(K ′)model〉B +

〈p(K ′)exp〉B), as a scaling factor for the difference. This is by no means the definitive
way of scaling this result, but this is certainly a means of looking at whether differences
in the estimates of p(K ′) are large relative to the average size of p(K ′) for a particular
K ′. The resulting relative difference at a particular K ′ can be written as:

〈p(K ′)model − p(K ′)exp〉B
〈p(K ′)model〉B + 〈p(K ′)exp〉B

The relative differences can be interpreted as follows. When the model over-predicts
p(K), this quantity is positive, and when the model under-predicts p(K), this quan-
tity is negative. When the model predicts p(K) to be zero, but p(K)exp is observed
to be non-zero, the relative difference is −1, and when the model predicts p(K) to be
non-zero when it is empirically observed to be zero, the relative difference is +1. By
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over-predicts/under-predicts we mean a prediction is greater/less than the empirically
observed value.

The motivation for looking at the differences relative to a sum of the means of the model
and empirical p(K)s and not one of these alone is that as K increases, we often observe
either the predicted or empirical p(K) dropping to 0 faster than the other. Dividing by
just one of them could then cause the relative difference to blow up since we would
divide by zero even when there is a difference between the two quantities which we
would be interested in seeing. Where both the empirical and model estimates of p(K)

are zero, we have the relative difference equal to 0/0, and have have omitted these
values from our plots. Lastly, we must emphasize that the estimates of p(K) that we
get for large K are likely to be increasingly inaccurate since we observe states with
large numbers of cells firing increasingly rarely as K increases. Because of this, the
plots of the differences, particularly towards the tails of the distributions, should be
seen more as a data visualisation technique and by no means as a formal hypothesis test
for whether there is a significant difference between the empirical and model estimates.
The notebook for computing the differences and relative differences can be found here7,
though we present the main results in Section 4.4.

4.1.4. Autoencoders

So far, we have been searching for a simplified description of the activity through build-
ing MaxEnt models that predict the probabilities of all 2N possible states but require
relatively few low-order moments from the data to be trained. We now consider a
different approach to finding simplified descriptions of this activity. We investigate
whether we can find latent representations of the data itself through the use of un-
dercomplete autoencoders, which map their input to a lower-dimensional latent repre-
sentation. The use of autoencoders in this application presents many opportunities,
such as dimensionality reduction, a change of basis, and even a sampling tool. We
start by presenting a proof of principle that it is possible to use auto-encoders to learn
mappings between our N -dimensional binary vectors to M -dimensional real-valued
vectors where M < N . Though this continuous latent representation has its benefits,
it is not clear that it reduces the dimensionality of its inputs since all binary vectors
of length N can trivially be mapped to a single continuous dimension. We then alter
the architecture of our autoencoder so that it can map N -dimensional binary vectors to
M -dimensional binary vectors where M < N . In this section, we explain what auto-
encoders are, and outline our training procedure. We then present our results in Section

7github.com/abramschon/maxent/blob/main/notebooks/correlations.ipynb
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4.1. METHODOLOGY

4.5, we outline future directions for this research.

Autoencoders are a type of artificial neural network (ANN) which takes in an input, σ,
and maps it to a so-called latent representation, f(σ) = h, before it then tries to recon-
struct the input from the latent representation g(h) = r. The latent representation is
effectively the image of σ under the transformation f . We refer to the network that
maps the input to the latent representation as the encoder, f(σ) = h, and the net-
work which then reconstructs the input from the latent representation as the decoder,
g(h) = r. We typically impose some form of restriction on the autoencoder, such as
an information bottleneck or an objective function that encourages sparsity, preventing
it from simply copying its input. Our hope is that this forces it to find a useful latent
representation of its input (Goodfellow, Bengio, and Courville, 2016). In the case of
the undercomplete autoencoder, we require that the latent representation, h, has fewer
dimensions than the input, thus we can view this as a dimensionality reduction tech-
nique. The squeezing of the higher dimensional input through a lower dimensional
space is called an information bottleneck.

We briefly explain the architecture of the auto-encoders that we use, which is repre-
sented graphically in Figure 4.1. We make use of the following notation:

L is the number of layers in the autoencoder
N l is the number of units in layer l, N0 = NL = N

σi is the ith entry of the input
ali is the ith activation of the lth layer and al(z) is the activation function
hi is the ith entry of the latent representation
rk is the kth entry of the reconstruction

wli,j is the weight from node i in layer l − 1 to node j in layer l
bli is the bias term fed into the ith unit of the lth layer

zlj is a linear component defined by
∑N l−1

i=1 ai−1
i wli,j + blj

We represent the encoder f(σ) and decoder g(h) as fully connected, feed-forward
ANNs, also called multilayer perceptrons. ANNs are composed of layers of units
which take the dot product between their input a and a vector of weights w, add a
scalar offset called the bias b, and then apply a nonlinear activation function a(z). For
a network with L layers, and N l units in layer l we can represent the forward compu-
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Figure 4.1: Graphical depiction of an autoencoder with L layers. There are N units in
the input (σ) and output layer (r), B units in the first layer (a1), C units in the hidden
layer (h), and D units in the second last layer (aL−1). Each unit i in layer l performs a
weighted sum of the outputs of the units in layer l − 1, adds a bias bli and then applies
an activation function.
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tation as

a0
j =σj

alj =al

N l−1∑
i=1

al−1
i wli,j + blj

 (4.1)

aLj =rj

where the activations of one of the intermediate layers represent the latent representa-
tion h. We can also represent this using matrix multiplication as a(l) = a(W (l)a(l−1) +

b(l)), where row i of matrix W (l) represents the weights connecting unit i in layer l
to the units in layer l − 1 and the activation function is applied component-wise. In
our architectures, we make use of the rectified linear unit, ReLU(z) = max(z, 0), as the
activation function applied to each layer except for the latent layer.

Initially, in the vanilla autoencoder, we apply the identity function ah(z) = z as the
activation function of the latent layer. This means that its latent representation takes on
continuous real values h ∈ RNh

, where Nh is the number of units in the latent layer. In
the compressive autoencoder, we apply the sigmoid function followed by the rounding
operation as the activation function of the latent layer ah(z) = round[1/(1 + exp(−z))],
where the rounding operation rounds the output of the sigmoid function to either 0 or 1

depending on which is closest to the output. This means that its latent representations
are binary vectors of length Nh.

The rounding operation makes gradient-based learning difficult. This is not simply be-
cause the derivative of the rounding operation is not properly defined at 0.5 – the same
can be said of the rectified linear unit (its derivative is also not properly defined at 0),
which has very successfully been used in deep learning. Instead, the reason is because
the derivative of the rounding operation where it is properly defined is 0 which causes
the backpropagated partial derivatives to vanish (see the backpropogation algorithm
(Goodfellow, Bengio, and Courville, 2016)). Thus, we borrow a trick from Theis et al.,
2017 and for the purposes of the partial-derivative computations in backpropagation,
pretend that we have only applied the sigmoid function and not the rounding opera-
tion, and hence we pass on the partial derivatives of the sigmoid function with respect
to their input. In the final layer of both the vanilla and compressive auto-encoders, we
apply the sigmoid function aL(z) = 1/(1 + exp(−z)), which bounds the values of the
reconstructed output r between 0 and 1. We can then easily convert this to a binary
vector through applying the rounding operation again.
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In order to train the auto-encoder, we need to define a loss function which measures
how close the model’s input is to its reconstruction. We initially considered several
loss functions, namely the Euclidean (σ − r)2, Manhattan

√
(σ − r)2 and Hamming

distance
∑

i[σi · (1 − ri) + (1 − σi) · ri], however, we were only able to train the model
using the Euclidean distance as the loss function. At this stage, this is purely an em-
pirical observation and given more time it would be interesting to find a theoretical
explanation for why certain loss functions work and others do not in reconstructing
binary vectors. Given a loss function, we are able to update the model weights and
biases by working out the partial derivatives of the loss with respect to the model pa-
rameters and then nudging the model parameters in the direction that decreases the
loss. Working out these partial derivatives efficiently can be achieved through the use
of the backpropagation algorithm (Goodfellow, Bengio, and Courville, 2016).

We wanted to explore different model depths L and widths N l, including different
numbers of hidden units. These parameters which get set before the learning process
begins are called hyper-parameters, and a good choice of hyper-parameters can have a
significant impact on the model’s performance. In order to make these choices, we typ-
ically fit different models with different combinations of hyper-parameters and com-
pare their performance in a process called hyper-parameter tuning. A naı̈ve way of
hyper-parameter tuning is grid search where, for each hyper-parameter we define a
set of values of interest and then fit models to all possible combinations of the hyper-
parameters. Although this process is easily parallelisable, it is computationally inten-
sive. For H hyper-parameters with M distinct values, the complexity of grid search is
O(MH).

It has been shown empirically that random-search is on par with if not better than grid
search in hyper-parameter tuning using a fraction of the computation time (Bergstra
and Bengio, 2012). In random search, each combination of hyper-parameters are se-
lected at random. More recent hyper-parameter tuning algorithms include versions of
Bayesian optimisation (Snoek, Larochelle, and Adams, 2012), which builds a proba-
bilistic model of the loss function and uses knowledge of previously chosen combina-
tions to inform which combination it chooses next, or Hyperband (Li et al., 2017), which
assigns a certain amount of training resources to different hyper-parameter combina-
tions, dropping the poorly performing configurations and increasing the resources for
the remaining well-performing combinations.

We carry out the following hyper-parameter tuning procedure:

• We first choose the number of hidden units Nh depending on the type of ar-
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chitecture. Keeping in mind that our input is a binary vector of length 100, for
the vanilla autoencoder, which allowed continuous latent states, we looked at
Nh ∈ {2, 18, 34, 50}. For the compressive autoencoder, which restricted its latent
states to binary vectors, we looked at Nh ∈ {20, 40, 60, 80}. The size of the latent
vector defines the size of the bottleneck.

• For each each choice of bottleneck, we randomly choose I = 20 different archi-
tectures for the autoencoder. We do this as follows:

– We randomly choose the depth of the network L.

– We randomly choose (L− 2)/2 numbers u, ui ∈ [Nh, dN · 3/2e]. The number
of units in each layer of the encoder are the entries of u sorted from largest
to smallest u1 ≥ u2 ≥ ... ≥ u(L−2)/2 and the number of units in each layer of
the decoder are the entries from smallest to largest, mirroring the encoder.

– We train an autoencoder with this architecture and we monitor its perfor-
mance. At the end of each presentation of the training data-set, the models
tries to reconstruct the validation data-set and we record the mean Euclidean
distance between the reconstruction and original data. When the validation
loss stops decreasing over 3 to 5 presentations of the full training set, we ter-
minate the training procedure for this architecture and move on to the next
architecture.

The outer-loop of this hyper-parameter tuning procedure varies the number of hidden
units and the inner-loop explores different depths and widths of the encoder and de-
coder. This procedure produces a sequence of training and validation losses for each of
the explored architectures. From here, we can then look at the best and worst architec-
tures and how validation performance varies across the number of units in the hidden
layer, the depth of the network, and the mean width of the network.

We make use of the same data-set described in Section 4.1.1. It is comparatively quick
to fit auto-encoders to the activity of 100 RGCs, and we use the activity of the first 100
RGCs from the training set processed in Section 4.1.1 . We further randomly reserve
80% of the observations as training data and 20% as validation data. The code for the
vanilla autoencoder can be found here8 and the code for the compressive autoencoder
can be found here9. We present these results in Section 4.5.

8github.com/abramschon/maxent/blob/main/notebooks/autoencoder.ipynb
9github.com/abramschon/maxent/blob/main/notebooks/squishautoencoder.ipynb
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4.2. EXPLORING THE DATA

Figure 4.2: The first 500 states in the data-set of the responses of 160 RGCs to repeated
presentations of a stimulus. Each vertical slice of this 160×500 matrix corresponds to a
state. We shade in the entries of the matrix where at least one spike takes place within
the corresponding time bin.

