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Abstract

Brain Age (BA) estimation via Deep Learning has become a strong and reliable bio-marker for brain health,
but the black-box nature of Neural Networks does not easily allow insight into the causal features of brain
ageing. In this work, a ResNet model was trained as a BA regressor on T1 structural brain MRI volumes from a
small cross-sectional cohort of 524 individuals. Using Layer-wise Relevance Propagation (LRP) and DeepLIFT
saliency mapping techniques, analyses were performed on the trained model to determine the most revealing
structures over the course of brain ageing for the network, and compare these between the saliency mapping
techniques. This work shows the change in attribution of relevance to di�erent brain regions through the
course of ageing. A tripartite pattern of relevance attribution to brain regions emerges. Some regions increase
in relevance with age (e.g. the right Transverse Temporal Gyrus, known to be a�ected by healthy ageing);
some decrease in relevance with age (e.g. the right Fourth Ventricle, known to dilate with age); and others
remained consistently relevant across ages. This work also examines the e�ect of Brain Age Delta (DBA) on
the distribution of relevance within the brain volume, for both older and younger individuals. It is hoped that
these �ndings will provide clinically relevant region-wise trajectories for normal brain ageing, and a baseline
against which to compare brain ageing trajectories.
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Chapter 1

Introduction

1.1 Background
Deep Learning methods are a family of Machine Learning tools that create feature representations for data to
extract meaningful information from it. This is useful for analysing large data structures or data that is not
visualisable or too high-dimensional for humans. In such cases the powerful Deep Learning methods are able
to analyse the data using learned statistical models.

One issue with modern Deep Learning tools is their inherent uninterpretability. These models commonly
optimise anywhere between thousands and billions of parameters to perform their tasks successfully. This
seems often to be a necessary trade-o� for the analytical power brought about by the learning methods.
Indeed, a trend in Deep Learning models seems to be that the larger the model, the more powerful its analytic
capabilities [9]. This leaves us unable to understand how they come to their decisions, and as such they are
often treated as “black-boxes”. Much research has been dedicated in recent years to solving the black-box
problem, within the realm of Explainable Arti�cial Intelligence (XAI). One method of shedding light on the
decision processes of these models is to create a map on the input space for a given input of the most salient
features to the model’s decision. Such ‘saliency maps’ elucidate what the models deem relevant and what
they are ignoring in the data.

A large amount of focus has been placed on Deep Learning (DL) in medical research. The Medical Imaging
with Deep Learning (MIDL) conference alone had 123 conference papers in 2021. DL is an incredibly useful
tool here for a number of tasks, such as lesion detections and diagnoses [10]. Many medical imaging imple-
mentations of DL utilise volumes obtained through Magnetic Resonance Imaging (MRI), which non-invasively
images parts of the body and allows for the inspection of di�erent tissue types at any location, and often at
very high resolutions. We focus on the task of brain age (BA) regression from 3D MRI volumes. This involves
taking MRI scans from individuals and training a DL model to predict the individuals’ ages.

We wish to study the BA regression task by analysing such DL models using saliency mapping techniques.
One way in which we can learn from the BA regression task is through the analysis of individuals predicted
to be signi�cantly older than their chronological age, and which areas of the brain contribute to this disparity
in which individuals. We can also analyse the saliency of speci�c brain regions to BA over the course of age,
to determine how regions contribute to BA over time. Such information is hoped to be accessible through
saliency mapping techniques applied to a BA regression model.

1.2 Problem Statement and Motivation
In the context of BA regression via DL, the black-box problem raises the question of why the model makes
the decision that a given brain volume comes from a person of the predicted age. Successful application of
a saliency mapping technique will show which areas of the MRI volume are being focused on for the age
prediction. If a given structure is highlighted in an individual’s saliency map, it would mean that the size,
shape, position and/or tissue content (e.g. white matter vs grey matter content) of that structure has drawn
attention as part of the age prediction. One would expect for example that an older individual would have

1
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very large cerebral ventricles as compared to a younger individual [11]; if the regression is accurate, then we
would expect a successful saliency map to highlight the ventricles.

Saliency mapping methods have been applied to many DL tasks, including in medical image analysis, in
Alzheimer’s Disease prediction for example, using MRI volumes [12, 13, 14, 15], and for neonate brain pre-
term versus term classi�cation [16]. There are few applications thus far of saliency mapping to BA regression
[17, 18].

In general, there have been few attempts to use saliency mapping techniques for regression problems. A
model that can accurately predict the age of a patient’s brain as compared to a healthy baseline and subse-
quently explain its decision would be an extremely helpful diagnostic tool for BA pathology. For example, an
individual may present with an apparently older brain than their chronological age; an interpretable model
would be able to highlight the areas of their brain that di�er from the healthy baseline, considering that those
are the areas focused on to make the decision that the brain is older than the patient’s actual age. Further-
more, such models will be able to estimate population BA saliency trajectories over age. This would allow for
a region-wise BA comparison on an individual basis.

While the task of BA regression does not target a speci�c pathology like Alzheimer’s disease detection
would, it does show how an individual’s brain is ageing compared to a healthy baseline. With growing interest
in the phenomenon of age as something like a disease state [19], such a model is a highly useful tool.

Such models are also extremely easy to use once trained. Once an MRI scan is complete, the volume is
simply fed into the model, which quickly provides a prediction. The saliency mapping method is then applied
post-hoc as part of the pipeline in a similar amount of time to give a region-wise explanation for the speci�c
decision.

1.3 Research Questions
We have three research questions which we would like to address in this work:

1. What are the di�erences and similarities between the explanations of BA from di�erent saliency mapping
methods?

2. How does accelerated brain ageing a�ect the distribution of BA relevance?

3. How does BA saliency change with age on a region-wise basis?

1.4 Hypotheses
Based on the current literature, we form the following three hypotheses to our research questions:

1. The saliency mapping methods are mathematically similar to one-another, and so we expect structural
relevance to brain ageing – although multivariate and nonlinear – to be similar among them, with some
slight variations.

2. We expect that in individuals with accelerated BA, relevance is concentrated in regions relevant to BA
in higher proportion than in those individuals with expected or slowed brain ageing.

3. We expect that the proportion of BA saliency increases with age in all areas that are highly relevant to
BA, while in other areas this proportion (necessarily) decreases.

1.5 Aim and Objectives
The aim of this research is to create a clinically relevant and ready-to-use BA regression tool that explains its
decisions graphically on the input space. The key feature of such a tool is the rich information that is provided
by the saliency mapping. Although saliency mapping has been performed for the BA regression task in the
past, the focus of such studies has largely been on the regions which are deemed most salient [17, 18]. We
wish not only to ensure that the explanations are consistent at least with our current understanding of brain
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ageing, but also to utilise the information from these explanations to create population trajectories of BA
saliency for speci�c brain regions, which has not been done before.

Speci�cally, the objectives of this research are as follows:

1. Create an accurate BA regression model using DL techniques.

2. Apply saliency mapping techniques to the BA regression model and compare the results to known
characteristics of brain ageing.

3. Analyse the di�erences between saliency mapping techniques speci�c to the BA regression task, to
determine the strengths and limitations of each.

4. Examine the link between region-speci�c saliency and accelerated brain ageing both in older and
younger individuals.

5. Create region-wise trajectories of BA saliency over ages from a population study.

1.6 Contributions of Research
The primary contribution of this research is the development of region-speci�c trajectories of BA saliency
over the course of age. This serves two functions:

1. Determine the saliency of a given brain structure to ageing and the change thereof over time.

2. Allow for individual comparisons to a baseline relevance trajectory on a region-speci�c level to assess
BA.

Further contribution comes from the region-speci�c analysis of BA saliency in individuals exhibiting patho-
logical (accelerated) brain ageing. This allows us to determine key contributing regions to accelerated BA.
The �nal contribution comes from the analysis of di�erent saliency mapping techniques applied to the BA
regression task. Di�erences and similarities between the results of each technique o�er insight not only
into the strengths and limitations of each, but also into di�erent aspects of brain ageing. Previous studies
have quanti�ed regional attribution of saliency to BA. No study has examined the di�erences in attribution
between saliency mapping techniques, none has analysed the regional distributions of relevance associated
with accelerated BA, and none has examined region-wise trajectories of saliency across age. This work will
be of particular interest in clinical applications of BA analysis. Our �ndings have been submitted as a full
paper [20] to the MIDL 2022 conference.

1.7 Dissertation Layout
The remainder of this dissertation will take the following structure:

• Chapter 2 – The Literature Review will go over the relevant research on the subjects at hand, start-
ing with MRI imaging and Machine Learning in the analysis of medical images, and then focusing on
saliency mapping and previous work in related �elds. This section will advise on how best to ful�l our
aim and objectives, as well as best practices for each step of the Experimental Design.

• Chapter 3 – The Experimental Design will discuss the acquisition and pre-processing of data, the
experimental methods, and methodological issues that were encountered and how they were addressed.
This will all be discussed in the context of the relevant literature.

• Chapter 4 – The Experimental Results will show the outcome of the experiments and show the ex-
tracted data that was of greatest utility.
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• Chapter 5 – The Discussion will analyse the results and the extracted data. Here we will determine the
extent to which the work has answered the research questions and made the contributions we aimed
for. We will also discuss what was expected and what was unexpected in light of the literature and our
domain expert’s analyses.

• Chapter 6 – The Conclusion will summarise the �ndings, and examine avenues for future work and
improvements.
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Chapter 2

Literature Review

In this chapter, we review the background of the topics of interest for this thesis, best practices for BA regres-
sion and saliency mapping, and what has and has not been done in this area of research thus far.

2.1 MRI Imaging
In this section we will look brie�y at the method of MRI imaging used in our task. We use T1-weighted
volumes for our experiments collected from the Cam-CAN cross-sectional dataset [21]. The dataset consists
of N = 656 brain scans of healthy individuals ranging in age from 18 to 89 years. The subject ages are given
in Figure 2.1 below, ordered by patient identi�cation number.

Figure 2.1: Ages of patients in the Cam-CAN cc700 dataset, ordered by patient ID.

There are many di�erent MRI imaging sequences, including T1- and T2-weighted, di�usion-weighted, fMRI
sequences like BOLD, and many more. All groups of imaging sequences though use the same basic underlying
technology, which consists of a sequence of radio wave pulses onto the body of a patient placed in a very
strong magnetic �eld (usually at about 1.5 Tesla strength in modern MRI machines, but ranging clinically
from 0.2T to 7T). Under such a setting, certain types of atoms, including Hydrogen, are able to absorb radio
frequency signals in such a way that their spin polarisation is altered, and as they realign the polarisations
with the external magnetic �eld, emit radio frequency signals of their own that are detectable by a coil. In
the case of human subjects, body fat and water molecules are rich in Hydrogen atoms, and the size and
geometric con�gurations of these di�erent molecules a�ects the signals by which they are detected in the
radio frequency coils. This allows us to di�erentiate between di�erent tissue types within the body in space
when localising signals.
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The contrast in an MRI image is determined by the di�erent rates of return to equilibrium spin states of
the Hydrogen atoms on di�erent regions. The rate of return to equilibrium is determined (for the same radio
frequency and magnetic �eld sequence) by two factors:

• The density of Hydrogen atom nuclei in the region,

• The proximity of other atoms.

This means that di�erent materials – and speci�cally di�erent tissue types – will be contrasted against
one-another in the image.

The two most common types of structural imaging are T1- and T2-weighted imaging. T1 imaging maps a
quantity across the volume that is associated with the recovery of longitudinal magnetisation – that is, the
number of nuclei over time with spin in the direction of the applied magnetic �eld. On the other hand, T2
imaging maps a quantity across the volume associated with the decay of phase coherence of nuclei – that is,
the number of nuclei in phase with one-another.

While T2-weighted imaging in the case of brain volume scanning is useful for the detection of white matter
lesions, T1-weighted imaging is useful for the assessment of the cerebral cortex, and is less sensitive to white
matter lesions. It is for this reason that we pay particular attention to T1-weighted images for our task. As
discussed below, one of the hallmarks of brain ageing is the degradation of the cortex.

(a) Frontal section (b) Sagittal section (c) Transverse section

Figure 2.2: Sections of a T1-weighted MRI volume

(a) Frontal section (b) Sagittal section (c) Transverse section

Figure 2.3: Sections of a T2-weighted MRI volume

In Figures 2.2 and 2.3, examples are given of various sections from T1- and T2-weighted volumes of the
same patient from the Cam-CAN dataset. These volumes, like all the other raw volumes in the dataset, are of
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shape (256, 256, 192) voxels. Each voxel is approximately representative of 1mm3. One can see in the �gures
that the T1-weighting quite clearly contrasts grey matter from white matter in the cortex (and other areas),
and the T2-weighting clearly contrasts solid brain matter with the cerebrospinal �uid (light grey) for example.

2.2 A Broad Look at Machine Learning
In this section, we will look at Machine Learning generally in a broad sense, then focusing more clearly on
Supervised Learning and its success and evolution, then examining Deep Learning with Neural Networks.
This serves as background for the following section on the Convolutional Neural Network, which currently
stands as the most popular Deep Learning tool for both classi�cation and regression tasks.

ML is an extremely diverse �eld of study, which focuses on the broad goal of creating computational systems
that can learn to perform useful tasks, and get better with more experience. The �eld has been in development
since the early-to-mid 20th century, but has gained massive popularity and utility in recent decades, with
famous milestones such as the 1997 defeat of Chess Grandmaster Garry Kasparov by IBM’s Deep Blue [22].
Since then it has seen the advent of such achievements as the underpinning of modern self-driving cars [23],
accurate speech-to-text software [24], realistic face generation [25], superhuman video-game performance
[26] and even the ability to program [27].