4.2. Exploring the data

4.2.1. What does it look like?

Having broadly outlined our methodology, we can start applying it. We present a
visual introduction to the data that we model. This binned RGC activity comprises 283
041 states of 160 cells. Though we later explore shuffling the order of the states, by
default the states are in sequential order through time. Within the 283 041 states, we
can further identify groups of 297 × 953 states. Each 953 state group corresponds to
the responses of the cells to one of the 297 repeated presentations of the stimulus. We
informally refer to these repeated presentations as repeats.

We start by plotting the first 500 states in the data-set. We can think of this as a 160×500

binary matrix, which can be depicted visually by shading in the entries which are 1 and
leaving the entries which are 0 unshaded. The combination of the number of the cell,
i, and the time bin, t, forms the co-ordinates for each entry. If an entry is 1 it indicates
that cell i fired at least once with the 20ms window encompassed by time bin t. This
is a bit wordy to repeat, so often we will be informal and say that cell i spiked in time
bin t. The first 500 states are shown in Figure 4.2. Though this gives us a good sense
of what the raw data looks like, we can present a more a simplified description of the
activity by summing together the number of cells that fire in each time bin, and plot
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Figure 4.3: Counts of how many cells fire within each time bin over 2871 bins. As
mentioned, each repeated presentation of the stimulus is associated with 953 states,
and we observe similar counts of neurons firing at the same points in each repeat.

this against time. This is shown in Figure 4.3, and roughly shows us how many cells
fired at different moments in time.

We want to highlight two things in this figure. The first is that although we are looking
at the activity of 160 cells, we seldom see more than 30 cells fire within a state. This
observation is echoed in our plot of the first 500 states which is largely blank. We will
make this observation of the rareness of many cells firing at once more precise when we
begin to look at the data distributions of p(K)D and 〈σi〉D. The second is that there is
some periodicity in the responses relating to the repeated presentations of the response.
We also observe that the exact number of cells that fire at the same times in different
repeats is not constant.

We want to explore this idea of consistency in the responses a bit further. In Figure 3.1,
we highlighted the entries where a cell fired in one extract but not another. Though
there was a visual similarity between the two extracts, when we overlayed the extracts
we saw that there were many entries that were one in the first extract but were zero
in the second, and vice versa. To put numbers to this observation, there were only 245
entries which overlapped (corresponding to the same cells firing within the same bins
in different repeats), whereas there were 880 entries which did not overlap. Though we
would have to perform a more rigorous analysis, this is already an illustration that the
activity is noisy in some sense.

To what extent should we do expect similar responses to different presentations of the
same stimulus? To explore this further, we look at the activity of individual cells across
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Figure 4.4: We show the times at which the most and least active cell fired over 297
repeated presentations of stimulus

the different repeats. Here, we have decided to show the activity of the most active and
the least active cell, which was measured by counting the total number of bins the cells
fired in. This is presented in Figure 4.4. The emergent vertical bars that we observe
suggest that these individual cells often spike at similar moments in time during the
stimulus. However, if we focus on the more feint vertical bars of the least active cell, we
observe that it does not consistently spike across all repeats, and that there might also
be a time delay to when it does spike, though this is speculation. These plots certainly
highlight the need for probabilistic models which are robust to differences in the details
of each state.

4.2.2. Averages, correlations and the population count distribution

Our use of MaxEnt models involves fitting the models to expectations calculated by
taking averages along the temporal dimension of our data. We want to now introduce
some of these expectations, such as the averages ,〈σi〉D, pairwise correlations, 〈σiσj〉D,
and population count distribution p(D)(K). We want to get a sense of how small and
how spread out these values typically are. For the averages and pairwise correlations,
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Count,
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Figure 4.5: Histograms of the averages 〈σi〉D and the correlations 〈σiσj〉D. We present
the counts of the correlations on a logarithmic scale on the right plot, and on a linear
scale in the inset.

we can do this by plotting their histograms which show how many expectations fall
into different bins. We show these in Figure 4.5.

In this figure, we observe that most of the averages are very small, and the correlations
are even smaller. The average for cell i involves counting in how many time bins it
fires and dividing by the total number of bins. Thus we can interpret the average
〈σi〉D as the mean probability of observing cell i firing within a bin. Similarly, we can
interpret the pairwise correlation as the mean probability of observing cell i and cell
j firing within a bin. We have 160 different averages, one for each cell, of which the
smallest was observed to be 0.0011 and the largest 0.1625. The mean of these averages
was observed to be 0.0358, thus the average cell fires in 0.0358 bins on average. We
refer to this as the mean activity. Of the 160 × 159/2 pairwise correlations, the smallest
correlation was exactly 0, implying that at least one pair of cells never fired within the
same bin. The largest observed pairwise correlation was 0.0751, and the mean pairwise
correlation was 0.0026.

Given the small values that the averages take on, it does not seem particularly surpris-
ing that the pairwise correlations are even smaller. We might be tempted to approx-
imate the pairwise correlation between cell i and cell j as the product of their aver-
ages, i.e. 〈σiσj〉D ≈ 〈σi〉D · 〈σj〉D. We can show that this approximation fall shorts of
describing the observed pairwise correlations by comparing the pairwise correlation,
〈σiσj〉D, to its independent approximation 〈σi〉D ·〈σj〉D, which is shown in Figure 4.6. If
the actual pairwise correlations were equal to the correlations produced under the as-
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Figure 4.6: The actual pairwise correlations compared to the correlations that would be
produced if we assumed that the cells fired independently. If these were the same, then
the points would lie on the line y = x.
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Figure 4.7: Probability of observing K cells firing within a state. In the inset, we plot
the probabilities on a logarithmic scale.

sumption that the cells fire independently, then we would observe that the points lie on
the line y = x. However, we observe that the observed correlations are largely greater
than those predicted under the assumption of independence. This observation already
hints at the shortcomings of the independent MaxEnt model. This suggests that the
behaviour of individual cells must at least be influenced by the activity of other cells,
if not the activity of the population. One snapshot of the activity of the population is
the population count distribution p(D)(K) which looks at how often K cells fire within
a state. This distribution is shown in Figure 4.7.

This plot again highlights the prevalence of silence within this data-set, since the prob-
ability of zero cells firing in a state, pD(K = 0) = 0.21 has the highest probability. We
observe the probability p(D)(K) quickly becoming small with K, and in a data-set of
283 041 states we at most observed 45 cells firing within a single state. This occurred
only once, hence the probabilities of the states in the tail of the empirical population
count distribution from K = 46 onward are estimated to be exactly zero.

4.2.3. Principal component analysis

In Figure 4.3, we provided a simplified description of the activity by summarising each
state by the number of cells that fired within that state. We now consider another ap-
proach to simplification through the use of PCA, though as you will see, we we still try
to convey how many cells fire within each state in our analysis. We perform an eigen-
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Figure 4.8: Proportion of variance explained by the P th PC.

decomposition of the sample co-variance matrix and identify the eigenvectors as the
Principal Components (PCs) and the eigenvectors as relating to the proportion of vari-
ance each eigenvector explains. We order the eigenvectors based on their correspond-
ing eigenvalues such that the first PC is the eigenvector with the largest eigenvalue,
the second is the eigenvector with the second largest eigenvalue, etc. We can examine
the proportion of variance in the data-set explained by each of our PCs by looking at their
corresponding eigenvalues, scaled by the inverse of the sum of all the eigenvalues. We
show this result in Figure 4.8.

We can obtain a simplified description of our data-set by projecting it onto the first M
PCs whereM < N . In this case, our new variables would be linear combinations of the
discretised activities of cells. However, based on the plot of the proportion of variance
explained, we find ourselves in the situation where choosing a small number of PCs,
e.g. M = 10, to project our data onto misses out on a lot of the variation in the data, but
including more PCs explains increasingly less of the variation. The first ten PCs, which
is near the elbow in the proportion of variance explained curve, only explain 31% of
the variance in the data-set, and adding forty additional PCs then only explains 66% of
the variance. Although there is no obvious choice of the number of PCs that we keep,
which would define the granularity of our simplification, there has been interesting
work which borrows ideas from the renormalisation group that embraces this observa-
tion and instead looks at which features emerge as we vary the amount of granularity
of our simplification (Meshulam et al., 2018). PCA only allows us to perform a linear
transformation to our data. Our later work with autoencoders explores a non-linear

76



4.2. EXPLORING THE DATA

transformation which may yield more rich representations.

We can project our data-set onto the first two PCs, which happen to explain around 13%
of the variation in the data-set, so we must be wary that this is a rather drastic simpli-
fication. We colour each point, which corresponds to a state in the data-set, based on
how many cells fire within that state, linking this technique back to our other summary
of the activity of each state. This projection is presented in Figure 4.9.
Interestingly, the first PC, which is the direction that captures the most variation in the
data-set, seems to also be the direction that largely differentiates how many cells fire
within each state, which can be seen by how the emergent colour of the projection goes
from dark blue on the left to yellow on the right. We also present the projection of the
data onto the first three PCs in an interactive plot in a Jupyter notebook, which can be
found here10.

4.2.4. Sampling and generalisation

We train our MaxEnt models to reproduce certain expectations, such as the ones we
have introduced above. However, we still have to quantify how representative these
expectations are of the general activity of the population of RGCs. Since MaxEnt mod-
els are very much a product of the expectations they are trained to reproduce, if these
expectations do not in general represent the activity very well, the MaxEnt models will
not either. To investigate this more concretely, we consider different ways of collecting
samples from the full data-set, and we compare how much a summary of the activity of
these samples varies. The summary we use is the mean activity of the sample, which
can be computed as the total the number of entries that contained spikes within the
sample divided by the total number of entries. However, the emphasis is not on the
mean activity, but on how this mean activity varies depending on how we collect sam-
ples, and on how large our samples are. From the full data-set of 297 × 953 = 283041

states, every 953 consecutive states can be associated with a repeat. We consider:

• Randomly sampling a number of the repeats. This can be thought of as shuffling
the 297 repeats and taking the first R repeats.

• Randomly sampling a number of states irrespective of repeat, which can be thought
of as shuffling the 283041 states and taking the first S states.

• Randomly sampling C consecutive states from all repeats. This can be thought
of as randomly choosing a time bin, t′, and selecting the C consecutive states
starting from state σ(t′) across all repeats.

10github.com/abramschon/maxent/blob/main/notebooks/EDA.ipynb
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Figure 4.9: Projecting the 283 041 states onto the first two PCs. Each point is coloured
based on how many cells fire within the state associated with the point. Though we
have tried to separate our label for the x-axis and the title of the colourbar with a line,
this still may cause some confusion. The x-axis is the first principal component and the
colourbar shows the relationship between the colour of the states and the number of
cells that fire in each state.
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Figure 4.10: Illustrating the different ways of sampling from the data-set. Sampling a
repeat can be thought of as taking random time slice from the cube, sampling consec-
utive states in time can be thought of as taking a random wedge across the repetitions,
and sampling a state at random involves picking a random time and a random repeat.

A more elegant way of thinking about these sampling methods involves imagining the
data-set as a rectangular prism, which we have illustrated in Figure 4.10. This prism
has a dimension relating to the different cells, a dimension relating to the different
repeats and a dimension relating to time. In all the sampling methods we are interested
in population activity, hence we always select all entries across the cell dimension.
However, we can elect to either take slices across time, across repeats, or randomly
pick combinations of a particular repeat and a particular time.

The reason we have chosen to focus on choosing C consecutive states across all re-
peats and not just random states across all repeats is because we can make an anal-
ogy between the relationship that this small selection of consecutive states has to the
whole recording as to the relationship that the whole recording has to a hypothetical
much longer recording of the retina responding to further stimulus. We want to look
at whether our brief snapshot of time might be representative of the greater picture
through time. Our results from comparing the mean activity across the different sam-
pling methods are presented in Figure 4.11.