Machine Learning can be divided in to three basic frameworks:

1. Supervised Learning – Iteratively teaching programs to understand a task or space with the use of
labeled data, creating a function that maps inputs to their paired outputs.

2. Reinforcement Learning – Trying to use the maximisation of reward mechanisms to teach programs to
use their environments, and trying to tailor the reward functions to illicit some desired behaviour.

3. Unsupervised Learning – Training a program on unlabelled data, and with minimal human input, to
look for patterns in data and learn some level of representation of a dataset.

Within the realm of Supervised Learning (and often that of Unsupervised Learning) lies the powerful tool
that is the Arti�cial Neural Network, often just called the Neural Network (NN). NNs were �rst put forward
in their barest form in 1943 by McCulloch and Pitts [28], who reasoned that due to the “all-or-none” character
of nervous activity, any network can be described in terms of propositional logic, and hence proposed a
computational model for biological neural networks. Rosenblatt in 1958 created the perceptron [29], a basic
model of human decision and memory pathways as a classi�er with a binary output mode. Ivakhnenko
and Lapa in 1965 created the �rst functional multi-layer perceptron under the name ‘The Group Method of
Data Handling’ [30]. Backpropagation was �rst put forward by Henry Kelley in 1960 [31], and was re�ned
by 1975 by Werbos [32] to the point that it could be implemented for the practical training of multi-layer
NNs. Computational power was still insu�cient for the practical use of NNs trained with backpropagation.
Rumelhart et al. [33, 34] coined the term ‘backpropagation’ and popularised its algorithmic use. Many modern
day supervised learning methods (all Deep Learning methods) use backpropagation in training. In the training
phase, a model will produce outputs for labeled data, and its output will be compared with the label in a
loss function, which produces a score serving as a notion of error of the model. The loss function aims to
approximate the metric of error for the model accurately, but must be a di�erentiable function to be used
in the backpropagation process. The score is used to adjust the weights and biases learned by a Neural
Network according to their contribution to the decision. This can be done by any of a very large number of
optimisation methods, but all successful methods use the partial derivative of the parameters with respect to
the error so as to descend the error function to a local minimum. The method of using backpropagation to
improve parameters iteratively using the partial derivatives of parameters to adjust them optimally is called
Gradient Descent. The �rst detailings of Gradient Descent were made by Cauchy in 1847 [35] in application
to systems of simultaneous equations. All backpropagation methods use some variation of gradient descent.

Eventually, the advances in computational power and speed allowed for the widespread use of NNs trained
by backpropagation, and an increase in the networks’ depths. Deep Neural Networks (DNNs) allow for the
expression of highly nonlinear relationships in datasets, and have been shown to act as universal function
approximators (given enough parameters) [36]. DNNs are the cornerstone of most Supervised Learning tasks,
and their implementation is what is widely referred to as Deep Learning.
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2.3 Convolutional Neural Networks (CNNs)
This section discusses the Convolutional Neural Network, which utilises a convolutional layer for feature
detection. Many architectures, including state-of-the-art, have used and continue to use convolutional layers,
and so it is that the Convolutional NN is widely regarded as the workhorse of modern Deep Learning.

We are most interested in the use of Deep Learning for image analysis. It is important to determine optimal
architectures for a network to be able to pick up on visual features that determine output characteristics of
interest – in our case, which features of a 3D brain MRI volume characterise age. This will inevitably lead not
only to more accurate models for age regression, but also to more faithful saliency maps1. So we consider the
currently very popular Convolutional Neural Network (CNN), which makes use of feature detectors to build
up the notion of a characteristic in the training data from low- to high-level features.

In 1980, Fukushima [37] introduced the basic components of CNNs: the convolutional layer and down-
sampling layers. In the original feed-forward NN designs, each neuron in a given non-input layer L + 1
is connected to each of the neurons in the previous layer L. Its activation is given by the application of a
nonlinearity f to an a�ne function of the input activations xLi :

x̂L+1
j =

∑
i

(
wijx

L
i + bj

)
, (2.1)

xL+1
j = f

(
x̂L+1
j

)
, (2.2)

where xLi is the activation of the ith neuron in layer L, wij is the weight between the neurons xL+1
j and

xLi , and bj is a bias term. This is often visualised as in Figure 2.4, with the full connection of neurons in layer
L to those in layer L+ 1.

Figure 2.4: A visualisation of two adjacent layers in a fully-connected Neural Network, using nonlinear acti-
vation function f

Convolutional layers, however, make use of �lters of weights between layers. These are scanned across the
lower layerLwith a set number of trained weights per �lter. These ‘convolution windows’, also called kernels,
scan across layers to search for features at a given level. The number of �lters between two layers is then
the number of feature detectors at that level of the network. The weights of convolution windows multiply
against regions of the layer input, and the corresponding activations in the next layer follow Equation 2.1.
Each activation in the higher layer corresponds to one scan of the convolution window of a region in the lower
layer. This is shown for a simple 2-dimensional case with a single feature detector in Figure 2.5. Fukishima’s

1We will de�ne later exactly what is meant by ‘faithfulness’ of saliency maps
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design was inspired by the works of Hubel and Wiesel, who identi�ed in 1968 [38] two types of visual cells in
the brain: one being a simple cell structure whose activation was maximised by straight edges with particular
orientations in the visual �eld; and the other being a more complex cell structure with a greater �eld of vision,
which was independent of the orientation of edges. They also proposed that a pattern recognition model could
be used with combinations of these types of cells.

Figure 2.5: A simple convolutional window example, with window size 3× 3 and stride length 1. Activations
have a grid-like topology. Lower-layer activations are shown in grey, kernel values are shown in
red, and higher-layer activations are shown in green.

Pooling layers down-sample the incoming data in either a linear or nonlinear way. Typically, activations
are run through a convolution layer �rst, then the a�ne transformations are put through a nonlinearity as in
Equation 2.2 before going through a pooling function [9]. The pooling function locally summarises nearby
outputs with functions such as Max Pooling [39]. The Max Pool function takes the maximum activation of a
window in the lower layer as the activation for the the corresponding position in the given layer. By doing
this, the resolution of the activations is decreased by a factor of the window stride (how far the window
is moved to its next position on the lower layer), but the amount of data to be processed is also decreased
by the same factor, and the hope is that the most important features are retained. Average Pooling works
similarly, by taking the average of values in the window in the lower layer. This has the bene�t of ideally
losing less information, but the trade-o� is that highly contrastive activations in the window can average to
a middling value which is not representative of either extreme. The Average Pooling function, and similar
functions such as Sum Pooling (which simply does not divide by the window total) have the additional bene�t
of being di�erentiable, which although the layers are not trainable allows for gradient-based saliency mapping
methods to be applied more easily to them than a method like Max Pool. A visualisation of Average and Max
Pooling layers is given in Figure 2.6.

Later work by Waibel [40] implemented an NN with convolutional layers and down-sampling, trained with
backpropagation and utilising weight sharing – that is, the assumption that the same feature detectors can
be used in any position over the lower-level activations, since they are searching for the same features in
di�erent places. This allowed for shift invariance – the ability of the network to make the same predictions
for one image and the same image shifted in some way. This is a hallmark of CNNs over other architecture
types. Waibel’s implementation is recognised as the �rst of a true CNN. CNNs have shown great utility in
application to data with grid-like structure [9], such as time series [40, 41] and digital images [42, 43]. Not
only do CNNs provide a signi�cant performance boost over their fully-connected counterparts, but due to
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weight sharing, they also dramatically decrease the number of parameters that must be trained.

Figure 2.6: Simple examples of pooling layers with 2× 2 pooling windows. Left: max pooling, right: average
pooling.

The main motivations for the architecture of CNNs are from the work of Hubel and Wiesel, identifying the
two types of neuronal cells that perform most of the activity in the mammalian primary visual cortex (V1) [9].
In a very simple-minded sense, the convolutional layers of CNNs act like the simple cell types in V1, in that
they are sensitive to local activations of speci�c types – for example, line segments of speci�c orientations in
lower layers. In the same vein, the pooling layers of CNNs act like the complex cell types in V1, as they are
sensitive to features much like the convolutional layers, but are invariant to small shifts in the feature poses.
The complex cells are also invariant to lighting changes, which has inspired pooling strategies across colour
channels in some CNNs [44]. 2D imaging CNNs also loosely represent the structure of V1, in that V1 is laid
out as a spatial map, with excitations in the lower part of the retina corresponding to activations in the lower
parts of V1 and so forth.

It must be noted that CNNs are nowhere near a true representation of the mammalian visual system –
especially not in humans, who have extraordinary visual acuity [45] (although worse night vision than many),
seemingly surpassed in this regard only by some birds of prey, and by no examined mammalian species.

CNNs can be used for 2D images as well as 3D volumes (and of course 1D data, but we do not care about
that for our task), for which the voxels are treated analogously to the pixels of their 2D counterparts. For
3D volumes, convolution windows become 3D boxes of learned weights to be passed over activations along
three axes. Similarly, the pooling layers of a 3D CNN down-sample volumetrically. The best-performing
classi�cation and detection networks to date use some type of convolutional architecture, including Google’s
GoogLeNet [46], Noisy Student [47] and its successor FixE�cientNet-L2 [48] (respectively the former and
current best-performing networks on the ImageNet dataset). These all take as input 2D RGB images.

2.4 Object Detection and Image Segmentation
Brain volume analysis in ML tasks is usually for the purpose of object detection and/or image segmentation.
Practitioners often want to examine lesions in the brain volume to learn about speci�c pathology, or to isolate
speci�c areas of the brain for atlasing tasks for example. While the task of BA regression does not directly
necessitate these techniques, it does so implicitly. In order to assess accurately a subject’s age, our model
must be able to detect features in their MRI volume which indicate the age, and must be able to di�erentiate
between certain structures in order to do so. This section examines the tasks of object detection and image
segmentation and the success thus far of modern CNNs in, most notably, detection.
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Of the objectives of visual Neural Networks, Object Detection and Image Segmentation are among those
at the forefront. More than attempting to broaden the spectrum of tasks that can be performed by NNs
with imagery, researchers have focused mainly on trying to replicate (and eventually surpass) human visual
capabilities [9].

It is important to distinguish the tasks of:

1. Classi�cation: The identi�cation of an image or volume with a single class or category.

2. Detection: The reporting of the presence of an object within an image or volume.

3. Segmentation: The hierarchical separation and isolation of constituent parts of an image or volume.

Classi�cation is a subset of Detection since it is all detection tasks regarding images with only one object
present. Detection is therefore at least as di�cult a task as classi�cation, and is in fact generally regarded as
far more di�cult.

Segmentation is very closely related to Detection as well, since in order to isolate constituent parts of an
image, a model must recognise their presence and location. Therefore, part of the segmentation process is
feature detection. Due to their success in learning feature detectors over grid-like topology, CNNs are very
useful and are widely favoured for all three of these tasks.

2.4.1 Pre-processing

Pre-processing is an important task for ensuring that input data is subject to some standardisation. Many
models are able to take input of variable sizes, but if some of the data has a large range of activations and
other supposedly similar data has a small range of activations (for example, similar images with very di�erent
contrasts), the model is not likely to be able to generalise very well. Pre-processing for most visual tasks is
usually limited to reshaping, cropping and normalising inputs. In the case of MRI volume analysis, it is
common practice to perform several other pre-processing steps as well, to isolate only brain matter, and
align brain volumes to the same orientation (registration). Because of the dependence of model outputs on
numerical values in many applications, it is necessary for all the samples to have activations within the same
reasonable range in order to avoid issues [9]. One of the most common aims of image pre-processing is to
reduce the amount of variation in the training and test data. This is especially useful for small datasets and
smaller models. The most obvious method of reducing variation is to reduce image contrast – that is, the
magnitude of the activation di�erences between pixels in an image. We usually treat the contrast in Deep
Learning contexts as synonymous to the Standard Deviation [9]. That is, the contrast is given by:

σ =

√√√√ 1

3rc

r∑
i=1

c∑
j=1

3∑
k=1

(xijk − x̄)2 (2.3)

where i runs over the �rst image axis of length r, j runs over the second axis of length c, and k runs over
the three colour channels. x̄ is the image mean given by:

x̄ =
1

3rc

r∑
i=1

c∑
j=1

3∑
k=1

xijk. (2.4)

Global Contrast Normalisation (GCN) is a method of normalising the contrast by simply dividing through
by σ after subtracting the mean:

xGCN
ijk = s

xijk − x̄

max

(
ε,
√
λ+ 1

3rc
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i′=1

∑c
j′=1

∑3
k′=1

(
xi′j′k′ − x̄

)2) . (2.5)

Here, s is some scale factor typically chosen to be 1, ε is some threshold constant for numerical stability,
and λ is a regularisation constant. λ is useful in the case that an image has very little contrast – in which
case there is generally very little information – where division by σ would do little more than amplify noise.
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Generally, one would use either ε or λ. Since the standard deviation 2.3 is simply a rescaling of the L2 norm,
GCN with λ = 0 maps images to a sphere in R3rc. The use of λ > 0 draws samples toward the origin in R3rc,
but does not discard the variation in their norm. The mapping to the sphere is generally quite helpful, since
NNs are typically much better at responding to directions than to exact locations – it is di�cult, for example,
for a network to distinguish multiple distances in the same direction.

GCN distinguishes well between brighter and dimmer regions in an image, but will not necessarily highlight
edges or corners in darker parts of the image. To do this, we can use Local Contrast Normalisation (LCN),
which normalises pixels with respect to the other pixels in close proximity, and not globally. The methodology
is very similar to that of GCN, in that a window centered at the given pixel xijk is used to compute a mean
and standard deviation, which are then used to normalise xijk according to an analogous rule to Eq. 2.5. Some
variations exist, including a weighted mean and standard deviation calculation according to Gaussian wights
centered on xijk.

In the BA regression literature, it is common practice to remove all non-brain matter from MRI volumes as
part of pre-processing [49, 50, 51, 17]. This is called skull-stripping, and ensures that only the brain tissues are
included in the BA regression input. Other tissues such as bone are not considered relevant to the task. There
are several di�erent tools that can be used to do this. We chose to use FSL’s Brain Extraction Tool (BET) [2].
A fractional intensity of 0.5 is recommended by the developers of the tool for standard use.

We would like to align all of the MRI volumes to the same orientation, such that we can easily determine the
location of individual brain regions using a single atlas. To do this, we register the volumes all to MNI space
using a standard MNI volume [8]. The Montreal Neurological Institute created the MNI space as a standard
for spatial alignment of brain MRI volumes. The standard MNI volume is an aggregate of several MNI-aligned
brain scans, and it is common practice to use such a volume for registration.

2.4.2 CNNs for Detection

The early 2000s saw the rise of Support Vector Machines (SVMs) dominating over the use of CNNs in com-
puter vision. In the early-to-mid-2010s though, advances in computational power began to turn favour again
towards the use of CNNs. Girshick et al. (2014) [52] noted that at the time visual task performance was stag-
nating in Machine Learning, and that the leading performers were extremely complex models which gained an
edge in performance with small but computationally expensive adaptations to the previously top-performing
methods, which were mostly Scale-Invariant Feature Transform (SIFT) [53] and Histograms of Oriented Gra-
dients (HOG) [54] methods. Girshick et al. proposed a multi-module ML model based on the premise that
although SIFT and HOG methods roughly simulate the complex cells in V1, it was by then well-understood
that there are recognition pathways deeper down the visual system, which suggests that there should be
multi-stage visual processes in the human brain that are more informative for image recognition. At the time,
the canonical visual recognition task was the PASCAL Visual Object Classes (VOC) object detection challenge
[55]. This contains only a small amount of annotated data. The previous best performance was by SegDPM
[56], which achieved a mean average precision (mAP) of 40.4%. Girshick et al.managed to achieve an mAP
of 53.7% a year later. This was done by working o� of two suppositions:

1. One can apply CNNs to region proposals to classify and segment objects;

2. Supervised pre-training on an auxiliary task followed by domain-speci�c �ne-tuning will allow for
signi�cant improvement in object detection, when domain-speci�c training data is scarce.

The model proposed by Girshick et al. was comprised of a region extraction tool, followed by a large
CNN used for computing features, and �nally a set of class-speci�c linear SVMs to compute the �nal clas-
si�cations. The Authors opted to develop recognition using regions, inspiring the name R-CNN. They used
Selective Search [57] for region proposals so as to be able to have controlled comparisons with other detec-
tion work. The authors maintain, however, that their model is agnostic to the region proposal method. At
test time, around 2000 region proposals are extracted. Feature extraction was performed by a CNN with �ve
convolutional layers, and two fully-connected layers, with an RGB input of 227 × 227 pixels. The output
of the CNN was a 4096-dimensional vector. This is a very low dimensionality compared to other methods,
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which allows for e�cient detection in the SVM phase. The CNN parameters are also shared across all the
categories, further aiding computational e�ciency. The incoming region proposals for the CNN are of arbi-
trary dimensions, so they are warped in a tight bounding box around the region to the required dimensions,
regardless of the region dimensions. For each feature class, the extracted feature vector is scored according to
the corresponding learned SVM. Given all the scored regions in an image, the authors then applied a greedy
non-maximum suppression which which rejected regions which had intersection-over-union (IoU) overlap
with a higher-scoring region larger than a given threshold. The class-speci�c computations are limited to the
multiplication of the 2000 × 4096 feature extraction matrix by the 4096 ×N SVM weight matrix (where N
is the number of classes). The authors also took note of the regional operation of the model, and thus applied
it to natural image segmentation, with some minor modi�cations. In doing so, they were able to achieve
state-of-the-art results on the PASCAL VOC segmentation task, with an average segmentation accuracy of
47.9%.

The ImageNet dataset [58] is a crowd-sourced database of over 14 million labelled images, over 1 million of
which are annotated with bounding boxes. Annual challenges have been put forward since 2010 with regard
to ImageNet, all under the ILSVRC2 [59] title.

Using ImageNet labelled data without bounding box labels, Girshick et al. pre-trained their CNN to high
performance standards. This pre-training was a classi�cation task; in the process of �ne-tuning, the CNN
was adapted to the task of detection on a new domain, warped PASCAL VOC windows. The only change
made to the CNN architecture was the replacement of the ImageNet-speci�c 1000-way classi�cation layer
with a randomly-initialised 21-way classi�cation layer – for the 20 PASCAL VOC classes and background.
The authors treated region proposals with ≥ 0.5 IoU overlap with ground-truth boxes as positive for the
box’s class, and the rest as negative. If a region partially overlaps with an object to be detected in the image, it
will not necessarily be easy to tell whether or not the model should then label it as true. The authors therefore
adopted the strategy of using a threshold IoU with a ground truth bounding box to determine whether a region
was to be labelled true or false for a given label. They tested several values for the threshold, and found that
in a grid search over the values {0, 0.1, . . . , 0.5}, the best option was 0.3. The SVMs are trained once the
labels are applied to the extracted features.

The authors showed that learned features could be visualised from the network and thereby aid in its
transparency. They did this by showing for individual neurons at speci�c places in the CNN which of the
input image regions maximised its activation. They found that for each tested neuron, similar patterns arose
between the most highly-activating image segments. It was found that some neurons responded to textures,
others to features, and some even to high-level emergent features (such as a human, or letters and words). The
authors found that removing the fully connected layers of the network still produced quite good results, even
though computing the output of the network up to the layer before the fully connected layers only uses 6% of
the network’s learned parameters. This indicates that much of the CNN’s computational power comes from
the convolutional layers, and not the larger and much more computationally intensive fully-connected layers.
The authors also found that the two fully connected layers were by far the most responsive to the �ne-tuning
regime. This would suggest that the features learned in the earlier stages of the network are nearly universal.

The authors compared their results to the previous top-performing models, Deformable Part Models (DPMs).
It was found that they outperformed these older models by over 20%. Inspired by the bounding-box regres-
sion method of DPMs though, the authors tried training a linear regression model to predict a new detection
window given the features computed before the fully-connected layers, for a selective search region proposal.
This �xed large numbers of mislocalisations, and boosted performance by about 3%. It was found that the
�ne-tuning did not reduce the sensitivity of the model (the di�erence between the maximum and minimum AP
scores), but increased both the highest and lowest performing modes. This would suggest that the �ne-tuning
improves the robustness of all the characteristics of the classi�cation.

Finally, the authors applied R-CNN to the task of segmentation. This was done in three separate ways. The
�rst method (full) was to compute CNN features directly on the warped window, ignoring the region shape.
The downside of this is that it ignores the non-rectangular shape of the region. The second method (fg) was
to compute CNN features using only the region’s foreground mask. This allowed for non-overlapping object
with similar bounding boxes to be segmented e�ectively. To do this, the background was replaced with the

2ImageNet Large Scale Visual Recognition Challenge
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image mean, so that after mean subtraction, the background was zero. The third method was to concatenate
the features of the full and fg features. The results showed that the two methods were in fact complementary.

The full+fg R-CNN slightly outperformed the previous leading segmentation method, O2P (Second-order
Pooling) [60]. The authors admit that under a reasonable margin of error, the performances are likely the
same; but that the performance of the R-CNN model might improve with �ne-tuning. It is also important to
note that training the SVMs on the full+fg features takes about one hour on a single core, whereas training
O2P features takes over ten hours.

These models have been improved upon greatly since their inception, with architectures like Fast R-CNN
[61], Faster R-CNN [62] and Mask R-CNN [63].

2.5 Explainable AI (XAI)
In this section, we discuss techniques of Explainable AI, the aim of which is to shed light on the black-box
problem, and ultimately create AI systems whose actions we can understand as well as possible. It is with
speci�c interest that we examine the DeepLIFT and LRP methods used for post-hoc explanation of DNN
decisions. We discuss the emergence of these methods and their comparison thus far in literature to one-
another and to other methods of saliency mapping. In this chapter we also discuss how we can evaluate the
explanations provided by these XAI methods; criticisms of each of these methods are also discussed, as well
as criticism of XAI in general and its executions thus far.

With the massive growth in machine learning research and adoption over the past few decades, AI is having
more and more of an in�uence in everyday life, economics, politics, entertainment, and even justice systems. It
is imperative therefore that the reasoning behind ML decisions is as clear as possible. If we cannot understand
the outputs of our models, then they are leading us blindly into actions that could stray from our intended
goals, and lead us by artifactual model decisions to undesirable outcomes. We must ensure that the incentives
of these models are fully aligned with our own, and that they do not stray from that alignment.

There are cases of high-stakes ML models which have been implemented in the past decade that have
been found to have some implicit biases [64, 65, 66, 67], skewing the outcomes of decisions in undesirable
ways. This has led to a large focus on Explainable Arti�cial Intelligence in recent years. Model explanations
also a�ord us insight into the models’ analyses of a given task. If a model has super-human capabilities,
explanation techniques could potentially provide insight into unknown relationships within a given study.

It is useful to have a model which can accurately predict a subject’s age based on a brain MRI volume.
Compared to a healthy baseline, this tells the subject and the present expert whether or not the subject is
ageing healthily, neurophysiologically speaking. This ‘healthy baseline’ refers to the predictive model of
healthy brain ageing represented by the predictor; we imply here the necessity for the training data of the
model to be healthy individuals.

One pair of questions that arises from the prediction output is ‘Why is this healthy or expected at this
age?’ or ‘Why is this unhealthy at this age?’ If an expert were able to determine the age of a patient with
a high degree of accuracy in such a way, their explanation would be comparative, contrastive and selective
(as pointed out by Miller et al. [68]). The explanation would point to features in one slice or a sequence of
slices of the MRI volume and compare them to the features of a mental baseline for a given age range. We
would like to be able to do this as an automated process on top of or as part of our regression model, and in
a consistent manner.

A regression model for a visual task like MRI volume analysis would bene�t greatly from explanations
which themselves are visual. Annotations or other visual cues on the input would be of great aid in showing
areas of focus for the model’s decision-making process. This is the aim of pixel-wise decomposition meth-
ods. These distribute some notion of relevance onto the input space for a given network decision (however
relevance is de�ned by the creator of the method). The outputs of such process are called ‘saliency maps’ or
‘heatmaps’, due to their indication of areas of input on which the model focuses, and areas which it ignores.
We hope to use saliency maps produced by pixel-wise decomposition methods to provide the same insight
as (or at least similar to that of) a domain expert, and which can display the model’s ability to recognise the
highly nonlinear nature of brain ageing. It is convenient to approach pixel-wise decomposition for NNs via
gradients. Since gradient descent via backpropagation is inherent to all modern CNNs, it is common to work
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with the gradients of the networks. These are readily accessible and their associated methods are generally
computationally e�cient, as opposed to – for example – occlusion-based methods.

2.5.1 Layer-wise Relevance Propagation (LRP)

LRP [69] is a category of gradient-based decomposition methods, which starts (like most gradient-based meth-
ods) by assigning a custom relevance score to the output of a network, given a speci�c input (usually just the
output value or the target class activation). This relevance score is then propagated backward through the
network according to some LRP assignment rule to the input layer to create a saliency map on the input
space (in the case of visual data, these are pixels or voxels). We treat a regression network as a function
f : RV → R, where RV is the input space, with size and shape determined by V . Input can be a column
vector, a 2-dimensional array, or something of larger dimensions.

For the sake of simplicity, the relevance assigned is commonly set as equal to the decision output of the
network, R = f(x). The criterion for LRP is that throughout the relevance propagation process, the total
relevance is unchanged, so that between two layers L and L+ 1 with neurons i and j respectively:∑

i

RLi =
∑
j

RL+1
j (2.6)

and in particular, for input x = xd at layer 1 where the input is a column vector of length d, we have

R = f(x) =
∑
d

R
(1)
d . (2.7)

One method of implementing LRP is through a �rst-order Taylor approximation

f(x) ≈ f(x0) +
∑
d

∂f

∂x(d)
(x0)

[
x(d) − x0(d)

]
. (2.8)

This is utilised by Sensitivity Analysis [70] to limited success. Generally, sensitivity analyses show areas
of interest with low resolution [71, 72, 73].

Deep Taylor Decomposition (DTD) [72] improves dramatically upon the performance of Taylor-type LRP.
Montavon et al. introduced this method separately from LRP, with their own set of criteria. The criteria are
that the heatmap is conservative:

∀x, f(x) =
∑
d

R
(1)
d (x), (2.9)

which is simply the LRP condition; and that the heatmap is positive:

∀x, d, R
(1)
d (x) ≥ 0. (2.10)

Together, these conditions constitute consistency. If a heatmapping is consistent, then we force the condition
that no relevance is assigned if a feature is not present. Although it was not strictly introduced as such DTD
clearly falls under the LRP category of gradient-based approaches.