There is quite a lot happening in these three seemingly simple graphs. Firstly, the
basic unit of our plot is the five number summary of the mean activities of B = 100
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Figure 4.11: Using three different sampling approaches to obtain B = 100 bootstrap
samples of roughly the same size, we vary the size of the samples and observe how the
variability of the estimates of the mean activity decreases. Each repeat comprises 953

states, hence sampling R repeats returns R× 953 states. Selecting a state at a particular
time from all repeats returns 297 states, hence sampling C consecutive states returns
C × 297 states.

bootstrap samples of a particular size. As we have explained, there are three ways
that we have obtained samples, each associated with its own plot. Across all three
sampling methods, by drawing larger samples, the spread of mean activities across the
bootstrap samples went down. The estimates of mean activity calculated over samples
of repeats were the most stable (the left plot), and were similar to estimates calculated
by sampling at random (the middle plot). Randomly takingC consecutive states across
all repeats resulted in the most varied estimates of mean activity. This suggests that
the activity over a small duration of time is often different to the overall activity. The
median of the mean activity across all sampling techniques was roughly the same.

From repeat to repeat, the data appears to be noisy, and we may attempt to think of
this as individual cells firing slightly earlier during some repeats, later at others, and
sometimes not at all. We also need to take into consideration that the data we have
presented has already undergone many stages of processing and simplification which
will also have a significant effect on how it looks. If we do assume that similar states
arise from the same stimulus, then our definition of similarity needs to be robust to dif-
ferences in the exact details of the states. This idea of robustness is a recurring theme in
this work. We have also highlighted that sampling from random moments in time pro-
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duces expectations that are more variable than sampling from different repeats, though
these methods become more similar when the expectations across repeats include more
consecutive states. These exploratory data findings do a good job of setting the stage
for the work that follows. That we ignore temporal information in our modelling ap-
proach is a major caveat of this work, even though this approach has still yielded in-
teresting insights in the literature into collective behaviour of RGCs. The emphasis on
not fixating on the exact description of each state helps motivate the use of probabilis-
tic models for modelling the activity, as well as the use of compressive auto-encoders
which cannot learn the exact descriptions.

4.3. Proof of concept

We present the comparison between our fitted models for the population count, inde-
pendent and pairwise model in Figure 4.12. This is forN = 10 RGCs. For each state, we
have both the probability predicted by our model and the probabilities predicted by the
MaxEnt toolbox implementation. If these probabilities match, then we should observe
that the points in the scatter-plot lie on the y = x line, which is indeed what we observe.
We observe a similar correspondence when we compare the predicted model weights.
We do notice that there is a small amount of variation around the y = x line with the
pairwise model. This arises from our implementation being slower in converging to
the optimal model parameters, especially for the pairwise interaction parameters.

Though these results would visually suggest that these models are similar, we can be
more precise in quantifying this similarity. Specifically, we can look at the mean of the
absolute differences between corresponding model parameters, and we can look at the
KL divergence between the distributions specified by the models. For the independent
models, the mean of the absolute differences in the parameters hwas 6.454× 10−3. For
reference, the mean size of these parameters was 3.871. The KL divergence between
their distributions was 5.79 × 10−6. For the population count models, the mean of
the absolute differences in the parameters V (K) was 8.857 × 10−5, and for reference
the mean size of V (K) was 0.0909. The KL divergence between their distributions
5.0954 × 10−5. Finally, for the pairwise models the mean of the absolute differences in
the local fields h was 8.689 × 10−3, and the mean size of these parameters was 4.092.
The mean of the absolute differences in the pairwise interaction parameters, J , was
6.197 × 10−2 and the mean size of these parameters was -0.361. The KL divergence
between their distributions was 6.696 × 10−5. In all of these models, the mean of the
absolute differences was significantly smaller than the typical scale of the parameters,
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and we observed very small KL divergences between the distributions. If we had to
interpret the small KL divergences in the language of information theory, we could say
we would expect almost no excess surprise when using our model’s distribution when
the actual distribution is specified by their model.

These results are just the surface of my much deeper exploration of how to code up
MaxEnt models11. Though these results may suggest that these two implementations
were developed in isolation, in reality my coding up of MaxEnt models was very much
inspired by papers written by the same authors who were involved in developing this
Matlab implementation, and as I later make use of their implementation to fit models
to larger populations, I have had to become familiar with it. The fact these two im-
plementations arrive at approximately the same solutions is less the message. Rather
the message is that, with a bit of reading and debugging, someone with little software
engineering training can code up MaxEnt models. The code that compares these two
impementations can be found here12.

4.4. Maximum entropy approximations

4.4.1. Independent and pairwise population count distributions

We compare the predicted and empirical population count distributions forN = 10, 40, 100

in Figure 4.13. This starting point reproduces the results seen in Tkačik, Olivier Marre,
Amodei, et al., 2014. As we see in Figure 4.13 at N = 100, the independent model
initially under-predicts p(K = 0). It then over-predicts p(K) for K = 3, 4, 5, 6, before
going back to under-predicting the probabilities for K ≥ 7, though we should exercise
caution in predicting the values towards the tail of the distribution due to the poor
sampling of this region, as mentioned above. The value of K at which the model over
or under-predicts varies with N . The pattern of under-predicting silence and large
groups of cells firing and over-predicting small numbers of cells firing looks as if it
persists across at least these three sizes of populations.

In the case of the pairwise model at N = 100, the trajectory of log p(K) initially has a
similar pattern to the independent model, under-predicting silence, then over-predicting
small numbers of cells firing atK = 3, 4, 5, 6, before under-predicting overK = 7, .., 17.
However, it ends up over-predicting the probability of large numbers of cells firing.
Though we should be cautious about our estimates of p(K) for large K, it does seem

11Excuse my temporary abandonment of the royal we.
12github.com/abramschon/maxent/blob/main/notebooks/compare.ipynb
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Figure 4.12: Comparing our implementation to the MaxEnt toolbox implementation for N =

10 cells. We matched each probability predicted by a model in the MaxEnt toolbox up with
the probability predicted by our corresponding model. The same is true for the weights. We
observe that both the predicted distributions (top row) and the learnt model weights (bottom
row) match for the population count, independent and pairwise models. The reason only 6
distinct points for the population count model is because these models predict the probability
of seeing all states where K cells fire as equally probable. For the pairwise model, we plot
the correspondence between the local field parameters and pairwise interaction parameters
for the pairwise models separately, and observe some variation around the y = x line for the
interaction parameters.
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Figure 4.13: The probability of observingK cells firing in 10 sub-populations of size 10, 40 and
100 is shown above. The trajectories in grey represent the experimentally observed population
count distributions and are labelled in the middle plots with exp. (the other plots follow the
same pattern). The trajectories in blue represent the distributions predicted by the independent
model, labelled indep., and the trajectories in red represent the distributions predicted by the
pairwise model, labelled 2wise. We show the 5 number summaries of the 10 values obtained
for each p(K ′).

that the independent model predicts a population count distribution with lighter tails
than what is observed, the pairwise model predicts a distribution with heavier tails,
and that this pattern of over and under-predicting persists across these three different
population sizes. At this stage this is purely an empirical observation. Intuitively, since
the independent model does not incorporate any interactions, the probability of many
cells firing is just the product of the probabilities of individual cells firing p(σi) = 〈σi〉
(since this observable selects all state where cell i fires, it is a concise way of express-
ing the marginal), and we know that the averages 〈σi〉 are typically very small, hence
this product will become increasingly small with the number of cells that fire. We have
already seen the observed pairwise correlations are greater than their independent ap-
proximation in Figure 4.6.

The five number summaries at each K give us a sense of the variability of these results
across different populations. Particularly, we might like to see why the shortcomings
of the pairwise model in approximating the population count distribution were not
picked up in early work. For N = 10, we see that the range of predictions for p(K)

for the pairwise models largely overlaps with what is empirically observed and it is
difficult to say confidently that the two distributions are significantly different for small
K. Though the medians in the pairwise predictions are consistently above the medians
of p(D)(K) from K = 4 onward, it is not clear that there is a significant difference
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Figure 4.14: On the left, we plot the mean absolute differences between the predicted and ob-
served p(K) for the pairwise and independent models. The trajectories from lightest to darkest
represent N = 5, ..., 20, where lighter trajectories are associated with smaller populations and
darker trajectories are associated with larger ones. For the relative differences, the middle col-
umn of plots shows results for N = 5, .., 20 and the last column of plots zooms out and shows
results for N = 10, 15, 20, 25, 40, 100. Note that we join the points with a line to make it easier to
track all the points which are associated with a particular population size and not because we
are trying to interpolate results.

between the groups of predictions and the empirical observations. It is only in the
N = 40, 100 plots that the range of the predictions for each p(K ′) for the pairwise model
become clearly separated from the range of the observed values and there is evidence
to doubt that the local fields and pairwise interactions can completely characterise the
collective activity of retinal ganglion cells.

While both the independent and pairwise models have shortcomings, they are cer-
tainly not equally bad and the plot of the absolute differences illustrates the extent to
which the pairwise model improves upon the independent model. The mean abso-
lute differences plot in Figure 4.14, which illustrates the mean differences between the
model and observed population count distributions in sub-populations ranging from
N=5 to N=20, already reveals consistent differences between the model and observed
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distributions across the range of sub-populations, both over-predicting the probability
of a single cell firing and under-predicting the probability of intermediate numbers of
cells firing. However, the absolute differences fail to reveal the behaviour of the mod-
els at medium and large K since the absolute differences trivially become small as K
increases.

We then turn our attention to the mean relative differences plots which illustrate the
mean difference between the predicted and the observed p(K) relative to the sum of
their means at each K. These plots clarify the pattern of the independent and pairwise
model over and under-predicting and also indicate that these patterns of shortcomings
are consistent at many different scales from N = 5 to N = 100. The independent
relative differences tend to -1 whereas the pairwise relative differences tend to +1 which
is in line with what we saw in the logarithmic plots of p(K) in Figure 4.13, where
we observed heavier tails for the pairwise model and lighter tails for the independent
model compared to the empirical population count distribution.

These results suggest the following. A model that treats the firing of cells as indepen-
dent under-predicts the probability of silence, over-predicts the probability of a few
cells firing, but under-predicts the probability of large groups of cells firing. We know
that the independent model reproduces the mean firing rates of cells. Thus, the fact
that we observe these differences implies that the cells must be firing together more
often, which is indeed what we see in the raw data in Figure 4.2. In a model which
additionally takes the activity of all pairs of cells into account, we still observe that the
probability of silence is under-predicted, the probability of a few cells firing is over-
predicted and the probability of larger groups of cells firing is under-predicted. We
refer to these larger groups as ’groups of intermediate size’.

Compared to what is predicted by the pairwise model, the actual data sees very large
groups of cells firing less frequently, which suggest that when cells do fire in the actual
data, they are more likely to fire together in groups of intermediate size. It is also worth
highlighting that we observe these differences consistently across the range of popula-
tions sizes, N . Specifically, the local minimum in the pairwise relative differences plot
shifts towards larger values of K as N increases, suggesting that the pairwise model
under-predicts the probability of increasingly larger intermediate numbers of cells firing,
and the local maximums in both the independent and pairwise plots similarly shift to-
wards larger values of K as N increases suggesting that these models over-predict the
probability of increasingly larger small numbers of cells firing.

Thus far, our discussion has revolved around our own results, but we also need to re-
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late these results to what has been observed in previous studies. We have highlighted
aspects of the population count distribution that the independent and pairwise model
fall short in capturing, which begs the question whether these aspects were overlooked
in early works, particularly for the pairwise model, and how we might include addi-
tional features in our models which remedy these shortcomings.

In Section 3.5, we summarised how well models in previous works captured the pop-
ulation count distribution, p(K), and we can now compare these findings to our own
results. For the independent model, it was noted that its population count distribution
follows a Poisson binomial distribution with probability mass function,

p(K) =
∑
A∈FK

∏
i∈A

pi
∏
j∈Ac

(1− pj),

but that this distribution misses out on various features of the observed population
count distribution. Specifically, it predicts that the population count distribution has
much lighter tails than what is observed (Schneidman, Berry, et al., 2006; Tkačik,
Schneidman, et al., 2009; Tkačik, Olivier Marre, Amodei, et al., 2014). This is indeed
what we observe in our results, where the independent model predicts p(K) to be sev-
eral orders of magnitude lower than the experimentally observed values. For instance,
in Figure 4.13 the independent model predicts the probability of nine cells firing in a
population of forty RGCs to be around 10−5, whereas it was observed to be around
10−3. These results are not particularly surprising, as one would not intuitively expect
a model that treats all cells as independent to be realistic. Rather, the usefulness of
the independent model is as an intuitive baseline model. Later, when we examine the
distances between the model and the empirical distributions, it becomes useful to scale
these distances relative to the independent model’s results.

Whereas the picture painted in the literature of the independent model being a poor
approximation for the neural data from the start is in line with our results, at N=10,
we already observe the pairwise model predicting slightly larger mean values for the
population count distribution from K ≥ 5. This seems to be at odds with previous
work (Schneidman, Berry, et al., 2006) which saw it as an accurate approximation at
N=10, though we can offer some explanations as to why this may be the case. Firstly,
it is worth noting that, especially for small K, the range of the predicted p(K)s pro-
duced by our model overlaps with the observed values of p(K)s in Figure 4.14, thus
differences between these distributions may have been dismissed as “being within ex-
perimental error”. It is also worth noting that the metrics that were used in this early
work, such as the frequency of common states, focused on the states that make up the
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beginning of the population count distribution – states where only a few cells fire and
which occur more regularly – and we do indeed seem to initially have a close corre-
spondence between the trajectories in figure 4.13 for K = 0, 1, 2, 3, 4. On the other
hand, the relative difference plots in figure 4.14 clarify that even in populations of 10
cells, although there are small differences between the pairwise and empirical popu-
lation count distributions, these are relatively noticeable differences such as the local
maximum at K=1 and minimum at K=4 which are noticeably above and below, re-
spectively, the line representing equality.

What emerges from this discussion is that the pairwise model, which includes up to
second-order correlations, does not completely capture the shape of the population
count distribution, and through focusing on the relative differences, we can observe
this departure in populations as small as N=10. This does beg the question of which
order correlations do capture the empirical population count distribution. In theory, it
would be nice to continue fitting MaxEnt models of all orders to the data, and note the
order of model which does finally capture features of the data such as the population
count distribution. This is in a similar vein to what we did in Figure 4.8, where we
examined how much variance in our data-set was captured in varying numbers of
principal components.

4.4.2. Third-order models

Though it is computationally infeasible to include third-order correlations in models of
N = 40+ neurons with the available compute, given that looking at the relative differ-
ence seems to be a good visual tool for assessing how close models come to capturing
the population count distribution, we fit third-order models to different populations
RGCs for N∈{5, 6, ..., 20}. The third-order model is simply the log-linear model which
includes up to third-order interaction terms (see Section 3.4.1 for more on the log-linear
model). We already have results for the independent and pairwise models over this
range of population sizes, which we can use as comparison. Including a third-order
model in our analysis gives us a sense of how the shapes of the predicted population
count distributions vary as we vary the order of the correlations in our MaxEnt model,
which is very much in line with the analysis proposed by Martignon et al., 1995.

We train N × 20 third-order models on B = 20 randomly sampled sub-populations of
N∈{5, 6, .., 20} cells until they reproduce the observed averages, 〈σi〉D, pairwise corre-
lations, 〈σiσj〉D and third-order correlations, 〈σiσjσk〉D. Besides the computational cost
associated with fitting third-order models, which we have side-stepped by focusing on
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relatively small population sizes, we may be concerned that the third-order correla-
tions that we us to fit the third-order models are not well-approximated in the finite
data we have. Since we now fit our model to increasingly many potentially unstable
expectations, we might expect that the cumulative effect of this is a model which does
not generalise very well to modelling activity outside of the data-set it is trained on.

4.4.3. Assessing overfitting

We have to keep in mind that the variation of the mean activity calculated using random
times but across repeats of our data-set is typically larger than the variation of the mean
activity calculated using random repeats but across time of our data-set. Thus we take a
more limited interpretation of generalisation and look at whether models trained on
a random sample of repeats from our data-set will perform similarly on a different
sample of repeats. We adopt the tactic used by Tkačik, Olivier Marre, Amodei, et al.,
2014 where they randomly chose a proportion of the repeats in the data to train models
and then compared the log-likelihood of this training set to the log-likelihood of the
remaining repeats.

Though we have already introduced the log-likelihood in Equation 3.4, we recap its
definition here. The likelihood refers to the joint-probability distribution
p(σ(1), ...,σ(|D|)|λ) as a function of the parameters of the distribution, λ, for a set of
observations {σ(µ)}|D|µ=1. Under the assumption that the observations are independent,
the log-likelihood can be expressed as

LD =
1

|D|

|D|∑
µ=1

ln p(σ(µ)|λ).

For each model, we compute the probabilities of the states in its training set, and the
probabilities of the states in a withheld test set. By taking the empirical mean of the
logarithms of these probabilities, we arrive at the log-likelihoods for the respective
data-sets. We can then look at the difference between the log-likelihood of the train-
ing set and the log-likelihood of the test set. We do this for the independent, pair-
wise and third-order models trained on B=20 randomly sampled populations of size
N∈{5, 6, ..., 20}. These results are shown in Figure 4.15.

The median value of the difference in log-likelihoods for the third-order model is con-
sistently just above zero, especially for larger populations, suggesting that it may slightly
over-fit, but only very slightly. The range of differences that we observe for the third-
order model is largely the same as those for the independent and pairwise models and
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Figure 4.15: Five number summaries of the differences between the log-likelihoods of
the training and test sets for the independent, pairwise and third-order models. We
break from our previous convention and represent the median as a dot due to spatial
constraints. For context, the absolute value of all the log-likelihoods was greater than
0.536, thus the fact that the differences that we observe are at most 0.03 suggests that
the performance was very similar across the training and test sets.
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Figure 4.16: On the left, we plot the mean absolute differences between the predicted
and observed p(K) for the pairwise and third-order models. The trajectories from light-
est to darkest represent N = 5, 6, 7, ..., 20. In the inset, we isolate the differences for the
third-order model. The relative differences are presented on the right plot and we ob-
serve a lot of variation in the trajectories towards the right.

overall, the differences that we observe (whose absolute values are at most 0.03) are
very small relative to the actual scale of the log-likelihoods (whose absolute values are
at least 0.536). These results suggest that none of the models over-fit significantly.

We can now begin to interpret the extent to which the third-order model reproduces
the population count distribution p(K). We start by presenting the mean differences
between the observed values of p(K) and those predicted by the third-order model in
Figure 4.16. In the plot of the relative differences on the right of Figure 4.16, we now
observe that the differences no longer follow neat trajectories for K > 6. Whereas
we previously observed either heavier or lighter tails in the pairwise and independent
model, the tail of the third-order model is very close to that of the empirical distribu-
tion and the effects of the finite samples used to estimate the increasingly small quan-
tities in the tails of the distributions become apparent. It would seem that the absolute
differences plot is more informative in this case. As was the case when going from
the independent model to the pairwise model, we again see a significant reduction in
the mean absolute differences for the third-order model. At N=20, the differences are
largely bounded between positive and negative 0.006. For comparison, the differences
for the pairwise model are bounded between positive and negative 0.05. We do still
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Figure 4.17: Summary of the KL divergences between the empirical population count
distributions and those predicted by the independent, pairwise and third-order Max-
Ent model. At each N , we randomly sample 20 populations of N cells. We compare
the observed and model population count distributions for each of these, hence we
have 20 KL divergences at each N . We then present the 5 number summary of these 20
divergences.

observe that the probability of observing states where a single cell fires, p(K=1), is
over-predicted and that the probability of observing states where only two cells fire,
p(K=2), is under-predicted, along with other small but consistent discrepancies across
different population sizes.

Though we do observe these slight discrepancies, we have to take a step back and
ask what the cumulative effect is of these small differences. We can be more pre-
cise about how close the third-order model’s population count distribution is to the
empirical distribution by looking at the KL divergence between these distributions,
DKL(p(D)(K)‖p(3)(K))

.
=
∑

K p
(D)(K) log(p(D)(K)/p(3)(K)). If we look at the values

of the KL divergence for the third-order model, which are shown in Figure 4.17, we ob-
serve that they are all below 10−3, suggesting the third-order model’s population count
distribution is a fairly accurate approximation to the empirical distribution. Drawing
on terminology from information theory, we can say there is very little excess surprise
when using the third-order model’s population count distribution. We also notice that
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the range of the values of the KL divergences between the different models initially
overlap, but become well separated from around N = 14. This suggests that the be-
haviour of smaller populations of cells is largely captured in its first two moments and
that we do not gain much information from additionally including third-order mo-
ments in our models. On the other hand, when we move towards larger populations,
the pairwise and third-order model clearly do a better job than the independent and
pairwise model, respectively, in explaining the empirical population count distribu-
tion.

So far we have been using the population count distribution as a way of measuring
whether up to third-order MaxEnt models might be accurate approximations of the
true distribution of RGCs. Of course, the population count distribution is only one of
many aspects of this true distribution. Given that we are currently working with rela-
tively small populations, a more direct way of assessing the goodness of fit would be
to look directly at the KL divergence between the empirical distribution and our model
distributions. Again, we estimate the KL divergences over multiple sub-populations
for different system sizes, and examine how these estimates scale with system size, N .
These results are presented in Figure 4.18.

In these results, we observe that the KL divergences of all three models increase with
the system size. For small system sizes N≈5, the median KL divergences of the pair-
wise models are around 10−3, and medians for the third-order models are around 10−4.
These results suggest that in small systems, as we include additional low-order mo-
ments in our models, such as adding pairwise correlations to go from an independent
model to a pairwise model and adding third-order correlations to go from a pairwise
model to a third-order model, these models become increasingly accurate estimates of
the true distribution. Of course, this is not a particularly surprising, and it leads into
the final aspect of this analysis – that the fact that the pairwise and third-order models
are good approximations at this scale is trivial.

4.4.4. The perturbative regime

The fact that we observe that the KL divergence between the empirical and pairwise
model is small for small system sizes where cells fire infrequently has been addressed
by characterising a perturbative regime. We quickly provide the necessary informa-
tion in order to assess whether the pairwise model is in the perturbative regime. We
should note these results are specific to the pairwise model, though we suggest how
we might extend them for the third-order model. When we are in the perturbative
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Figure 4.18: Summary of the KL divergences between the empirical distributions and
the distributions of the independent, pairwise and third-order MaxEnt model. For clar-
ity, Figure 4.17 looks at the KL divergences between the population count distributions
p(K) and not the full distribution p(σ). At each N , we randomly sample 20 popula-
tions of N cells. We compare the empirical and model distributions for each of these,
hence we have 20 KL divergences at each N . We then present the 5 number summary
of these 20 divergences.
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regime, characterised by a small probability of observing a neuron spike δ and a small
number of neurons N , the pairwise maximum entropy model will appear to be a good
model for any distribution (Roudi, Nirenberg, and P. E. Latham, 2009). However, we
cannot extrapolate these results to larger systems and assume that the pairwise model
will remain a good fit outside of the perturbative regime. The fact that we can fit pair-
wise models to relatively small populations of neurons should not come as a particular
surprise. We can formally state this result as

∆N
.
=
DKL

(
p(N)‖p(2)

)
DKL

(
p(N)‖p(1)

) ∝ (N − 2)δ +O
(
(Nδ)2

)
.

When the pairwise model p(2) is very close to the true distribution p(N), ∆N is close to
0, and when the pairwise model is no better than the independent model p(1), ∆N is
equal to 1. This result tells us that in the perturbative regime, the distance between some
true probability distribution with arbitrarily high-order interactions and the pairwise
model relative to its distance from the independent model appears linear inNδ. We use
the word distance informally since the KL divergence is not symmetric DKL(p‖q) 6=
DKL(q‖p).