With these criteria, Montavon et al. devised rules for DTD under three types of input constraints. The �rst
is the w2-rule, which is used for unconstrained input spaces:

RLi =
∑
j

w2
ij∑

i′ w
2
i′j

RL+1
j , (2.11)

wherewij is the weight connecting neuron i in layerL to neuron j in layerL+1. The second is the z+-rule
for non-negative activation spaces (such as follow recti�ed linear unit activations):

RLi =
∑
j

z+
ij∑
i′ z

+
i′j

RL+1
j , (2.12)
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where z+
ij = xiw

+
ij andw+

ij is the non-negative part ofwij and zeros elsewhere. The third rule is the zB-rule,
which is used for spaces constrained from above and below:

RLi =
∑
j

zij − liw+
ij − hiw

−
ij∑

i′ zi′j − li′w
+
i′j − hi′w

−
i′j

RL+1
j , (2.13)

where l is the lower bound on the lower layer activations, and h is the upper bound. The use of these Deep
Taylor Decomposition rules has proved to work well on several test datasets, including MNIST and ILSVRC.
Figure 2.7 shows a diagram depicting the w2-rule of the Deep Taylor Algorithm.

Figure 2.7: Visual depiction of the �ow of relevance for the w2-rule in a simple case between fully-connected
layers. The feed-forward mechanism of activations �ows from left to right in the diagram, while
the backward propagation of relevance, shown in red, �ows from right to left.

The �rst method of LRP proposed by Bach et al. [69], is referred to as LRPz , and decomposes relevance
according to layer weights, regardless of their sign:

RLi =
∑
j

zij∑
i′ zi′j

RL+1
j . (2.14)

To provide numerical stability, we can add a small constant ε � 1 to the denominator to yield what is
known as the LRPε method:

RLi =
∑
j

zij∑
i′ zi′j + ε

RL+1
j . (2.15)

One method used successfully in many instances [73, 74, 71, 75, 16, 76] and which is one of the most
commonly implemented methods of relevance propagation is the αβ-method [69], or LRPαβ . Here we use
the rule
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RLi =
∑
j

(
α

(xiwij)
+∑

i′(xiwij)
+ + b+j

− β (xiwij)
−∑

i′(xiwij)
− + b−j

)
RL+1
j (2.16)

with the condition that α−β = 1 so that the relevance propagation is conservative. In some cases, the bias
terms in the denominator are neglected [77]. Commonly, this method is implemented with α ∈ {1, 2, 3}. It
is easy to see that with α = 1, β = 0, 2.16 reduces to the z+-rule 2.12 if we assume only positive activations
and do not include bias terms in the denominator. A special case of the αβ-rule is a DTD rule, but with cases
of β ≥ 1, 2.16 does not always satisfy positivity, and can produce heatmaps with both positive and negative
values. A summary hierarchy of our gradient-based methods of interest is given below in Figure 2.8.

Figure 2.8: Hierarchy of gradient-based decomposition methods on which we will focus

The αβ-rule is shown to be robust against gradient-shattering [78], unlike LRPz and LRPε, and tends to
reveal more visually appealing heatmaps.

These propagation rules work for layers L and L+ 1 with activities

xL+1
j = g

(∑
i

wijx
L
i + b

)
(2.17)

where g is some nonlinearity. To tackle the problem of general renormalisation layers, Binder et al. [79]
suggest the use of a �rst-order Taylor approximation akin to a Deep Taylor decomposition; this method proved
markedly better on the CIFAR-10 dataset than an identity relevance assignment, with sequential replacement
of input pixels with random noise.

To tackle the speci�c problem of relevance decomposition across BatchNorm layers, we can naively use
an identity relevance assignment. As pointed out by Hui et al. however [80], many classi�er nets have
peculiarities in architecture and/or learned parameters which throw the e�ectiveness not only of the identity
assignment, but of any relevance decomposition technique – however, it seems that in any case there is a
preferable method, and so we can use the relevance decomposition

RLi =
|xiwi|

|xiwi|+ |bi|+ ε
RL+1
i (2.18)

where ε is some small constant for numerical stability. The use of 2.18 defaults to the best possible assign-
ment for a decomposition depending on the parameters at that point. This method proved e�ective when used
on the publicly available classi�er networks ResNet 503, MobileNet-V24, InceptionResNet-V25, and DenseNet-
1216. The authors also note that peculiar to the ResNet architectures explored was an overlaying dot-pattern
artifact, regardless of the LRP method used in its examination. This turned out to be due to the 2 : 1 down-
sampling in convolutional layers with 2 × 2 strides, and was most prominently presented by the residual
components which, when down-sampling, skips entirely over some higher-level activations with its 1 × 1
kernel. This leads in the �nal analysis to a grid pattern of pixel activations whose relevance is inherently

3https://pytorch.org/docs/stable/torchvision/models.html#id3
4https://github.com/tonylins/pytorch-mobilenet-v2
5https://github.com/Cadene/pretrained-models.pytorch/blob/master/pretrainedmodels/
models/inceptionResNetv2.py

6https://pytorch.org/docs/stable/torchvision/models.html#id5
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higher than those of their immediately neighbouring pixels. For this reason it may be preferable to down-
sample using pooling functions in ResNets intended to be used for relevance propagation instead of stride
lengths greater than 1.

Kohlbrenner et al. [81] provide a measured explanation of best practice for use of LRP rules. The authors
note the superior visual representation of the LRP-αβ method (and hence also the z+-method) over other
methods of decomposition, but also the fact of the class-insensitivity of LRP-αβ. Using only the αβ-rules,
the heatmaps from di�erent classes are identical for a given input. This stems from the constraint of positive
layer activations, which leads to a the same explanations for di�erent classes for the same image – in e�ect
explaining that class A is or is not present for exactly the reason that class B is or is not present. In practice,
most practitioners then make use of multiple methods of decomposition to have the bene�ts of each and
reduce the deleterious consequences of any one. This is known as Composite LRP, denoted LRPCMP . This is
implemented in a convolutional network by making use of either the LRPz or LRPε methods in decomposing
the �nal fully-connected layers; using the LRPαβ rule for all the lower layers apart from the input – including
the convolutional layers; and �nally using the zB-rule for the input layer.

Not only are heatmaps from the LRPCMP method visually appealing, but they are also class-sensitive. The
quality of di�erent heatmaps was quanti�ed by Kohlbrenner et al. by measuring the inside-total relevance
ratios from heatmap methods for varying sizes of boundary boxes over class objects in images. The results
showed that the LRPCMP methods reliably outperformed any other standard LRP rules on the PVOC and
ImageNet datasets. The attribution methods provided by LRPCMP are shown both qualitatively and quanti-
tatively to outperform other LRP and related methods.

As pointed out by Sixt et al. [82], there are potential problems with modi�ed backpropagation explanations
like LRP and Deep Taylor Decompositions. There are three main issues with such modi�ed backpropagation
explanations which call into question their ‘faithfulness’. The authors do not de�ne what is meant by faith-
fulness of explanations, but rather leave it as a roughly well-intuited notion. The �rst issue is that of class
insensitivity, as discussed by Kohlbrenner et al. [81] – the explanations of di�erent classes for the same deci-
sion are identical, scaled by the ratio of the two class outputs. This means that normalised heatmaps of one
input are exactly the same for di�erent classes. This is not a problem that faces regression networks, since
there is essentially one ‘class’ at the output layer in this case, but the issue is still worth questioning. This
same issue was noted by many, including Montavon et al. [78], who proposed a method which attempted
to alleviate class insensitivity using di�erences between unnormalised heatmaps for di�erent classes; but, as
argued by Sixt et al., this did not �x the underlying problem, linked closely to the other two issues. The second
issue is the failures of the ‘sanity checks’ proposed by Adebayo et al. [83]. The premise of the sanity checks is
that randomising the parameters of a network layer in the process of relevance decomposition should result
in drastically di�erent saliency maps. Both LRP and the Deep Taylor techniques fail this test according to
Sixt et al. Images were tested as such and measured against one-another for similarity using the SSIM metric
[84], and the modi�ed backpropagation explanations showed minimal di�erence compared to other methods.
The third issue resulted from a test similar to the previous sanity checks, but now randomising the relevance
scores at a given layer, then propagating the relevance back as before from that layer downwards. Using the
cosine similarity convergence (CSC) measure (which normalises the dot product of two vectors, such that
more similar vectors measure close to 1 and less similar vectors measure closer to 0), the authors compared
layers’ relevance scores between one true redistribution and distributions from a randomised �nal layer rel-
evance. The modi�ed backpropagation algorithms – which again included LRP and Deep Taylor – showed
very little change in layer relevances, saturating quickly to a CSC measure of 1.

The concern raised by the authors it that the modi�ed backpropagation algorithms attempt simply to recre-
ate the input, as opposed to highlighting areas of saliency. Another point that the authors raised, pointed out
initially by Geirhos et al. [85], is that CNNs trained on the ImageNet database focus on textures as opposed to
shapes; but the modi�ed backpropagation algorithms seem to focus on reconstructing the shapes in an image.
Although in large part this seems to be the case, it cannot be argued that the only feature of these attribution
methods is to reconstruct the input. It is well documented [71, 16, 74, 14] that saliency maps of these types
are e�ective at least in many applications in localising relevance.

The underlying issue facing all modi�ed backpropagation algorithms in this sense is that the necessity of
positivity amounts to a sequence of non-negative matrices {Ai}. Sixt et al. prove that this converges to a
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rank-1 matrix C̄ with the property that

C̄ ≡
∏
i

Ai

= v̄γT .

Then for any input vector v:

C̄v = c̄γTv

= λc̄, λ ∈ R.

This means that for an appropriate sequence {Ai} of matrices, the heatmap vectors will always converge to
the same direction. This explains the class insensitivity problem, and why up to a certain point, the randomi-
sation of parameters or relevance scores does little to the heatmaps of inputs for the modi�ed backpropagation
algorithms. LRPz is a gradient-based algorithm, and not a modi�ed backpropagation algorithm, and so does
not su�er this feature. LRPCMP alleviates the issue of class insensitivity [81] due to its inclusion of the LRPz
method at fully-connected layers, and performed signi�cantly better in the tests of [82] than other modi�ed
backpropagation methods. LRPz performs the best of all the LRP methods under the tests, but is subject
to gradient-shattering and does not produce the most visually appealing heatmaps. It is concluded that the
problem of convergence is slightly lessened but not completely disposed of by LRPCMP .

For cases such as LRPCMP and LRPαβ with large α, it is unclear that the more limited similarities in
heatmaps through the sanity checks are failures of faithfulness. It may be that the residual similarities of
heatmaps constitute a robustness to perturbations overall as opposed to a total failure of explanation faith-
fulness.7

2.5.2 DeepLIFT

Shrikumar et al. [86] provided a novel method for producing saliency maps which remedied potential draw-
backs of methods such as Gradient×Input [87] and Integrated Gradients [88, 89], which they called Deep
Learning Important FeaTures (DeepLIFT). This method allowed for both positive and negative relevance
scores to be propagated back through a network in such a way as to prevent the zeroing-out of relevance
attributed to negative neuron activations and the entries to nonlinearities.

The DeepLIFT methodology consists of the comparison of gradients and activations from a forward pass
(the same values as would be used in LRP) to reference values. The reference values can be all zeros, but
usually come from passing a reference image through the network, and using the activations from this as
reference. These reference activations serve as a default measure according to the given problem. A good
reference input is one that is close to the original but has minimal activation of the target classes. In many
cases though, it is simpler and perhaps most practical to use an image of all zeros in the forward pass as
reference (this of course does not mean that all the reference activations will be zero), as the authors used for
the MNIST dataset.

It will be interesting and of great insight to examine in our application what will constitute a good reference
input. It may be that for the regression model, a middling age will be a ‘happy medium’ against which to
compare other inputs – in which case we can use an accurately predicted middle-aged volume – or we might
prefer to use a blurred image, or even all zeros (the background MRI activation) as reference.

DeepLIFT assigns contribution scores from higher layers to layers before. If we let t be some target output
neuron, and x0, x1, . . . , xn−1 some set of neurons in an intermediate layer which are necessary and su�cient
to compute t; and t0 be the reference value of the output neuron such that ∆t = t − t0, and similarly
∆xi = xi − x0

i for each of the aforementioned xi, then in the DeepLIFT paradigm the contributions from
each of the xi to t, C∆xi∆t, must satisfy:

7We shall provide later in this section our own de�nition of faithfulness of explanations
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n∑
i=1

C∆xi∆t = ∆t. (2.19)

This is called the Summation-To-Delta property, and is similar in sentiment to the Deep Taylor property of
conservativeness, Eq. 2.9, and the general LRP condition, Eq. 2.6. C∆xi∆t can be thought of as the amount of
relevance attributed from ∆t to ∆xi.

For a given input neuron x with di�erence from reference ∆x and target neuron t with di�erence from
reference ∆t, the authors de�ne the multiplier m∆x∆t as:

m∆x∆t =
C∆x∆t

∆x
(2.20)

such that as ∆x → 0, we have necessarily that ∆t → 0 and so m∆x∆t acts very similarly to the partial
derivative ∂t

∂x
. Of course, we always have �nite di�erences though.

If we assume some input layer x0, x1, . . . , xn−1, some hidden layer y0, y1, . . . , yn−1 and some target output
neuron t, then DeepLIFT enforces the chain rule for multipliers:

m∆xi∆t =
∑
j

m∆xi∆yjm∆yj∆t. (2.21)

This is consistent with Eq. 2.19, the Summation-To-Delta property. This is of course identical to the chain
rule in di�erential calculus. Given the multiplier from every neuron to its immediate successors, one can e�-
ciently work out the contribution of any one neuron to any later neuron in the network using the multipliers
and the di�erence from reference value. Thusly we are able to make heatmaps.