We go through the derivation of this result in detail in the appendix, in Section A.2,
though we want to highlight some of the main steps in deriving this result so that it
makes more intuitive sense, or at least give the reader an appreciation for the effort
it takes to derive this seemingly simple result. The first step involves defining the
Sarmanov-Lancaster expansion (Sarmanov, 1962; Lancaster, 1958; Lancaster, 1963)

p(σ) = p(1)(σ) (1 + ξp(σ)) , ξp(σ) =
∑
i<j

δσiδσjJ pij +
∑
i<j<k

δσiδσjδσkKpijk + ...

where δσi = σi − 〈σi〉, and the terms J pij , K
p
ijk relate to the second and third-order cor-

relations of the distribution. This expansion relates a distribution to the independent
model, plus a series of corrections relating to its higher order correlations. Using the
Sarmanov-Lancaster expansions of two distributions p and q, we can express the KL
divergence between these two distributions as a Taylor expansion

DKL(p‖q) =
1

ln 2

∑
m+n≥2

amn〈ξp(σ)mξq(σ)n〉p(1) ,

where the terms amn are used to encapsulate the partial derivatives and constants in
each term of the expansion. At this point, we perform multinomial expansions of each
of the terms ξmp and ξnp in this expansion up to order O((Nδ)4). Importantly, it is the
multi-nomial expansions of the terms in the Taylor expansion that we truncate up to
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order O((Nδ)4), and not the Taylor expansion itself. We do this because this is the
order at which we can examine the leading order of behaviour not captured by pairwise
models. This is also the point at which we could adapt this analysis to the third-order
model by performing multi-nomial expansions of ξmp and ξnp up to order O((Nδ)5),
though we leave this for future research when we have the time to keep track of the
increasingly many terms that arise in these expansions.

Once we derive a general expression of the KL divergence between two distributions,
where each term in the expansion has been truncated at order O((Nδ)4), we can con-
sider the specific case where the KL divergence is between some distribution with ar-
bitrarily high-order correlations p(N) and the independent model p(1), and when it is
between p(N) and the pairwise model p(2). This leads to the following approximations
of the KL divergences:

DKL

(
p(N)‖p(1)

)
=

1

ln 2

∑
i<j

σ̄iσ̄jf
(
ρ

(N)
ij , 0

)
+O

(
(Nδ)3

)
, (4.2)

DKL

(
p(N)‖p(2)

)
=

1

ln 2

∑
i<j<k

σ̄iσ̄j σ̄kf
(
ρ̄

(N)
ijk , ρ̄

(2)
ijk

)
+O

(
(Nδ)4

)
, (4.3)

where ρpij is the normalised correlation coefficient defined as

ρpij
.
=
〈σiσj〉p − σ̄iσ̄j

σ̄iσ̄j
, ρpi1i2...ik

.
=
〈(σi1 − σ̄i1)(σi2 − σ̄i2)...(σik − σ̄ik)〉p

σ̄i1 σ̄i2 ...σ̄ik
,

and where we use the superscript p to specify which distribution the expectations are
calculated over. We have also made use of the more compact notation σ̄i

.
= 〈σi〉p. ρ̄pijk

is defined in terms of the third-order normalised correlation coeffient as

ρ̄pijk
.
= ρpijk + ρpij + ρpik + ρpjk =

〈σiσjσk〉p − σ̄iσ̄j σ̄k
σ̄iσ̄j σ̄k

,

and the function f is defined as

f(x, y)
.
= (1 + x)

[
ln(1 + x)− ln(1 + y)

]
− (x− y).

Upon taking the ratio of Equation 4.2 and Equation 4.3, and identifying the summations
as scaling with the system sizeN , and σ̄i as scaling with δ, we return to the stated result:

∆N
.
=
DKL

(
p(N)‖p(2)

)
DKL

(
p(N)‖p(1)

) ∝ (N − 2)δ +O
(
(Nδ)2

)
.

For fixed δ, if we observe that ∆N scales linearly with N and Nδ � 1, then the fact
that we observe a small KL divergence between the pairwise model and some true
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distribution is trivial because the first two moments of the distribution will necessarily
capture most of the activity. In a sense, there is not sufficient scale to observe the effects
of higher-order correlations. What would be significant is if we saw ∆N saturating
when we move to sufficiently large scales of N for fixed δ.

Roudi et al. present experimental results to validate these findings where they examine
the fit of the pairwise model to a third-order model at N = 5, ..., , 10. The parameters
of the third-order model were randomly initialised, and importantly, the third-order
model contained non-zero third-order interactions parameters which cannot be decom-
posed into pairwise interactions. Hence, the third-order model presents a distribution
that the pairwise model cannot fully model. They compared their theoretical results
to the actual ratio of KL divergences between the third-order and pairwise and the
third-order and independent model for a range of δs and found that the theoretical
predictions were in good agreement with the measured ratio of KL divergences over
N = 5, ..., 10 (Roudi, Nirenberg, and P. E. Latham, 2009).

We examine whether what we observe is also in line with these theoretical results.
From the exploratory data analysis notebook, we know that the average probability
of observing a neuron fire is δ = 0.0356. Thus for N∈{5, 6, ..., 20}, δN ≤ 0.712. We
already have estimates for how the KL divergences between the empirical distribution
and the independent, pairwise and third-order model scales with N in Figure 4.18.
What remains is to look at the KL divergence of the pairwise model relative to that of
the independent model. We present this result in Figure 4.19.

We refer to DKL

(
p(D)‖p(m)

)
/DKL

(
p(D)‖p(1)

)
as the relative KL divergence. For the

pairwise model, the relative KL divergence is simply ∆N . In Figure 4.19, we observe
that the relative KL divergence scales linearly with N for both the pairwise model and
the third-order model. If we take the mean of the relative KL divergences at each N ,
〈DKL

(
p(D)‖p(m)

)
/DKL

(
p(D)‖p(1)

)
〉B and fit a simple linear regression model using N

as the explanatory variable and and 〈DKL

(
p(D)‖p(m)

)
/DKL

(
p(D)‖p(1)

)
〉B as the re-

sponse, we observe an almost perfect linear relationship. The R2 value, which mea-
sures the proportion of the variation in the response that is predictable from the ex-
planatory variable and takes a value between 0 and 1, is 0.99 for the relative divergence
of the pairwise model and 0.924 for the third-order model. These results strongly sug-
gest that the arguments about the pairwise model being in the perturbative regime for
small Nδ apply to this experimental data.

Though we have not derived results for the perturbative regime for the third-order
model, we can also take the scaling of the relative KL divergence at face value. As
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Figure 4.19: The KL divergences of the pairwise and third-order model relative to that
of the independent model, DKL

(
p(D)‖p(m)

)
/DKL

(
p(D)‖p(1)

)
where m∈{2, 3}. These

results were obtained from fitting models to 20 sub-populations at each N and calcu-
lating the relative KL divergences for each. Thus the spread of the results reflects how
much these results vary depending on the sub-population.

we move towards larger systems sizes, the third-order model also becomes a worse
approximation, and there is no hint that the relative KL divergence saturates over
N∈{5, 6, ..., 20}. We can tie this observation in with our earlier result that looked at the
absolute differences in the population count distribution in Figure 4.16. Here we ob-
served that even though the third-order model’s population count distribution is close
to the empirical distribution, there are small but consistent discrepancies, seen in the
inset in Figure 4.16, between these distributions. Drawing on these empirical results,
we postulate that although third-order models are close approximations to the empir-
ical distribution at small N and for fixed δ, they also do not fundamentally capture
the collective behaviour and the fact that they are a close approximation at this scale
similarly reflects that in small populations where cells fire infrequently, the low-order
moments reflect the majority of the activity. In future work, we hope to extend the per-
turbative regime results to third-order models as a means of theoretically validating
these observations.

To summarise, in this section we started by examining how well the independent and
pairwise MaxEnt models reproduce the empirical population count distribution. We
observed that these models under-predicted silence and the probability of intermedi-
ate numbers of cells firing, and that these shortcomings became more pronounced as
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we looked at larger populations. From here, we examined whether we could better
summarise the distribution through including third-order correlations in our MaxEnt
models. We first assessed whether these models might overfit to their training data-
set by examining the difference in the log-likelihood of the training and test data-sets.
The ranges of the differences were largely the same across the independent, pairwise
and third-order models and were close to 0, especially relative to the typical size of the
log-likelihoods. This came with the caveat that we assess generalisation across repeats
in our data-set. Though the distribution associated with the third-order model is very
close to the true distribution as measured by the KL-divergence, we observe that, sim-
ilarly to the pairwise model, the relative KL-divergences ∆N scales linearly with the
population size N for fixed δ and shows no sign of saturating over N∈{5, 6, ..., 20}.

This represents the current limits of decomposing activity into interaction parameters
of increasingly higher orders. The third-order models are computationally intensive
to train and necessarily have to be fit to these relatively small populations. Although
we can say that the activity of these small populations is largely summarised by their
low-order moments, we cannot extrapolate these results to large populations. To our
knowledge, this is the first work that empirically illustrates the limits of using MaxEnt
models with low-order moments to model the activity of RGCs.

How can we use these insights to inform better models of RGC activity? Going beyond
pairwise models, some authors have adopted K-pairwise models which additionally
include the whole population count distribution as a constraint (Tkačik, Mora, et al.,
2015; Berry II and Tkačik, 2020). In our description of the data-set in Section 4.2, we
showed that the probability of viewing many cells firing within a state is increasingly
rare, and that the probabilities of the states in the tail of the empirical population count
distribution are estimated to be exactly zero because we simply do not observe these
states in finite recordings of data. Instead of including the whole population count
distribution, we believe a more interesting avenue of research would be to look at the
effect of including just a few population count constraints, which are well-sampled,
such as the probability of silence. As we noted, the silent state 00...0 occurs frequently
in experimental data and hence the probability of silence is a well-estimated feature
even in the activity of large populations of RGCs. The benefit of only including this
single additional constraint is that we can still use the rest of the population count dis-
tribution to assess the model. The probability of silence has been used as a constraint
in a modified version of the independent model (Shimazaki et al., 2015), but we are un-
aware of a paper which focuses on the pairwise model with this additional constraint.
We leave this direction for future work.
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4.5. Compressive autoencoders

Lastly, as the beginning of an avenue for further research, we present our results from
fitting autoencoders to the activity of 100 RGCs. These autoencoders map each state
σ to a latent state h before trying to reconstruct the input. In the vanilla autoencoder
we use continuous latent states h ∈ RNh

and in the compressive autoencoder we use
discrete latent states h ∈ {0, 1}Nh

.

We start by presenting the results from hyper-parameter tuning where we have varied
the width and depth of our network, as well as the number of units in the hidden
layer of our network. We first introduce the results for the vanilla autoencoder which
are represented visually in Figure 4.20. In the top left plot in Figure 4.20, we see that
the validation loss, defined by the mean euclidean distance between the input and
reconstruction, drops significantly when going from 2 hidden units to 18 hidden units,
and then only slightly decreases from 18 through to 50 hidden units. This suggests that
there are diminishing returns with having too many hidden units. This is echoed in the
loss trajectories plot to the right where the loss trajectories of best performing models
plateau at similar low values for both 34 and 50 hidden units.

It would seem that for a bottleneck of 2 hidden units, depth becomes more important.
Similarly, wider networks seem to perform better. The models that achieved lower
validation losses had 4 layers in the encoder. As we move towards higher mean layer
widths, the colour of the points becomes darker suggesting wider networks have lower
validation losses. On the other hand, for Nh = 18, 34, the models that achieved lower
validation losses had only 2 layers in the encoder. There seems to be little connection
between the mean width of the network and the validation loss for larger numbers of
hidden units. These results suggest that for the vanilla autoencoder, depth and width
are more important when we only have two hidden units, however given more hidden
units, shallow networks suffice to reconstruct the output.

We now move onto the compressive autoencoder which includes the additional con-
straint that the latent representations have to be binary vectors. We again start by sum-
marising the results of hyper-parameter tuning. In the plot of the bottleneck versus the
validation loss at the right of Figure 4.21, we observe that the validation losses decrease
as we increase the number of hidden units, which is as we would expect. Again, there
seems to be diminishing returns with including more hidden units if we compare the
decrease in validation loss from 20 to 40 units to the decrease from 60 to 80 units. In the
plot of the loss trajectories on the left of Figure 4.21 we similarly observe architectures
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Encoder width (x), depth (y) & bottleneck vs. validation loss (colour)
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Figure 4.20: Hyper-parameter tuning results for the vanilla autoencoder, involving different
sizes of bottleneck (i.e. the number of hidden units), model depths (i.e. the number of layers)
and units per layer. For each number of hidden units, we randomly choose 20 different archi-
tectures. We assume that the shape of the encoder mirrors the decoder, thus it suffices to define
the shape of the encoder. We randomly select the number of layers from [2, 6], and the number
of units per layer from [Nh, dN · 3/2e]. In the top left plot, we summarise the validation loss,
the mean euclidean distance, over the 20 architectures for each number of hidden units. On
the top right, we plot the trajectory of the loss over the training epochs for the best and worst
architecture for each number of hidden units. The solid line represents the training loss and the
dashed line represents the validation loss. To the right of this plot, we write the corresponding
shape of the encoder for each trajectory. The colour of the trajectory and shape is associated
with the number of hidden units, and we underline the best performing architecture for each
number of hidden units. On the bottom row of plots, we plot the depth and mean layer width
of each of the encoder architectures we explored. The left plot shows models with a bottleneck
of 2 units, the middle plot 18 units and the right plot 34 units. The best and worst performing
architectures are annotated with ’B’ and ’W’, and we underline annotations associated with the
best performing models. The better performing models are defined by having lower validation
losses and are visually associated with darker blue colours.
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Figure 4.21: Hyper-paramter tuning results for the compressive autoencoder. Again, for each
bottleneck (i.e. the number of hidden units), we randomly choose 20 different architectures. On
the left, we plot the five number summary for the validation losses of the 20 randomly chosen
architectures for each bottleneck. We again use the mean Euclidean distance as the validation
loss. On the right, we plot the loss trajectories for the best and worst architecture for each
bottleneck, and also supply annotations for the shape of the encoders, which mirrors the shape
of the decoders. The solid lines represent the training loss trajectories and the dashed lines
represent the validation loss trajectories.

with more hidden units achieving lower losses. Strangely, the loss trajectory of one of
models with twenty hidden units starts increasing, suggesting that it begins to learn
increasingly worse reconstructions of the data. This is not overfitting since both the
validation loss, represented by the dashed line, and the training loss, represented by
the solid line increase together.

Though we have plotted both the validation and training loss trajectories, these tra-
jectories seem to be largely the same across all the autoencoders we have considered,
perhaps suggesting it is generally hard to overfit in this problem. Aside from this one
anomalous trajectory, all other trajectories are seen to plateau suggesting that they con-
verge. Tying in with our observation about the diminishing returns of including more
hidden units, we observe that the best performing model with 40 hidden units out-
performs the worst performing model with 80 hidden units. This suggests a trade-off
between the amount of compression we want to achieve and the fidelity with which
we reproduce the inputs.

We now turn our attention to the plot of the validation loss against the depth and
width of the encoder in Figure 4.22. In these plots, we consistently observe the best
performing models in the lower left corner of the plots suggesting that simpler models
perform better. At 40, 60 and 80 hidden units, model performance seems to vary mostly
with changes in depth, with deeper models achieving higher validation losses than
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Figure 4.22: Hyper-parameter tuning results for the compressive autoencoder where we ex-
amine how depth and mean layer width of the encoder relates to the validation loss. Points
correspond to different models and the colour of the points relates to the final validation loss
achieved by that model, where darker blue points correspond to lower validation losses and
lighter yellow points correspond to higher validation losses. We also supply annotations for the
shape of the encoders of the best and worst performing models. If the annotation is underlined,
and if there is a small ’B’ next to the point, then it was the best performing model.
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Nh Mean Hamming distance K that Hamming distance > 1

2 2.399 3 (3163 states where 3 cells fire)
18 0.470 9 (1556 states where 9 cells fire)
34 0.107 16 (322 states where 16 cells fire)
50 0.043 20 (73 states where 20 cells fire)

Table 4.1: Hamming distances for vanilla autoencoders with varying numbers of hid-
den units.

shallower models. On the other hand, at 20 hidden units, we observe both the highest
and lowest validation loss from models with only two layers in the encoder.

4.5.1. Quality of the reconstruction

In order to compare the vanilla and compressive autoencoder results we started by
identifying the best models for each bottleneck based on which have the lowest mean
Euclidean error. We then made use of the Hamming distance to quantify how well the
different types of models reconstruct their inputs. The Hamming distance is defined as∑

i[σi · (1− ri) + (1−σi) · ri], and counts the number of incorrectly predicted digits. For
instance, the Hamming distance between (0001) and (0010), is 2.

One aspect of the data-set that we have to be wary of is that states where few cells fire
are a lot more probable than states where many cells fire. A model which reconstructs
every state as the all silent state (00...0) achieves a mean Hamming distance of 3.87 on
the validation data. This means that, out of the 45363 observations in the validation
data set, if we consistently predict that all 100 cells are silent, we are on average only
incorrectly predicting the states of 3.87 cells. Thus, it makes sense not to only talk about
the mean Hamming distance over all states, but the mean Hamming distance over the
subset of states where K cells fire. Thus, we report the value of K for which the au-
toencoder’s reconstruction starts to be, on average, wrong by 1 digit. We tabulate these
results for the vanilla autoencoder in Table 4.1, and the results for the compressive au-
toencoder in Table 4.2. For reference, we also include how many states in the validation
set have K cells firing. In this data-set, the highest number of cells we observed firing
was 26, which we only observed in two states.

We first make some observations on the Hamming distances for the vanilla autoen-
coder. Whilst the model with 2 hidden units does better than a model that maps ev-
erything to the all silent state, it already begins missing one digit on average in states
where 3 cells fire. Comparatively, the model with 50 hidden units only starts missing
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Nh Mean Hamming distance K that Hamming distance > 1

20 2.334 3 (3163 states where 3 cells fire)
40 1.056 6 (2156 states where 6 cells fire)
60 0.477 9 (1556 states where 16 cells fire)
80 0.240 12 (857 states where 20 cells fire)

Table 4.2: Hamming distances for compressive autoencoders.

one digit on average for states where 20 cells fire. However, even with a latent rep-
resentation of 50 continuous units, we do not always perfectly reconstruct the input.

All the compressive autoencoders also do a better job than a model that maps every-
thing to the all silent state. On one end of the spectrum, the model with 20 hidden
units mispredicts, on average, 2.334 digits in each state, and on the other, the model
with 20 hidden units mispredicts 0.240 states on average. The The Hamming distances
for the compressive autoencoders make the benefits of having continuous latent repre-
sentations more apparent. With 20 binary hidden units, we observe a mean Hamming
distance of 2.334, which is on par with what we achieve with only 2 continuous hidden
unit.

As a more visual way of assessing the quality of the reconstructions, we plot an extract
of the activity of 100 RGCs, push it through each of our compressive autoencoders, and
then plot both the reconstructions, as well as the differences between the reconstruc-
tions and the original extract. This is shown in Figure 4.23. Clearly, none of our models
perfectly reconstruct all of the states, however, we have also remarked that the activity
of RGCs is inherently noisy. See Figure 3.1 for instance where we plotted the differences
between the responses on different repeats. So far, we have considered the model that
maps all states to the silent state as an admittedly low benchmark. Perhaps we can
come up with a better benchmark by looking at how consistently we observe the same
state at the same point in time during different repeats. Specifically, we can compare
the Hamming distance between states that occurred at the same points in time relative
to when stimulus started being presented to the retina, but during different repeats.
A quick implementation of this involves pairing up all of the repeats, computing the
Hamming distance between pairs of repeats and then taking the average. If we follow
this procedure then we arrive at a mean Hamming distance of 6.794. This implies that
between pairs of repeats, states at the same moments in time differ on average in 6.794
digits. This is interesting since the mean Hamming distance of the model that mapped
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Extract of activity of 100 RGCs and its reconstructions
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Figure 4.23: We take an extract of the activity of 100 RGCs over 300 bins and plot the recon-
structions produced by compressive autoencoders with Nh∈{20, 40, 60, 80} hidden units. On
the left column, we show the actual reconstructions and on the right column, we highlight
which spikes in the original extract were missing from the reconstructions, and which spikes in
the reconstructions do not exist in the original extract.
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all states to the silent state was a lot lower. This also ties in with our earlier observa-
tions about the noisiness of the responses in Section 4.2. Though we have emphasized
the quality of the reconstruction, which the Hamming distance is a good metric for, an
interesting direction for future work would be to come up with metrics that assess how
consistent the latent representations are for states from different repeats of the same
stimulus. We might hope that these states, which might look slightly different in their
raw representations but arise from the same stimulus, get mapped to similar latent
representations.

4.5.2. Future directions

So far, we have largely presented a proof of principle that it is possible to use autoen-
coders with varying bottlenecks to translate the states σ to latent representations h,
and we have highlighted the depth and width of autoencoders which perform well in
this application. We foresee two promising extensions of this work. This first exten-
sion has to do with compression of the state space, which we have already begun to
explore in our results, and the second has to do with approximating expectations over
the original space by sampling from the latent space.

Compressing the state space is interesting because it involves quantifying how much
information (in the information theory sense) there is in the observed states. This ties
in with the idea that the high-dimensional state space might lie on a lower dimen-
sional manifold. Using vanilla autoencoders, we mapped higher-dimensional binary
vectors to lower dimensional continuous vectors, where it was not clear that this sim-
plified the state space since we could trivially encode each binary vector of length N

as a single natural number, ((0000)→0, (0001)→1, (0010)→2, etc.). What is more in-
teresting is seeing whether we can compress the high-dimensional binary vectors as
lower-dimensional binary vectors and this is the direction we took with the compres-
sive autoencoders where we applied a sigmoid function to the continuous output of
the latent layer and then rounded off the output.

This is in line with what is done in lossy image compression (Theis et al., 2017), and in
general, learning lower-dimensional discrete latent representations of high-dimensional
data is well explored in the image and video compression literature. The process of
mapping continuous latent representations to discrete ones relates to the quantization
process (Theis et al., 2017). Though we feel additional work needs to done in both
developing better compression models for this domain, as well as developing better
arguments for how much we should compress the inputs, our work using compressive
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autoencoders demonstrates that it can be done. Once we have these simplified binary
representation, h, of our states, σ, we could possibly even train MaxEnt models on
these representations h.

The other interesting direction relates to mapping the state space to latent probabil-
ity distributions, from which we can then sample. In this direction, we can take in-
spiration from variational autoencoders, which canonically map the input space to a
multi-dimensional Gaussian latent space. By sampling from the latent space and then
decoding the samples back into our original space, we effectively have a generative
model for RGC data. These generative models could then be used to compute quanti-
ties which we cannot compute from finite samples of experimental data. This is helpful
if we want to explore MaxEnt models that are constrained to reproduce quantities that
rarely arise in experimental data. Though it would be unwise to extrapolate results
from these generative models to the actual activity of RGCs, this approach could facil-
itate further insights into the modelling techniques that we use to study RGCs.