The authors introduced positive and negative components of di�erence-from-reference values in order to
allow the separate attribution of relevance contributions. If y is a neuron in the network that is not in the
output layer, then we de�ne ∆y+ and ∆y− as the positive and negative components respectively of ∆y such
that:

∆y+ + ∆y− = ∆y (2.22)
C∆y∆t = C∆y+∆t + C∆y−∆t (2.23)

The separation of positive and negative terms is used only in the context of the Reveal-Cancel rule. In this
case we may �nd that m∆y+∆t and m∆y−∆t di�er.

There are three rules used for assigning relevance scores using DeepLIFT. The �rst is the Linear Rule,
which is to be applied to dense layers and convolutional layers. If y is a linear function of its inputs xi,
y =

∑
iwixi + b then we de�ne the positive and negative parts of ∆y as:

∆y+ =
∑
i

1 {wi∆xi > 0}wi∆xi

=
∑
i

1 {wi∆xi > 0}wi(∆x+
i + ∆x−i ),

∆y− =
∑
i

1 {wi∆xi < 0}wi∆xi

=
∑
i

1 {wi∆xi < 0}wi(∆x+
i + ∆x−i ).

Thus for the contribution score, we choose:
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C∆x+i ∆y+ = 1 {wi∆xi > 0}wi∆x+
i ,

C∆x−i ∆y+ = 1 {wi∆xi > 0}wi∆x−i ,

C∆x+i ∆y− = 1 {wi∆xi < 0}wi∆x+
i ,

C∆x−i ∆y− = 1 {wi∆xi < 0}wi∆x−i .

Then from Eq. 2.20, we get the multipliers:

m∆x+i ∆y+ = m∆x−i ∆y+ = 1 {wi∆xi > 0}wi,

m∆x+i ∆y− = m∆x−i ∆y− = 1 {wi∆xi < 0}wi.

In the case that ∆xi = 0, it would be consistent with Eq. 2.19 to assign contributions of 0 to both positive
and negative components, but it is possible that each of ∆x+

i and ∆x−i are non-zero. If this is the case then of
course it is incorrect to assign their multipliers to 0. Instead, a compromise is struck, and convention is to set
m∆x+i ∆y+ = m∆x−i ∆y+ = m∆x+i ∆y− = m∆x−i ∆y− = 0.5wi when ∆xi = 0. The Linear Rule is illustrated in
Figure 2.9. This also shows the necessity for a forward pass on the network using the reference input as well.

Figure 2.9: Visual depiction of the Linear Rule contribution score distribution for the simple case between
fully-connected layers. Again the feed-forward �ow of the network is from left to right in the
diagram, while the contribution score redistribution, shown in red, �ows from right to left. On the
left is shown the forward propagation to the same neuron in the reference input case.

The second assignment method is the Rescale Rule, which is used on nonlinearity layers which take one
input and have a single output (such as ReLU, tanh or sigmoid functions). To this end, let y be a nonlinear
transformation of its input neuron x, y = f(x). By the summation-to-delta property 2.19, we must have that
C∆x∆y = ∆y. Thus of course we must also have m∆x∆y =

∆y

∆x
. For this rule, we set the di�erences-from-

reference ∆y+ and ∆y− proportional to ∆x+ and ∆x− respectively, according to:

∆y+ =
∆y

∆x
∆x+ = C∆x+∆y+ ,

∆y− =
∆y

∆x
∆x− = C∆x−∆y− .
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The corresponding multipliers are then given by

m∆x+∆y+ = m∆x−∆y− = m∆x∆y =
∆y

∆x
.

Now we see that as x0 → x, we will have ∆x → 0 and ∆y → 0 such that the multipliers again become
the corresponding partial derivatives evaluated at x = x0.

The third assignment method is called the Reveal-Cancel Rule, and is also applied to nonlinearities. This
aims to alleviate potential issues of cancelling relevance attributions by positive and negative terms not being
considered separately. Consider again a nonlinear neuron y = f(x). This time, as opposed to setting ∆y+

and ∆y− proportional to ∆x+ and ∆x− respectively, we consider the impact of positive terms in the absence
of negative terms, and the impact of negative terms in the absence of positive terms:

∆y+ =
1

2

(
f(x0 + ∆x+)− f(x0)

)
+

1

2

(
f(x0 + ∆x− + ∆x+)− f(x0 + ∆x−)

)
∆y− =

1

2

(
f(x0 + ∆x−)− f(x0)

)
+

1

2

(
f(x0 + ∆x+ + ∆x−)− f(x0 + ∆x+)

)
.

And the multipliers are given by:

m∆x+∆y+ =
C∆x+∆y+

∆x+
=

∆y+

∆x+
,m∆x−∆y− =

∆y−

∆x−
.

The authors note that in some cases, such as the use of a ReLU layer, it may be preferable to use the Rescale
Rule for the nonlinearity, as relevance may be unduly assigned to noise terms by the Reveal-Cancel Rule,
where it considers the positive and negative terms separately.

To test the pro�ciency of DeepLIFT at assigning relevance scores, the authors trained a CNN on the MNIST
dataset to 99.2% test accuracy, and used reference inputs of all zeros, which is the background of the MNIST
digits. After computing the heatmaps of given samples for the target class c0 and a separate class ct, the
authors found the di�erence of the relevance scores for each pixel, Sxidi� = Sxico − Sxict . Using this as a
ranking mechanism for saliency for the one class over the other, the top 20% of pixels (in the original images)
according to the ranking were then erased. The resulting images were passed through the network again
to determine the new classi�cations according to c0 and ct. The di�erence of the log-odds scores were then
computed. This test was performed for DeepLIFT, Absolute Gradients [90], Guided Backpropagation [91],
Gradient×Input [87], and Integrated Gradients [88, 89]. Tests were run for DeepLIFT with the Rescale Rule as
well as with the Reveal-Cancel Rule, and the best overall performer was DeepLIFT with Reveal-Cancel. The
�nal nonlinearity of the network was a softmax output.

The authors also experimented on a genomic classi�cation task. The task was set up using background
ACGT sequences with the expected probabilities 0.3, 0.2, 0.2, and 0.3 respectively for each base molecule,
and motif models based on well-known Position Weight Matrices (PWMs) for the GATA1 and TAL1 genes. The
background sequences would be created and 0 to 3 instances of each of the motifs overlaid at non-overlapping
positions. There were four possibilities for the outcome of the detection: in Case 1, both a GATA1 motif and
a TAL1 motif are detected; in Case 2, only a GATA1 motif is detected; Case 3, only a TAL1 motif is detected;
and Case 4, neither motif is detected. Each case can occur with probability 1

4
.

The authors trained a CNN with two hidden layers, a global average pooling layer, and a single fully-
connected layer, which achieved > 98 auROC on all tasks (cases) of the synthesised test set. They then
identi�ed the top 5 matches in each sequences to a given motif according to the log-odds score, and plotted
the log-odds score against the relevance assignment for DeepLIFT and other relevance attribution methods.
The references used were background ACGT sequences.
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The experiment was performed comparing the outputs from Guided Backpropagation, Gradient × Input
[87], Integrated Gradients, DeepLIFT with only the Rescale Rule, DeepLIFT with only the Reveal-Cancel Rule,
and DeepLIFT with the Rescale Rule on convolutional layers and the Reveal-Cancel Rule on fully-connected
layers. Both DeepLIFT methods using the Reveal-Cancel Rule tended to assign greater relevance to TAL1
motifs if they were present with GATA1 motifs than if they were detected alone, and the same was true of
GATA1 motifs in the presence of TAL1 motifs versus in their absence. With the exception only of Guided
Backpropagation, all of the other tested attribution methods also delivered false negative values for the pres-
ence of both motifs at times. The authors believe that this may be due to the need to learn an and-like relation,
which the authors previously argued cannot attribute relevance accurately with models like the Rescale Rule.
Guided Backpropagation did not show the false negatives, but did have a tendency to show false positives.

Using the Reveal-Cancel Rule on all nonlinearities assigned undue positive and negative relevance to many
irrelevant areas of the sequences. These were not as large as the assignments to the most relevant areas, but
were still noticeable in comparison to the blended use of Reveal-Cancel and the Rescale Rule. This happens
because the Reveal-Cancel Rule can assign relevance to neurons with activations of zero due to its splitting of
positive and negative assignments. As discussed before, for nonlinearities such as ReLU units, the noise that
is cancelled out by the nonlinearity is preferably ignored, which can be done with the use of the Rescale Rule.

The attribution method described by the Linear Rule – without considering positive and negative contribu-
tions separately – can be rewritten in terms of layer-to-layer relevance attribution [92] like LRP’s Epsilon-Rule:

RLi =
∑
j

zij − z̄ij∑
i′
(
zi′j − z̄i′j

)RL+1
j . (2.24)

Here, zij = w
(L,L+1)
ij xLi and z̄ij = w

(L,L+1)
ij z̄Li , with w(L,L+1)

ij the weight between the ith neuron in layer
L and the jth neuron in layer L + 1, xLi the activation of the ith neuron in layer L, and x̄Li the reference
activation of the ith neuron in layer L. Eq. 2.24 comes from setting the total relevance RLi equal to the
sum of all contributions of that neuron to the neurons in the layer above, RLi =

∑
j C∆xi∆yj , and stating

that the relevance associated with any neuron in layer L + 1 must have total relevance equal to the sum of
contributions from neurons in the previous layer: R(L+1)

j =
∑

iC∆xi∆yj .

Pianpanit et al. [93] examined di�erent interpretation techniques on modi�ed 3D CNN models which were
used to diagnose Parkinson’s Disease (PD) from 3D Single Photon Emission Tomography (SPECT) images.
The metric used in determining evaluation performance was the Dice coe�cient, which was used on the four
models. The Dice coe�cient D is a measure for comparison between an image’s predicted segmentation P
and a ground truth segmentation G. It is de�ned as

D =
2|P ∩G|
|P |+ |G|

. (2.25)

Clearly, D lies in the range [0, 1] with D = 1 showing identical segmentation. The attribution methods
examined were Gradients [90], Guided Backpropagation [91], Grad-CAM [94], DeepLIFT and SHAP [95]. The
dataset used was from the Parkinson’s Progression Markers Initiative (PPMI) database. The �rst architecture
used in the assessment of the methods was the PD Net [96] architecture, which was developed for use on
the PPMI dataset. The second architecture used was a modi�ed version of PD Net, which was lengthened by
adding more convolutional layers; this was referred to as Deep PD Net. The PD Net types were tested with
and without the inclusion of BatchNorm layers, and were compared with an SVM. It was found that the Deep
PD Net with the inclusion of BatchNorm layers provided the highest speci�city of the tested models, and the
second highest sensitivity, leading to its having the highest accuracy. Guided backprop showed the highest
mean Dice Coe�cient in its relevance propagation, with DeepLIFT showing middling performance on this
benchmark, below Guided Grad-CAM [94] and Gradients too, but outperforming both Grad-CAM and SHAP.

Chatterjee et al. [97] used DeepLIFT and other saliency map techniques to analyse the predictions of net-
works designed to detect the presence of COVID-19 or pneumonia in chest X-ray images. The �rst of the
two datasets that the authors used was the COVID-19 image collection [98]. This consists of 236 COVID-19
patients, 12 simultaneous COVID-19 and ARDS patients, 4 ARDS patients, 1 Chlamydophilia patient, 1 Kleb-
siella patient, 2 Legionella patients, 12 Pneumocystis patients, 16 SARS patients, 13 Streptococcus patients,
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and 5 healthy control patients. The second dataset was the Chest X-ray dataset [99], which contained 1583
healthy patients (of whom 500 were randomly chosen to be used), 1493 Viral Pneumonia patients (of whom
250 were randomly chosen to be used), and 2780 Bacterial pneumonia patients (of whom 250 were randomly
chosen to be used).

Four di�erent architecture types were explored in their use for the experiments. The �rst was ResNet [100],
which overcomes the issues faced by many deep networks, of gradient explosion and degradation (whereby
accuracy saturates quickly in shallow layers of a deep network). This is done by adding the output of the
previous layer of a network to the following layer – utilising what is called a ‘skip layer’. The authors opted
to try two versions of this – ResNet18 and ResNet34. The second type of architecture was InceptionNet [46],
which e�ciently examines both local and global input features by using kernels of various sizes at the same
level of the network, e�ectively making the network ‘wider’ as opposed to deeper. The authors opted to try
InceptionV3 for analysis. The third type was InceptionResNetV2 [101], which utilises the skip layers of ResNet
in the architecture of InceptionNet to increase e�ciency. The fourth type was DenseNet [102], which connects
layers directly to one-another by matching up feature map sizes throughout the network. The authors opted
for the use of DenseNet161 in he experiments. It was found that DenseNet161 had the highest precision of
the �ve proposed architectures, but the authors used all �ve to create an ensemble architecture which well
outperformed any one of the �ve proposed architectures. All methods apart from occlusion failed to be run on
DenseNet161 due to memory limitations on the GPU. DeepLIFT also encountered problems with the ResNet
models, apparently due to the in-layer ReLU operations. The relevance methods all highlighted similar areas
in the lungs for the respective pathologies, notably focusing on di�erent areas for COVID-19 as for bacterial
and viral pneumonia.

2.5.3 Other Saliency Mapping Methods

Having discussed LRP and DeepLIFT, as well as some of their past implementations, we look at some other
saliency mapping methods brie�y, and the comparisons that have been made to LRP and DeepLIFT.