4.5.3. Visualising the latent space

Finally, as food for thought, we present a visualisation of the continuous latent space
learnt by an autoencoder with two hidden units. We map each state in the data-set to
their latent representation, and then colour each state by its energy, which is the out-
put of the energy function E(σ) =

∑
i hiσi +

∑
i<j σiJijσ learnt by a pairwise model

trained on the same data-set. While Figure 4.24 exhibits a complex geometry in the la-
tent dimensions, it does seem to indicate that there is a measure of clustering of higher
and lower energy states. This, in turn, suggests that the autoencoder has learnt a rep-
resentation that captures salient features of the data.
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Figure 4.24: Visualisation of the two dimensional latent space learnt by an autoencoder.
Each point in this space represents the encoding of a state in our data-set. The colour
of each state is the energy predicted by a pairwise MaxEnt model.
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5. CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis we explored how to model the activity of retinal ganglion cells using max-
imum entropy models that are constrained to reproduce time-averaged expectations of
the activity, but otherwise make as few assumptions as possible about the distribution
of states of the activity. As the signals from retinal ganglion cells feed into the brain via
the optic nerve, our internal ‘picture’ of the visual world starts with the activity of these
cells. This work asked how accurately we can model the instantaneous states of this
activity using models built on the time-averaged, low-order moments of these states.
These models are necessarily probabilistic because the exact states that we observe in
the population differ, even we we present the same stimulus. However, these models
are conceptually more than just probabilistic models that reproduce certain low-order
moments of the data. Their formulation as maximum entropy models means that they
are the least bias explanation of the available information (Jaynes, 1957a).

We presented maximum entropy models as arising from a constrained optimisation
problem that can be framed using the method of Lagrange multipliers. We then showed
that when no non-trivial linear combination of the problem constraints has vanishing
fluctuations, the model that satisfies these constraints and that maximises the entropy
is unique. Though for some models we can express their parameters analytically in
terms of their constraints, others require their parameters to be worked out numeri-
cally. We explained how this can be done using gradient ascent, and since the update
rule in gradient ascent involves working out expectations over a number of states that
are exponential in N , we cover Monte-Carlo methods that can be used to approximate
expectations for large N , and how we can recycle samples for multiple updates.

Having provided the mathematical intuitions for maximum entropy models and how
to fit them, we then reviewed the types of models used in the literature. Specifically,
we focus on introducing the independent, pairwise, population count and K-pairwise
models. These models can all be viewed as special cases of the more general log-linear
model. The popularity of these models can in part be attributed to the fact that they
are trained on statistics that are relatively well-sampled in finite, but sufficiently large
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samples of data. We review how the goodness of fit of MaxEnt models has been as-
sessed in the literature and review how well these popular models have been reported
to perform against these measures. We largely find that unconstrained variables such
as the third-order correlations and the population count distribution have been used to
assess goodness of fit.

In our results, we initially focused on the independent and pairwise models, viewing
them as two simplifications of the activity, the former being one where cells all fire in-
dependently with a mean probability and the latter being one where cells have fixed
mean probabilities of firing but are additively more or less likely to fire with other in-
dividual cells. Firstly, as a proof of principle, we showed that our implementation of
these MaxEnt models produces the same results as an existing implementation used
in the literature. Then, using these models and fitting them to data at different scales,
ranging from N=10 to N=100, we showed the discrepancies between these simplifica-
tions and the real experimental data based on the difference between the model’s and
the empirically observed population count distribution p(K).

By fitting models regularly to sub-populations ranging from size N=5 to N = 20, we
were able to observe how these differences vary with scale. This analysis highlighted
silence and the probability of intermediate numbers of neurons firing as prominent
features of the activity that are not captured by our models. By additionally includ-
ing third-order models into our analysis we were able to better capture the population
count distribution, though there were still noticeable discrepancies. In order to fit third-
order models, we necessarily are confined to a regime where Nδ is small. We took this
an an opportunity to present empirical evidence that the pairwise model is in the per-
turbative regime by looking at how the relative KL divergence between the empirical
distribution and our models scale. We similarly observe that the relative KL divergence
for the third-order model scales with system size.

Given that the third-order model falls short in predicting aspects of the population
count distribution, we suggest that although third-order models are close approxima-
tions to the empirical distribution, they still do not fundamentally capture the activ-
ity. These results highlight the current limits of simplifying the activity of RGCs using
low-order MaxEnt models. We could include higher-order moments in our models,
but because of the difficulties in estimating higher-order moments from finite data and
the computational costs associated with fitting these higher-order models, we recom-
mend either including select aspects of the population count distribution p(K) such
as the probability of silence, introducing latent variables (Gardella, Olivier Marre, and
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Mora, 2017; Berry II and Tkačik, 2020), or accepting that lower-order maximum en-
tropy models are only approximate and the accuracy of this approximation scales with
system size. After all, all models are wrong, though some are useful.

We finished by presenting early results that illustrate the use of autoencoders as a
means of finding latent representations of the activity of RGCs. We demonstrated the
use of both vanilla autoencoders, which map the activity to continuous-valued latent
representations, and compressive autoencoders, which map it to binary-valued latent
representations. We were able to show how well the original activity is reconstructed
when it is put through bottlenecks of varying sizes, and we were able visualise the la-
tent representations learnt by the autoencoders. This visualisation suggested that our
models learn mappings that cluster higher and lower energy states together. We out-
lined two extensions of this work. This first builds on our work using compressive
autoencoders to simplify the state space and involves quantifying the amount of in-
formation in the RGC activity. The second extension involves investigating variational
autoencoders as generative models, which we can use to train and study the next gen-
eration of approaches to modelling the activity of RGCs.

Though we have tried to create a thorough overview of MaxEnt models for populations
of RGCs, there are inevitably topics we did not get around to covering and directions
hinted by this work that we did not (yet) get the chance to pursue. The main ques-
tions that spring out are how we might model temporal dynamics, how we might scale
these models to much larger populations of neurons and to what extent our results
generalise to other types of stimulus. Given the computational cost of fitting MaxEnt
models to the distribution p(σ), it would be rather unwieldy to use them as is to model
p(σt,σt−1), and hence attempts to include temporal dynamics in MaxEnt models have
largely been restricted to small populations of neurons or have looked at modelling
the population count distribution p(K) as opposed to the distribution over all binary
words (see Section 3 of Gardella, Olivier Marre, and Mora, 2019 for a review). We were
largely constrained by experimental data that has been made publicly available. If we
were able to get more data, it would be interesting to see which pictures emerge from
varieties of stimuli, such as other natural movies, or white noise. The data we looked
at did not distinguish between the types of RGCs and it would be interesting to see
whether models trained on a specific functional type of RGC are better able to capture
their behaviour, which would require the identification of the types of the recorded
RGCs.

The field of computational neuroscience is inherently interdisciplinary, and it defi-

112



nitely shows. From involved calculations, such as the perturbative results involving
the Sarmanov-Lancaster expansion in Section A.2, to intriguing hypotheses involving
deep dives into statistical mechanics, this thesis has demanded an exploration of a
range of fields. It has certainly been a tiring but rewarding experience.
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A. APPENDIX

A.1. Maximum entropy models

We want to find models of neural activity that reproduce certain observable quantities,
but otherwise make as few assumptions as possible about the nature of the activity.
A way of achieving this is by maximising the entropy of our model, while imposing
certain constraints on it. Entropy is a measure of the uncertainty of a system. If our
system can take on a number of discrete states with probability pi, then the entropy is
defined as:

S = −
∑
i

pi ln pi

and for continuous probability distributions, the definition of entropy becomes an in-
tegral as opposed to a summation over the possible states. A system that takes on all
states with equal probability, i.e. follows a uniform distribution, will have maximum
entropy, whereas a system that only ever takes on a single state will have an entropy of
0.

In order to maximise the entropy while satisfying certain constraints, we introduce the
method of Lagrange multipliers:

A.1.1. Method of Lagrange multipliers

The method of Lagrange multipliers is a strategy for finding the extrema of a func-
tion that also has to satisfy certain equations exactly. The Lagrange multiplier theorem
states:

Let f : RN → R be the objective function and g : RN → RC be the con-
straints function, both of which have continuous first derivatives. If we use
x∗ to denote an optimal solution to the following optimisation problem

Maximise f(x)

Subject to g(x) = 0,
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A.1. MAXIMUM ENTROPY MODELS

where Dg(x) denotes the matrix of partial derivatives ∂gj
∂xk

, then there ex-
ists a unique set of Lagrange multipliers λ∗ ∈ RC such that Df(x∗) =

λ∗>Dg(x∗).

The set of points that satisfy the constraints are the points for which gi(x) = 0. Every
point, x has a space of directions that we can move to from x and still satisfy the
constraints, which is the space of directions perpendicular to ∇gi(x). When we are
at a maximum of f(x), we should not be able to find any direction in which f(x)

increases. Therefore, we seek x such that moving in any direction away from x is
still perpendicular to ∇f(x) – the direction in which f(x) increases. Therefore, we
are trying find a point x where the gradient of the objective at x is in the span of the
constraints’ gradients at x:

∇f(x) =

C∑
i=1

λi∇gi(x). (A.1)

If we introduce an auxiliary function, called the Lagrangian

L(x,λ) = f(x)−
C∑
i=1

λigi(x),

then finding points that satisfy equation A.1 as well as the C constraints is related
to finding the stationary points of the Lagrangian. We do this by taking the partial
derivatives of the Lagrangian with respect to xi and λi and finding the points where
the partial derivatives are equal to zero.

Here is an example of how this method works in 3 dimensions. Imagine we are in a
room with varying temperatures around the room and we are trying to find the point in
the room with the maximum temperature. However, we cannot move around the room
freely. Instead, we are forced to move along a line that lies at the intersection of two
planes. Now, the span of the gradients of the two planes is the plane S orthogonal to
the line we are allowed to move along. The gradient of the objective function at a point
can be pictured as an arrow pointing in the direction where the temperature increases
the most. For instance, imagine we have a ’heat compass’ that points in the immediate
warmest direction. We move along our line, trying to follow the arrow pointing to
where the heat increases as best as we can. The arrow can point in any direction in
3D space and thus might not point entirely forwards or backwards. In the method
of Lagrange multipliers, we seek to slide the plane S along the line that satisfies the
constraints until the arrow pointing to where the heat increases falls onto the plane S,
meaning it is orthogonal to the line that satisfies the constraints. Thus, moving along
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A.1. MAXIMUM ENTROPY MODELS

the line no longer brings us to a point that is immediately warmer. We would have to
abandon the constraint to continue moving in the direction where the heat increases.

A.1.2. Uniform distribution from maximum entropy

As an example, we search for a discrete probability distribution p ∈ RM over M states
that maximises the entropy S = −

∑M
i=1 pi ln pi. We denote the probability of state i as

pi. We constrain the pis by specifying that they must sum to 1, which can be written as
a constrain as

∑M
i=1 pi − 1 = 0. Hence, we have the following Lagrangian:

L(p, λ) = −
M∑
i=1

pi ln pi − λ

(
M∑
i=1

pi − 1

)
.

Taking the partial derivative with respect to pj and setting it equal to 0, we obtain:

∂L
∂pj

= − ln pj − 1− λ = 0

pj = e−1−λ.

Notice that this implies that all pjs are equal. Then, taking the partial derivative with
respect to λ and setting it equal to 0, we recover the constraint:

∂L
∂λ

=
M∑
i=1

pi − 1 = 0

pi =
1

M
.

Thus we establish that the probability distribution that maximises the entropy is the
one in which every state is equally likely, which corresponds to the uniform distribu-
tion.

A.1.3. K-pairwise model from maximum entropy

We now want to find the maximum entropy model consistent with the averages 〈σi〉
the pairwise correlations 〈σiσj〉 and the population spike distribution p(K). As above,
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A.2. THE PERTURBATIVE REGIME

we formulate the Lagrangian:

L(p(σ),h,J) =−
∑
σ

p(σ) ln p(σ)

− λ

(∑
σ

p(σ)− 1

)
Specify the distribution
must sum to 1

−
N∑
i=1

hi

(∑
σ

σip(σ)− 〈σi〉D

)
Constraint on the
averages

−
N−1∑
i=1

N∑
j=i+1

Jij

(∑
σ

σiσjp(σ)− 〈σiσj〉D

)
Constraint on the
correlations

−
∑
K

VK

(∑
σ

δ

[
N∑
i=1

σi −K

]
p(σ)− p(K)D

)
Constraint on p(K).

We use λ, h, J and V as the Lagrange multipliers. The summation
∑
σ is over all

possible binary words of length N . We now need to find the stationary points of the
Lagrangian, i.e. the points (p(σ),h,J ,V ) where the gradient of the objective func-
tion is in the span of the constraints’ gradients. We take the partial derivative of the
Lagrangian with respect to the probability of a particular configuration p(σ′):

∂L
∂p(σ′)

= − ln p(σ′)− 1− λ−
N∑
i=1

hiσi −
N−1∑
i=1

N∑
j=i+1

Jijσiσj − VK(σ)′ = 0.

Here, K(σ′) is the number of neurons that fire in state σ′. Rearranging, and absorbing
the e(−1− λ) into a constant 1/Z we obtain the K-pairwise model:

p(2,K)(σ) =
1

Z
exp

−∑
i

hiσi −
∑
i<j

Jijσiσj − VK(σ)

 .

As shorthand we use
∑

i
.
=
∑N

i=1,
∑

i<j
.
=
∑N−1

i=1

∑N
j=i+1. The independent and pair-

wise models are special cases of this, obtained by ignoring the additional constraints.

A.2. The perturbative regime

Roudi et al. suggest that when we are in the perturbative regime, characterised by
a small probability of observing a neuron spike and a small number of neurons, the
pairwise maximum entropy model will appear to be a good model for any distribution
(Roudi, Nirenberg, and P. E. Latham, 2009). However, we cannot extrapolate these
results to larger systems and assume that the pairwise model will remain a good fit
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A.2. THE PERTURBATIVE REGIME

outside of the perturbative regime. The fact that we can fit pairwise models to relatively
small populations of neurons should not come as a particular surprise. In short:

In the perturbative regime, the distance between some true probability dis-
tribution with arbitrarily higher order interactions and the pairwise model
relative to true distribution’s distance from the independent model appears
linear in N〈v〉δt .= Nδ,

where N is the number of neurons in the population, 〈v〉 is the mean firing rate of
the neurons and δt is the size of the time bin. As shorthand, we define δ .

= 〈v〉δt,
and when at most a single neuron fires within each time bin, we can identify δ as the
mean probability of observing a neuron spike1. We use the Kullback-Leibler divergence
DKL(p‖q) .

=
∑

i pi log2(pi/qi) in order to get a sense of how far distribution q is from
distribution p. Here we use bits in line with the authors. Thus, we can write their result
more formally as

∆N
.
=
DKL

(
p(N)‖p(2)

)
DKL

(
p(N)‖p(1)

) ∝ (N − 2)δ +O
(
(Nδ)2

)
. (A.2)

When the pairwise model p(2) is very close to the true distribution p(N), ∆N is close to
0, and when the pairwise model is no better than the independent model p(1), ∆N is
equal to 1.

To derive this result, we have to first derive the following approximations to the KL
divergences:

DKL

(
p(N)‖p(2)

)
=

1

ln 2

∑
i<j<k

σ̄iσ̄j σ̄kf
(
ρ̄

(N)
ijk , ρ̄

(2)
ijk

)
+O

(
(Nδ)4

)
(A.3)

and
DKL

(
p(N)‖p(1)

)
=

1

ln 2

∑
i<j

σ̄iσ̄jf
(
ρ

(N)
ij , 0

)
+O

(
(Nδ)3

)
, (A.4)

where σ̄i = 〈σi〉 is the expected value of σi and

f(x, y)
.
= (1 + x)

[
ln(1 + x)− ln(1 + y)

]
− (x− y). (A.5)

This equation will make more sense when we define it in the context of the KL diver-
gence. ρpij is the normalised correlation coefficient defined as

ρpij
.
=
〈σiσj〉p − σ̄iσ̄j

σ̄iσ̄j
, ρpi1i2...ik

.
=
〈(σi1 − σ̄i1)(σi2 − σ̄i2)...(σik − σ̄ik)〉p

σ̄i1 σ̄i2 ...σ̄ik

1〈v〉 · δt = avg. no. spikes
time · time

no. bins
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A.2. THE PERTURBATIVE REGIME

and
ρ̄pijk

.
= ρpijk + ρpij + ρpik + ρpjk =

〈σiσjσk〉p − σ̄iσ̄j σ̄k
σ̄iσ̄j σ̄k

.

We use the superscript p to specify which distribution the expectations are calculated
over. In order to arrive at the perturbative result in equation A.2, we need to identify
the sum

∑
i1<i2...<ik

as scaling with the system size as N(N − 1)...(N − k + 1)/k!, and
each σ̄i as being equal to δ on average. The terms involving the normalised correla-
tion coefficients, f(ρ̄

(N)
ijk , ρ̄

(2)
ijk), f(ρ

(N)
ij , 0) have equal powers of σ̄ in the numerator and

denominator and thus behave as constants on average.

We now explain how to obtain the equations for the KL divergences (A.3 and A.4).
Let us consider the KL divergence between two probability distributions DKL(p‖q).
Our first step involves writing the Sarmanov-Lancaster expansions of p and q. The
Sarmanov-Lancaster expansion (Sarmanov, 1962; Lancaster, 1958; Lancaster, 1963) of a
probability distribution is written as

p(σ) = p(1)(σ) (1 + ξp(σ)) , ξp(σ) =
∑
i<j

δσiδσjJ pij +
∑
i<j<k

δσiδσjδσkKpijk + ...

where δσi = σi − σ̄i. This expansion relates a distribution to the independent distribu-
tion, plus a series of corrections relating to the normalised correlation coefficients of the
distribution. For instance, ρpij = (1− σ̄i)(1− σ̄j)J pij , ρ

p
ijk = (1− σ̄i)(1− σ̄j)(1− σ̄k)Kpijk

and in general,
ρpi1i2...ik = (1− σ̄i1)(1− σ̄i2)...(1− σ̄ik)Cpi1i2...ik .

This property, along with others such as 〈σi〉p = 〈σi〉p(1) = σ̄i, and 〈ξp〉p(1) = 0, can
be shown by noting that whenever we have a term linear in δσi, the expectation of
that term over the independent distribution will be 0, since we can factorise out the
expectation of δσi which evaluates to 0. For example,

∑
σ

p(σ) =
∑
σ

p(1)(σ)

1 +
∑
i<j

δσiδσjJ pij +
∑
i<j<k

δσiδσjδσkKpijk + ...


=1 + 〈δσ1δσ2〉J p12 + expectations that will vanish similarly

=1 + 〈σ1 − σ̄1〉︸ ︷︷ ︸
=σ̄1−σ̄1=0

〈σ2 − σ̄2〉J p12 + ...

=1.

Since all expectations on the right hand side of line two are over the independent dis-
tribution, we can factorise them. Using the Sarmanov-Lancaster expansions of p and q
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A.2. THE PERTURBATIVE REGIME

in the KL divergence, we have

DKL(p‖q) =
1

ln 2

∑
σ

p(1)(σ)(1 + ξp(σ)) [ln(1 + ξp(σ))− ln(1 + ξq(σ))]

=
1

ln 2
〈f(ξp(σ), ξq(σ))〉p(1) ,

which follows from eq. A.5 and noting that 〈ξp〉p(1) = 0. To derive equations A.3 and
A.4, we Taylor expand f(ξp, ξq)

.
= (1+ξp)

[
ln(1+ξp)− ln(1+ξq)

]
−(ξp−ξq) around ξp =

ξ1 = 0 and truncate each term in the expansion after the order O((Nδ)3) term. Notice
we are not truncating the Taylor expansion, but each term in the Taylor expansion.
Also, notice how the −(ξp− ξq) term is included in f so that the first partial derivatives
all vanish, hence we only consider higher order derivatives in the expansion. Using
amn to encapsulate the partial derivatives and constants in each term of the expansion,
we can write the KL divergence as

DKL(p‖q) =
1

ln 2

∑
m+n≥2

amn〈ξp(σ)mξq(σ)n〉p(1) .

At this point, we perform multi-nomial expansions of ξmp and ξnp , and ask ourselves
which terms make up the orderO(δ2) terms and which terms make up the orderO(δ3)

terms.
We arrive at

〈ξp(σ)mξq(σ)n〉 =
1

ln 2

∑
i<j

[
σ̄iσ̄j

(
ρpij

)m (
ρqij

)n
+ σ̄j

(
−σ̄iρpij

)m (
−σ̄iρqij

)n
+ σ̄i

(
−σ̄jρpij

)m (
−σ̄jρqij

)n ]
+

1

ln 2

∑
i<j<k

σ̄iσ̄j σ̄k

(
ρ̄pijk

)m (
ρ̄qijk

)n
+O

(
(Nδ)4

)
. (A.6)

As mentioned, it is the multi-nomial expansions of the terms in the Taylor expansion
that we truncate up to order O((Nδ)4). If we plug equation A.6 into each term of
the Taylor expansion of 〈f(ξp(σ), ξq(σ))〉p(1) =

∑
m+n≥2 amn〈ξp(σ)mξq(σ)n〉p(1) , we can

rearrange the Taylor expansion of f(ξp(σ), ξq(σ))〉p(1) as the sum of Taylor expansions
of f(ρpij , ρ

q
ij), f(−σ̄iρpij ,−σ̄iρ

q
ij), f(−σ̄jρpij ,−σ̄jρ

q
ij)and f(ρ̄pijk, ρ̄

q
ijk). Thus, we can define

the following general expression for the KL divergence for small Nδ:

DKL(p‖q) =
1

ln 2

∑
i<j

[
σ̄iσ̄jf

(
ρpij , ρ

q
ij

)
+ σ̄jf

(
−σ̄iρpij ,−σ̄iρ

q
ij

)
+ σ̄if

(
−σ̄jρpij ,−σ̄jρ

q
ij

)]
+

1

ln 2

∑
i<j<k

σ̄iσ̄j σ̄kf
(
ρ̄pijk, ρ̄

q
ijk

)
+O

(
(Nδ)4

)
. (A.7)
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Considering the case where the divergence is between the true distribution p(N) and
the independent model p(1), the terms ρ(1)

ij , ρ̄
(1)
ijk will be equal to zero, since 〈σiσj〉p(1) =

〈σi〉p(1)〈σj〉p(1) . Thus, for this case, equation A.7 simplifies to

DKL(p(N)‖p(1)) =
1

ln 2

∑
i<j

[
σ̄iσ̄jf

(
ρ

(N)
ij , 0

)
+ σ̄jf

(
−σ̄iρ(N)

ij , 0
)

+ σ̄if
(
−σ̄jρ(N)

ij , 0
)]

+
1

ln 2

∑
i<j<k

σ̄iσ̄j σ̄kf
(
ρ̄

(N)
ijk , 0

)
+O

(
(Nδ)4

)
.

Focusing on the function f(x, 0) = (1 + x) ln(1+x)− x and using the Taylor expansion
ln(1+x) = x − x2/2 + x3/3 + ..., we have that f(x, 0) = x2/2 − x3/6 + .... Thus, the
terms

∑
i<j σ̄jf(−σ̄iρ(N)

ij , 0) and
∑

i<j σ̄if(−σ̄jρ(N)
ij , 0) are both O(N2δ3). This leads to

the following approximation to the KL divergence between the true and independent
distribution:

DKL

(
p(N)‖p(1)

)
=

1

ln 2

∑
i<j

σ̄iσ̄jf
(
ρ

(N)
ij , 0

)
+O

(
(Nδ)3

)
which is the result we stated in equation A.4.

For the divergence between the true distribution p(N) and the pairwise model p(2), note
that since we define the pairwise model as the model which reproduces the pairwise
correlations of the true distribution, the correlation coefficients ρ(2)

ij and ρ
(N)
ij will be

identical. Since f(x, x) = 0, equation A.7 simplifies to:

DKL

(
p(N)‖p(2)

)
=

1

ln 2

∑
i<j<k

σ̄iσ̄j σ̄kf
(
ρ̄

(N)
ijk , ρ̄

(2)
ijk

)
+O

(
(Nδ)4

)
which is again the result we stated in equation A.4.
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