Chang et al. [103] introduced Variational Dropout Saliency Maps (VDSM) as another saliency attribution
technique using the comparison between input activations and reference activations. Their methods consist
of a Smallest Deletion Region (SDR) objective, and a Smallest Supporting Region (SSR) objective, which are
respectively the smallest region of the original input to mask, and the smallest region of the input that can be
substituted into a reference image to maximise the class probability.

The VDSM method was compared to several other saliency methods which make use of reference values,
including DeepLIFT. The evaluation was broken down into two parts, both examining how the log-odds scores
were a�ected on CNN trained on MNIST. The �rst procedure considers the removal of pixels from the image
according to each speci�c saliency method from most to least salient pixels, whereas the second method
removed pixels from least to most salient. The saliency methods were evaluated according to the greatest
log-odds change compared to the initial classi�cation. The VDSM method performed best on both tasks,
with the SDR objective outperforming all others in the �rst experimental procedure, and the SSR objective
outperforming all others in the second procedure. DeepLIFT seemed to display middling performance in both
tasks. An important note is that the tasks were performed over all areas of the image for which the saliency
assignments reported relevance.

The experiments were performed both for the choice of background reference inputs (the same as used
in [86]), and reference inputs generated by a VAE. The use of the VAE is a novel approach proposed by the
authors, and helped alleviate the a�ect of network artifacts creating unrealistic saliency maps, at least in the
VDSM method performing the SSR objective. In the experiments, the VDSM methods tended to highlight
more of the digit in question than methods like DeepLIFT and PDA [104]. This may be due to the fact that the
VDSM methods were designed speci�cally for these tasks, whereas the application of gradient-based methods
such as DeepLIFT are far more general. Whereas DeepLIFT asks the broad question ‘Why did the network
make this decision for this example?’ VDSM asks one of two questions: ‘Which parts of this are the most
characteristic of the class of concern?’ or ‘Which parts of this should change to be more characteristic of
another class?’ Generally one of these questions is what is being asked in any occlusion-based saliency task.
This may be a more desirable characteristic in speci�c cases, but we do not know whether or not it will be
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applicable to many saliency tasks. On the other hand, it is useful to have a saliency method tailored to the
speci�c needs of a task, such that the outcome of the task is speci�c in its explanation and our interpretation of
it can be as concrete as possible – this is more di�cult with more general saliency methods such as DeepLIFT
and LRP.

We note that while VDSM outperformed DeepLIFT on this task, several features limit its generalisability.
The metrics used to determine the saliency mapping performances were foundationally identical to the VDSM
protocols themselves, and so these performance comparisons may not be fair. The method for use of the
VDSM method in regression task settings is not entirely clear, as the masking of regions within the input
can yield input samples that are far outside the model’s domain of inference. The VDSM method is also very
computationally expensive, requiring many inference calls per saliency map to determine SDRs and SSRs.

Sundararajan et al. [89] propose the Integrated Gradients method of relevance attribution, arguing its
formulation from the standpoint of two axioms that ought to be satis�ed by an attribution framework. The
method, like DeepLIFT, uses a reference comparison for each input; and as the name suggests, is a gradient-
based method. The �rst of these is called Sensitivity(a), which is satis�ed if for every input and reference
pair that di�er in one feature and have di�erent predictions, have a non-zero attribution of relevance to that
feature. The second axiom is that of Implementation Invariance, which is satis�ed if attributions are always
identical for the same input into functionally equivalent networks. Networks are functionally equivalent if for
every input, they produce exactly the same output. The authors show that due to the use of discrete gradients
in LRP and DeepLIFT, these methods and ones like them do not satisfy Implementation Invariance. This is
generally to do with how DeepLIFT and LRP treat nonlinearities like ReLU, and the fact that generally it is

not true that f(x1 − x0)

g(x1 − x0)
=
f(x1 − x0)

h(x1 − x0)
· h(x1 − x0)

g(x1 − x0)
. This makes sense because these methods explicitly

ask ‘Why does this network come to this decision?’ as opposed to ‘Why does the function represented by this
network come to this decision?’ The use of discrete gradients separates these into two di�erent questions,
whereas to a method using partial derivatives, they are the exact same question.

The Integrated Gradients technique combines the Sensitivity(a) property satis�ed by LRP, DeepLIFT and
the like (but not by gradients), with the Implementation Invariance of gradients. This is done by performing
the path integral along the straight line in Rn from the reference x′ to the input x:

IntegratedGradientsi(x) = (xi − x′i)
∫ 1

0

(
∂F (x′ + α(x− x′))

∂xi

)
dα (2.26)

where ∂F (x)

∂xi
is the gradient of the function F (representing the network) along the ith dimension. In

networks composed of ReLUs, Sigmoids and pooling operations, 2.26 is Conservative (the authors refer to it
as Completeness) in the sense of Eq. 2.9:∑

i

IntegratedGradientsi(x) = F (x)− F (x′).

Of course, the integral itself must be approximated, and for greater accuracy, the method sacri�ces com-
putational load. Generally an approximation is performed using the Riemann Sum technique. Finding a
reasonable trade-o� between computational intensity and accuracy (and therefore the satisfaction of the ax-
ioms) is the biggest problem faced by Integrated Gradients. It is not clear from the experiments performed
by the authors whether Integrated Gradients perform better than DeepLIFT or LRP for any given task, but
these methods seem to be more highly used in practice than Integrated Gradients. This is likely due to the
necessary trade-o� that was earlier discussed.

Lundberg and Lee [95] proposed the SHapley Additive exPlanation (SHAP) Values as a measure of feature
importance. The Shapley Values are classically de�ned as the importance of a feature to the output of a model
as quanti�ed in a very computationally intensive manner in which the e�ect of any one feature is quanti�ed
relative to the rest of a feature subset. In a feature subset S ⊆ F of the set of all features, importance of the
inclusion of a feature to input is quanti�ed by measuring the output of the model being trained with a feature
i present relative to being trained without it. One instance of the model fS∪{i} trained in the presence of i,
the other instance fS in its absence, the di�erence of the predictions fS∪{i}(xS∪{i}) − fS(xS) forms a vote
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toward the importance of the feature. This is computed for all possible subsets S ⊆ F − {i}. The Shapley
Values are then computed as a weighted sum of these di�erences:

φi =
∑

S⊆F−{i}

[
|S|! (|F | − |S| − 1)!

|F |!
(
fS∪{i}(xS∪{i})− fS(xS)

)]
. (2.27)

Needless to say, the computational overhead involved in computing Shapley Values is immense, so several
methods of approximating them have been put forward. SHAP estimates the Shapley Values with a conditional
expectation function of the original model. The SHAP method, as explained by the authors, shares some
similarity with LRP and DeepLIFT. The revelation of this fact was the inspiration of the Reveal-Cancel Rule
[86], which is proposed as a good approximation of the Shapley Values. Lundberg and Lee also proposed a
method of combining the SHAP method and DeepLIFT, to form what they called Deep SHAP. In this regard,
they de�ned the DeepLIFT multipliers in terms of the SHAP values.

Ancona et al. [92] evaluated and compared four gradient-based attribution methods on a theoretical basis
– ε-LRP (that is, LRPε, (2.15)), DeepLIFT, Gradient×Input [87] and Integrated Gradients [89]. The authors
also presented a new metric, Sensitivity-n, which they claim generalises the notions of Completeness [89] and
Summation-to-Delta [86], and used it as an evaluation tool in comparing the four gradient-based methods,
as well as the occlusion-based method proposed by Zeiler and Fergus [105]. The occlusion-based method,
known as Occlusion-1, is used by the authors as a benchmark for perturbation-based attribution methods.
The authors show that both DeepLIFT and LRPε can be reformulated to be applied by use of the chain rule
for derivatives, as long as the derivative evaluated on a nonlinearity is replaced with some function which is
dependent on the method. In this manner, all four of the gradient-based methods can be computed from the
partial derivatives of the network layers. The formulation of the Sensitivity-n metric is based on the notion
that several attribution methods actually explain slightly di�erent things. For example, the authors argue that
Occlusion-1 better identi�es the importance of single features, while Integrated Gradients better quanti�es
the importance of several features which are present simultaneously. The authors de�ne the metric as follows:

De�nition 1. Sensitivity-n An attribution satis�es Sensitivity-n if the sum of the attributions of any subset
of features with cardinality n is equal to the change in the output Sc caused by removing the features in the
subset. In other words, if for all subsets xS = [x1, . . . , xn] ⊆ x of features, it holds that

∑n
i=1R

c
i (x) =

Sc(x)− Sc(x[xS=0]).

Here, Sc(x) is the target neuron output for input x, and x[xS=0] is the input x altered such that all the
subset of components xS is set to zero (which is often the background activation). In the case that n = N ,
the total number of input neurons, the condition becomes

∑n
i=1R

c
i (x) = Sc(x)−Sc(x̄), where x̄ is all zeros

(no features). This special case is equivalent to the Completeness of [89] and the Summation-to-Delta of [86],
and it is in this regard that Sensitivity-n is a generalisation of the two. Under certain outlined conditions,
the authors note that LRPε also satis�es Sensitivity-N . By construction, the Occlusion-1 method satis�es
Sensitivity-1. The authors show, however, that no one of the �ve methods examined satis�es Sensitivity-n for
all n, unless applied to a linear model (or a model which behaves linearly on the given data), in which case all
the methods are functionally equivalent. We can use di�erent values of n with Sensitivity-n to measure the
correlation between the sum of attributions

∑
iR

c
i (x) and the target output variation Sc(x)−Sc(x[xS=0]) for

di�erent attribution methods. To this end, the authors estimated the correlations for given values of n for 100
randomly sampled subsets of features from a single input x. The authors calculated the Pearson Correlation
Coe�cients (PCCs) between the relevance sums and the target output variations for 1000 samples from each
dataset to obtain an average at each value of n, which was ranged from 1 to ∼ 0.8N for each dataset. The
datasets used were MNIST, CIFAR10, ImageNet, and IMDB. MNIST was used to test two architectures with
four di�erent activation functions. Using a DNN for sentiment analysis, the authors showed the fact that
the linear behaviour of the network led to the equivalence of the PCCs across the board for all the tested
attribution methods.

The authors concluded thatOcclusion-1 better identi�ed the few most important features, while the gradient-
based methods better measured global, nonlinear e�ects on relevance. They also note the much slower im-
plementation of Occlusion-1. Integrated Gradients and DeepLIFT were found to be highly correlated, which
suggests that DeepLIFT (being easier, faster and less intensive to implement) is a more economical way to
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approximate Integrated Gradients. LRPε proved to be equivalent to Gradient×Input when subject to ReLU
nonlinearities, but failed under other nonlinearities, having f(0) 6= 0.

2.5.4 Evaluating Visual Explanations

It is imperative that we have a measure of quality for visual explanations, such that their utility does not
remain vague and unquanti�able. In order to do this we must �rst determine what makes a good explanation
for humans (since it is humans to whom we wish to explain).

Thus far we have spoken about LRP and DeepLIFT in their applications of assigning relevance to input
pixels, implicitly identifying 2D images as input. It is de�nitely not the case that pixels are the only space onto
which pixel-wise decomposition methods can map. Indeed, Shrikumar et al. used strings of DNA sequences
as their input for a test example in the original DeepLIFT paper to great success. The rules we have explored
for our decomposition methods are all applicable to input of any dimensionality. In particular, for brain MRI
volumes, these methods all have 3D analogues to the 2D applications, using the same rules. These will in turn
create 3-dimensional saliency maps.

It is important to have a concrete notion of each of explainability and interpretability in application to
ML. Mittelstadt et al. [106] compare and contrast the concept of an explanation from the perspectives of
Philosophy, Sociology and Neuroscience against current explanation techniques used in ML models. They
make the following de�nitions:

De�nition 2. Interpretability is the degree of human comprehensibility of a given black-box model or
decision.

De�nition 3. Explanation refers to the ways of conveying information about a phenomenon.

With speci�c regard to ML models, explanations can be used in a variety of di�erent ways, most notably for
the tasks of improving the model, allowing users and researchers to learn from the model, and to create trust
for the model by stakeholders. The authors explain that full scienti�c explanations are not necessarily the
aim of XAI, but rather its aim is to provide human-understandable reasoning for causal relationships between
the variables in a model. It is likely that for models applied to complex decision-making tasks, a full scienti�c
explanation would not be understandable to humans.

Two of the broad aims of XAI are to create models that are transparent to users, and to create post-hoc ex-
planations. The transparency of a model refers to the understanding of its inner workings, while the post-hoc
explanations describe the model behaviour. Transparency can be speci�ed by an understanding of the model’s
function (‘simulatability’), individual component analysis (‘decomposability’), or the algorithm (‘algorithmic
transparency’). Post-hoc explanations on the other hand attempt to explain how a model behaves and why
by analysing the trained parameters and outputs. The authors note that despite these available explanation
techniques, many researchers have opted to use methods of retro-�tting local or approximate models over
more complex ones. This is an attempt to create more interpretable models that approximate the decision
making abilities of the more complex models. They explain how there is necessarily a trade-o� between the
performance of an approximated model, the simplicity of the approximation, and the size of the domain in
which it remains valid.

The authors give an analogy for the bulk of current XAI methods as being akin to scienti�c models, in
that many current methods lie in the building of approximate models which are highly interpretable. The
main issue with such models is that they can only describe the system in question over a restricted domain,
and so can be misleading if provided as an explanation, especially for lay users. They state though, that it
is useful to keep in mind Box’s Maxim, “All models are wrong, but some are useful” [107]. It is important
to note that on the XAI side of this analogy though, what we are simplifying is itself a model – since we
use NNs as universal function approximators – and so we are simplifying a model which itself simpli�es a
true function; this becomes then an approximation of an approximation. The authors also note that in its
current state, XAI research e�orts generally do not expend signi�cant e�ort in characterising the domains of
the simpli�ed models. This provides little insight into the decision-making processes of the original model,
and what insight it does provide can be misleading.
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The authors make the case for the use of contrastive explanations in XAI. These are explanations which
include or are based on counterfactual data. For example, a model could be devised to tell a user that some
output xi was not maximised and some other output xj was maximised by an input data-point X1 with
reference to another data-point X2 which evaluates better on xi and not as highly on xj8. The authors note
that work, primarily by Miller et al. [68] showed that human explanations are characterised by three features:

1. Human explanations are contrastive, in that humans o�er and ask for explanations for events relative
to other possible events having happened. For example, “Why did event X occur as a result of this
action, and not event Y ?”

2. Human explanations are selective, in that a person o�ering an explanation selects only the information
about an event (about which there are innumerable explanations) that he believes is relevant. It is
infeasible to provide all the information about an event every time an explanation is needed.

3. Human explanations are social, in that an one tends to provide an explanation in terms that the recipient
will understand. In relation to the last point, not only does the recipient have a preferred mode of
information reception to maximise understanding, but he also cannot expect to have a full scienti�c
explanation for every event for which he needs explanation. Not only would it be temporally infeasible;
he could not hope to understand all the information for any of the events.

These features lead to the important notion of discourse in explanation. A person explaining does not nec-
essarily select the optimal information to convey understanding to the person receiving the explanation. The
recipient then asks further questions, since he does not fully understand, and the resulting discourse theo-
retically completes an explanation, unless there is some information lacking. The authors note that since the
people o�ering explanations may have di�erent goals to the people receiving them, not only does discussion
ensue, but there may be risk of malicious explanation in an attempt to garner trust from the recipient. It is for
this reason that the authors urge caution in the use of post-hoc explanations. They point out that not only
is it important to have information exchange in this process of explanation, but also argumentation on the
justa�ability of the explanation. Thus the explanations for ML algorithms should ideally provide room for
debate over their justi�cations.

In relation to this concern, Dombrowski et al. [108] found that not only can the explanations of image
detection networks (provided by methods including but not limited to DeepLIFT and LRP methods such as
Deep Taylor) be sensitive to small perturbations, as pointed out initially by Ghorbani et al. [109], but they
can be manipulated easily with small perturbations such that all �nal class probabilities are roughly the same
as for the original image, leaving the image identical to the human eye, and having any explanation which
the creator likes. The authors show that this is due to the fact that on the explanation manifold of the net-
work, similar images with similar network outputs can have vastly distant explanations, since the explanation
distance is determined by geodesics on its manifold. These geodesic distances are bounded from above pro-
portionally to the principal curvatures of the manifold. Furthermore, the principal curvatures are bounded
by the parameter β of the Softplus function

Softplusβ(x) =
1

β
ln
(

1 + eβx
)
.

The ReLU function

ReLU(x) = max (0, x)

is the limit of the Softplus function as β →∞. Therefore with the use of ReLU nonlinearities in a network,
the curvature of the explanation manifold is unbounded, and the network explanations are generally much
more susceptible to manipulation. The authors’ experiments show clearly the drastic di�erence made by the
use of Softplus nonlinearities with low values of β over the use of high values, or ReLU nonlinearities. They
note that β is a hyper-parameter of the network, but that generally a value close to 1 works well. They refer
to the provision of robustness by low-β Softplus functions as β-smoothing. A basic visual explanation of β-
smoothing is shown in Figure 2.10. They found that the SmoothGrad method of explanation roughly mimics

8Note the conceptual similarity to the di�erence-from-reference in DeepLIFT.
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the bu�ering e�ects of β-smoothing, but not quite to the same degree and at much greater computational
cost.

Figure 2.10: β-smoothing decreases the di�erence between decision manifold geodesic distance gM and the
Euclidean distance gE between an input x and its altered counterpart x∗

The issues of the inability for discourse in visual explanations, and unwanted explanations from adversari-
ally generated input beg the question of what exactly we want in a ‘faithful’ explanation. Many authors refer
to explanation faithfulness without a de�nition, but at some point use a metric of comparison between two
methods that they intuit to represent this faithfulness [82, 83, 110]. The de�nition we follow closely resembles
that of Ribeiro et al. [111].

De�nition 4. Explanation faithfulness is the similarity of explanations for similar inputs to a model.

De�nition 4 looks similar in nature to function continuity. This is di�erent from the implicit meaning
of faithfulness measured, for example, by Sixt et al. Their notion of faithfulness stems solely from the sanity
checks of Adebayo et al., and it is not entirely clear what the corresponding measurements mean, as discussed
earlier.

The issue of how to validate the explanations we produce in our work is of great importance. Bach et al.
[69] proposed the pixel-�ipping method for evaluating the heatmaps produced via LRP. This method is carried
out by organising the pixels of the heatmap by activation value, and setting a certain proportion of the pixels
in the original image to the average image activation if they are in that proportion of the highest-activated
pixels in the heatmap. Subsequently the change in prediction of the image is evaluated. This was done with
speci�c application to the MNIST dataset, which consists of 2D images; but the procedure would be analogous
with a 3D volume. This method has its merits in respect to use for the MNIST dataset, but for the case of BA
regression, it is not clear at all that it would be useful, or even how a useful analogous validation would
work. The pixel-�ipping method in application to 3D MRI would hypothetically set activations in key brain
ageing areas to the average activation value. In the case of a young individual for example, that would likely
remove great portions of the cortex, if not all of it, and enlarge the ventricles. This would in the best case
lead to an increase in the predicted age of the edited volume (which would be useful), and in the worst case
produce an edited volume which the network does not understand, and therefore cannot regress accurately.
A worse situation befalls an older subject, since the ageing pathology is characterised by loss of grey matter
and dilation of the ventricles, and therefore by decreased MRI volume activations. The setting of highlighted
areas from the heatmaps to zero in the original volumes is sure to create an image well outside the scope
of the model. The fundamental issue with this method of evaluation is the production of an edited volume
which the model does not understand. This is a particularly destructive issue for a regression network, since
a classi�cation network would show a lack of con�dence in categorisations if it did not understand its input
(in an ideal situation in which it is not being fooled) by low probability scores. A regression model can only
output a single score, which is its decision and not an indication of its certainty in that decision.

Samek et al. [73] proposed an evaluation framework for pixel-wise explanations which generalises the
pixel-�ipping method of [69] by replacing m ×m regions around the most salient pixels of an input image
for chosen values of m, and not with the mean value of the image activations, but with uniformly distributed
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(random) values. Again, this su�ers from the conceptual issue that what is being manipulated is a class
probability, and that this is not an available metric for a regression network.

Dabkowski and Gal [112] proposed a more general metric of image saliency, which was put to use by Chang
et al. [103] in their proposition of the VDSM method. They provide two working de�nitions for saliency:

De�nition 5. Smallest Su�cient Region (SSR) is the smallest region of the image which alone allows for
con�dent classi�cation of the image.

De�nition 6. Smallest Destroying Region (SDR) is the smallest region of the image which when removed
prevents a con�dent classi�cation.

Chang et al. referred to the SSR as the ‘Smallest Supporting Region’ and to the SDR as the ‘Smallest Deletion
Region’, but of course were referring to the same respective concepts as those de�ned above. The issue again
comes up of measuring con�dent classi�cation. The authors present a metric for saliency maps based o� of
the SSR objective. They note that saliency is di�erent from localisation, although localisation is an important
requirement of saliency. Their metric therefore assumes that the most salient parts of an image should not
only lead to con�dent classi�cation on their own, but should have as small an area as possible. As opposed
to masking, which may produce adversarial artifacts, the authors choose to crop the salient regions to the
tightest bounding box enclosing the entire salient region. The saliency metric is then simply

s(a, p) = log ã− log p (2.28)

where a is the area of the rectangular cropped image size, ã = max (0.05, a) to prevent numerical instability
from small regions, and p is the probability of the class in question returned by the cropped region. 2.28
is clearly just the logarithm of ã

p
, the fractional area of the cropped region divided by the corresponding

class probability; since the intuition is that a good saliency detector should concentrate relevance in as small
a region as possible which alone will produce con�dent classi�cation, low values of s should indicate an
e�ective saliency map. p is evaluated by feeding only the cropped area a into the network and obtaining the
class probability. To do this, the cropped region is resized to the network input size, disregarding the aspect
ratio. The authors note that of course this works best with networks that are largely invariant to scale and
aspect ratio.

In application to the BA regression problem, the cropping of images to salient regions, and the later resizing
of the cropped regions raise two problems:

1. If the cortex is highlighted by in the heatmap – which is very likely, as it is a key marker of BA – then
since the cortex encloses the rest of the cerebrum, the cropped region a cannot be a small fraction of
the total MRI volume, and so the �rst term of 2.28 will penalise our heatmaps.

2. If the cortex is not highlighted and relevance is concentrated on a smaller region, such as the ventricles,
the method of Dabkowski and Gal will produce a cropped region which does not resemble a brain
volume, and this will likely confuse the network into producing an output of whose validity we cannot
be certain. Therefore, even if we can produce a measure p0 of the con�dence of the initial prediction of
the uncropped input (perhaps by comparison of the true and predicted ages), the value of p given by a
highly cropped region a cannot be trusted and the second term in 2.28 will be unreliable.

It is clear that a di�erent method of evaluation is necessary for saliency mapping with regression tasks.
Very little has been done in the way of saliency mapping for regression. One of the earliest implementations
was by Millan and Achard [113]. The authors apply saliency mapping to augmented data which has a ground
truth location of injected noise. A DNN is trained on the augmented data to determine the extent of augmen-
tation (the degradation in ‘quality’ of a signal). The labels on which the model is trained is the extent of the
added noise, but the model never sees the ground truth alterations. The authors apply their own post-hoc
explanation method AGRA, alongside other saliency mapping techniques. They then compare the produced
saliency maps to the ground truth alterations to evaluate the methods’ explanations. These comparisons are
performed using the PCC and MSE metrics, and their tailored AGRA method outperforms the other methods,
GRAD, GRAD×Input, SmoothGRAD, and Integrated Gradients by these metrics on the given task.
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The key insight of the use of augmented data and the associated possession of ground truth alterations is
that the alterations are exactly what we expect the explanations to capture. We would expect in the case of
noise added to a signal that the explanation of the signal quality would point out where the signal deviates
from a high-quality one, and therefore we would expect a perfect explanation to highlight exactly the areas
of augmentation. This is why the comparison metrics are used between the ground truths and the saliency
maps. This necessarily provides a quantitative metric for the faithfulness of a regression model explanation,
according to De�nition 4. Explanations for similar inputs will necessarily have similar ground-truth explana-
tions.

There is no ground truth explanation for a BA regression task. However, if we are able to devise a similar
task with augmented brain data and ground truth comparisons of augmentation, then we can at least show
whether or not the saliency mapping techniques are able to explain brain structural regression outputs.

We cannot quantitatively evaluate the saliency maps produced for the BA regression task in this way since
there is no ground truth comparison. We can however look to qualitative measures. Since we wish to achieve
clinical relevance, the quality of explanations must be a�rmed by domain experts. If domain experts disagree
with the explanation quality, then no matter the performance on any other metrics, the saliency maps have
not captured even our current understanding of brain ageing. It is in this regard that we consider domain
expert analysis as the most useful metric for the utility of the BA saliency maps.

2.5.5 Criticism of XAI

Here we discuss work that has criticised modern XAI methods, and some of the recommendations for a path
forward and better practice. It is vitally important that we understand the limitations of the tools that we are
using, in order that we do not place undue faith in their capabilities.

There are many di�erent methods of attempting to understand how a model makes its decisions. One
method is to see how the parts of the model respond to input features [114, 90, 71, 115] and which input
features maximise certain outcomes. Other methods are built with interpretability measures as a feature
[116, 117, 118]. We have of course already explored some of the many methods of saliency maps. These
methods all implicitly assume that the task is to provide a contextual, selective explanation that users can
understand, and that the speci�cs of the inner workings of the models do not all necessarily matter. The risk
in this framework of explanation is exactly that – we do not know what is going on at every step of the way.
We are hoping to base important decisions on these models, and they seem to be inherently uninterpretable
from a structural standpoint, and that has understandably worried many.

Rudin [64] strongly suggests against the use of post-hoc explanations and model explanations, and advo-
cates the widespread use of more interpretable ML models. Rudin points out that saliency maps are good at
pointing out what a model is looking at and what it is omitting, but that they fail to explain what the models
are doing with that information. She also notes the important fact that for some methods, saliency maps can
be exactly the same for multiple classes. While these are valid concerns, it is important to note what was
talked about previously by Mittelstadt et al. [106]. For a su�ciently complex model, one cannot hope to
understand all the goings-on of the processing of information that leads to a decision. One must necessarily
choose a subset of information to convey best an understanding of the model’s decision.

Rudin argues that for most tasks, there should exist a su�ciently simple model (such that its workings
can be fully understood by humans) which performs reasonably well. She states as well that the commonly
held belief that more complex models perform better and less complex models perform worse is not entirely
true. She gives the example of the proprietary COMPAS recidivism model, which was famously shown in a
ProPublica analysis to have racial biases in determining the allowance of bail for incarcerated individuals [66,
67, 65]. It had also been shown that the proprietary algorithm was well-approximated by simple, transparent,
and more interpretable algorithms [119]. Rudin shows a simple, fully interpretable decision tree algorithm
which closely approximated the COMPAS model, which shows no inherent bias.

The example of the COMPAS recidivism algorithm is eye-opening; and there are surely more cases like
it. We must not forget, however, that for a task as complicated as medical image analysis, there is likely no
model that performs well on a given imaging task whose action is fully interpretable by humans. Rudin argues
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the existence of interpretable models by a Rashomon Set argument. This begins with the notion that the set
of all models which perform reasonably well on a given task for a speci�c dataset is large. The largeness
of this set makes it likely in turn that there exists within it at least one interpretable model. This may be
true for some tasks, but for any given task, there must be a lower bound on the interpretability (however
that is measured) of models with good performances. It is very likely that for at least some tasks, the lower
bound on interpretability is higher than the ability for humans to comprehend. Further, even if there do exist
interpretable models which perform well on a complex task, we do not know that these fall within existing
methods, and so we do not know whether or not they are computationally feasible. Rudin also points out that
the largeness of the Rashomon Set is largely due to uncertainty in the data. This means that more diverse
models can perform well on the task, but also means that as we increase the size of the dataset (which is a
necessary action to optimise model performance if we can access more data) the Rashomon Set decreases in
size, decreasing the probability of its containing interpretable models. This also contradicts Rudin’s claim
that there is no necessary trade-o� between the interpretability of a model and its performance, since models
necessarily perform at least as well (usually better) with more training data.

It would seem that the interpretability of a model does indeed have a trade-o� mechanism with model
performance. Although it is clear that the visual explanations provided by saliency maps are unable to make
a model fully interpretable, we must consider what would be necessary to create such models, and with that
in mind consider our best options. We have to decide whether our use of ML in our lives would preferably
be more accurate or more interpretable. The primary purpose for the integration of ML technology into the
working world is as a tool of great power and precision, and so it would make most sense to forgo the prospect
of interpretability in favour of of better-performing models whose decisions we can explain.

2.6 Medical Imaging with CNNs
The use of ML techniques in medical image analysis has taken o� substantially in the past decade. In particular,
analysis with the use of DNNs – of which CNNs are heavily favoured – has led to levels of diagnosis and insight
on par with experts or even at super-human levels [120, 121].

Litjens et al. [120] analyse the use of ML techniques in medical image analysis, surveying over 300 con-
tributions, and focusing primarily on DNN implementations. The main applications of ML to the �eld are in
classi�cation and detection of anomalies, lesions and diseases, and the segmentation of images such as or-
gans and substructures, or lesions. Another growing area of interest is that of image enhancement and image
generation, using networks such as auto-encoders or adversarial networks.

The use of DNNs has extended to the analysis of many areas of the human body, including skin lesions
(classifying cancerous moles, for example), images of the eye, X-ray and CT scans of the chest and abdomen,
CT angiographic data, cardiac and pulmonary scanning, breast tissue images, musculoskeletal images, and in
signi�cant focus, brain imagery. In particular, brain MRI and fMRI scanning is utilised.

2.6.1 Brain Imaging

There are of course many di�erent uses for DNNs in analysing brain imagery, such as cancer detection, or
risk or presence of neurodegenerative disease. We focus on the task of imaging the brain in this section, and
narrow our focus later on the task of brain ageing.

Prince et al. [10] note the di�culty in using MRI volumes in machine learning due to the inherent lack of
quantativity in the technique, as compared for example to CT scanning. The di�erences in scan intensities are
vast not only between scanners, but also within single scanners at di�erent implementation times – although
to a lower degree [122]. It was found that even with strict control over the scan parameters, inter-scanner
variations were still signi�cant [123]. This has led to di�culty especially in segmentation protocols. Some
successful methods to combat these issues are dataset harmonisation techniques based in machine learning
used to standardise contrasts and intensities [124].

Landman et al. [10] examine the obstacles in the way of creating accurate brain atlases. They point out that
while cranial and subcortical structures of the brain are highly regular, there is a high degree of variability in
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the structure of cortical, vascular, soft tissue and peripheral nerve courses in the brain. While organ and soft
tissue structure in the body is much less regular than the skeletal structures, it is well known that the volumes
and shapes of cerebral structures are correlated with pathology and function [125, 126]. The central objec-
tives necessary to create useful and reliable brain atlases are to establish homologies between perspectives
of imaging, between positions within the same individual, between localised images and the whole structure,
between the same anatomical features of di�erent individuals, between in vivo and postmortem perspectives,
and between extremes of imaging conditions. Many of these challenges are faced by our task too. Cortical fold
structure, obtained by the analysis of the sulci and gyri, is key to the functions and organisation of functional
regions. They play critical roles in understanding the development and degeneration of the brain, and vari-
ability of its structure. To this end it is extremely useful to be able to label areas of the brain delineated by the
cortical folds. There are many methods used for regional segmentation of the cortex, including the mapping
of a pre-labeled atlas to individual brain volumes [127], and the automatic segmentation of regions to be la-
beled later by an expert [128, 129]. Graph-based approaches are useful in determining relationships between
sulcal areas of interest, with nodes representing individual sulci, and edges representing their relations.

Erus et al. [10] discuss the challenges of MRI neuroimaging harmonisation. They comment that the low
sample sizes of many studies may be a key contributor to the low reproducibility of �ndings. Many attempts
have been made to gather big data for the sake of neuroimaging research, but this inevitably leads to the chal-
lenge of heterogeneous imaging. The ENIGMA project [130, 131] looked to examine associations between
genome variations and changes to cerebral structure. The iSTAGING [132] project has pooled over 20000
participants between the ages of 45 and 89 to form one of the largest existing MRI ageing databases. The
aim of the study is to analyse the diverse anatomical changes that occur due to ageing, cerebrovascular dis-
ease, and Alzheimer’s Disease. A particularly useful tool has come from semi-supervised learning techniques
which reduce the dimensionality of the complex structures down to a manageable number of dimensions, each
corresponding to a speci�c pattern of brain changes due to one or more sources of brain structure change.
Data harmonisation however has still been an issue, even in studies with consistent standardisation of �eld
strengths and protocols. One harmonisation approach which decreased scanner-related di�erences and im-
proved longitudinal consistency is focused on the image processing stage, whereby regional volumes are
computed that are consistent both between sites and longitudinally. This allowed the creation of scanner-
speci�c atlases. One limitation of this method is that only a small number of individuals were able to be
scanned at both sites.

Erus et al. discuss the development of the Brain Development Index (BDI)[133], which summarises the
physiological changes to the brain in maturation from childhood through adolescence to early adulthood.
This model, trained on 621 subjects between the ages of 8 and 22, was based on a support vector regression
model. It has achieved a correlation coe�cient of r = 0.89 and a mean absolute error of 1.22 years. The
authors note that deviations from the trajectory were correlated to cognitive performance changes, with
higher BDIs than their chronological age corresponding to signi�cantly superior cognitive speed compared
to those with lower BDIs than their chronological age.

The authors also note the application of machine learning to brain ageing in later life. It has been shown
that speci�c patterns of grey matter loss have been attributed to ageing, even in individuals without concur-
rent pathology[134, 135]. They note however that advanced brain ageing is particularly di�cult to model, but
can lead to signi�cant insights into pathologies such as Alzheimer’s Disease, and the similarities and dissim-
ilarities between such pathologies and ageing. Multivariate pattern analysis was applied to a large dataset of
individuals ranging in ages from 20 to 90 years, with 2705 participants from the Study of Health In Pomera-
nia (SHIP) cohort [136], in order to quantify atrophy patterns associated with both ageing (SPARE-BA) and
Alzheimer’s Disease (SPARE-AD) [137] in relation to the risk factors of smoking, anti-hypertensive and anti-
diabetic drugs and waist circumference (in males). A study of 1472 individuals analysing the SPARE-AD and
SPARE-BA indices, as well as the presence of the APOE-4 allele (the strongest sporadic genetic risk factor for
Alzheimer’s Disease) in individuals, looked to quantify the imaging di�erences brought upon subjects by the
APOE-4 allele [138], but found that there was no signi�cant association between imaging bio-markers and
the presence of the gene.

It is well understood that there is vast heterogeneity in the pathology of brain ageing, and a study of 400
participants [139] attempted to characterise the various pathways by which these emerge. The method �rst
used multivariate pattern analyses to develop BA models, then a mixture of classi�ers and unsupervised
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distribution mixture models to isolate 5 distinct phenotypes of advanced brain ageing.

Yang et al. [12] and Rieke et al. [13] in the same year used sensitivity maps and backpropagative methods
to create heatmaps as visualisation methods pertaining to 3D CNNs and the diagnosis of Alzheimer’s Dis-
ease (AD). Both studies produce satisfactory heatmaps, focusing on known areas of saliency with respect to
AD presence. The di�erent heatmapping methods had di�ering areas of concentration of saliency in both
cases, and both studies concluded that a mixture of explanatory techniques is most e�cacious in the goal of
identifying areas of saliency.

Böhle et al. [14] used LRP to create heatmaps which serve to explain the diagnosis of Alzheimer’s Disease in
344 individuals, 193 of whom were Alzheimer’s patients, and the other 151 healthy controls. Heatmaps were
also created using Guided Backpropagation (GP) [91]. The authors noted that as opposed to GP, LRP serves as
a better individual marker of AD relevance, and performed better on the authors’ metrics designed to compare
the heatmaps quantitatively. The authors also noted however that there are several limitations of LRP in the
context of the classi�cation task. The �rst is that there is no ground truth comparison – this was aided in the
text by their use of a brain atlas. The second limitation is the sensitivity of LRP to the algorithm by which it
is applied, although they also stated that their parameter of concern – the β of LRPαβ – did not destabilise
the heatmaps. The third limitation, inherent to all heatmaps, is that the voxel-wise saliency highlighting
nature of the heatmaps does not allow us necessarily to understand the underlying reasons for which a given
voxel is highlighted – that is, we do not know if a part of the brain is important in the decision because of,
for example, its shape, or atrophy. The fourth and �nal limitation posited was the strong dependence of the
LRP method on the classi�er network, shared with many heatmap methods; since LRP is a re�ection of the
network’s reasoning for a given decision, it is obvious that better classi�ers will produce better heatmaps,
since they have learned more salient features.

Authors Problem Data Methods Findings

Prince
et al.
[10]

Intensity variability
between scans inhi-
bits quantitative co-
mparison in ML
implementations.

Various MRI
volume types

ML dataset harmonisation
eases the burden of qualit-
ative comparisons.

Landman
et al.
[10]

Variability in corti-
cal structure poses
di�culty in brain
atlasing

Various MRI
brain volume
types

Mapping pre-existing atl-
as segmentations to indi-
vidual scans allows indi-
vidual region labelling.

Erus
et al.
[10]

Small dataset sizes
may contribute to
lack of reproducibi-
lity in brain image
analysis. Pooling
datasets again pos-
es the issue of dat-
aset harmonisation.

Various MRI
brain volume
types

ENIGMA and iSTAGING
projects pooled large MRI
datasets with high degrees
of success in dataset har-
monisation.

Erus
et al.
[133]

Neurophysiological
development to be
modelled from chi-
ldhood to early ad-
olescence.

Di�usion
Tensor Ima-
ging (DTI)
and T1-wei-
ghted imag-
ing of brain
volumes

Support vector regre-
ssion used to develop
the Brain Developm-
ent Index (BDI)

Correlation coe�cient of
0.89 and MAE of 1.22y
for the SVM. Deviations
from trajectory correlated
to cognitive performance
changes.
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Habes
et al.
[137]

Quantifying patter-
ns of brain ageing
and of AD progre-
ssion with respect
to external risk fa-
ctors.

T1-weighted
brain
volumes

Multivariate Pattern
Analysis on the
SHIP Dataset to
create the SPARE-
BA and SPARE-
AD indices.

Smoking, use of anti-hyp-
ertensive or anti-diabetic
drugs, and male waist cir-
cumference showed asso-
ciation with increased BA
and risk for AD.

Eavani
et al.
[139]

Heterogeneity in
brain ageing
pathologies.

Resting-state
fMRI and
T1-weighted
MRI brain
volumes

Multivariate Pattern
Analysis used to de-
velop BA models.
Classi�ers and mixt-
ure models used to
isolate ageing
phenotypes.

Five distinct advanced br-
ain ageing phenotypes
were isolated.

Yang
et al.
[12]

Use of saliency
maps to determine
areas of interest for
AD diagnosis by
CNNs.

T1-weighted
MRI
volumes

3D CNN trained to
classify MRI volum-
es as AD or not, and
sensitivity backprop.
methods used to
create saliency maps.

Saliency maps pick up on
known areas of AD patho-
logy, although all slightly
di�erent from one-anoth-
er by method. A mixture
of methods is decided to
be most e�cacious

Rieke
et al.
[13]

Use of saliency
maps to determine
areas of interest
for AD diagnosis
by CNNs.

T1-weighted
brain
volumes

3D CNN trained to
classify MRI volum-
es as AD or not, and
sensitivity backprop.
methods used to
create saliency maps.

Saliency maps pick up on
known areas of AD patho-
logy, although all slightly
di�erent from one-anoth-
er by method. A mixture
of methods is decided to
be most e�cacious.

Bohle
et al.
[14]

Use of LRP (and
Guided Backprop.)
to determine areas
of saliency for AD
diagnosis in CNNs.

T1-weighted
brain
volumes

3D CNN trained to
classify MRI volum-
es as AD or not, and
LRP used to create
saliency maps.
Guided backprop.
used as a comparison
saliency mapping
strategy.

LRP methods outperfor-
med GP on localisation
of known areas of AD
pathology. Authors note
the di�culty in quantitat-
ive assessment of saliency
maps due to a lack of gro-
und truth comparison.

Nigri
et al.
[15]

How to create sali-
ency maps which
avoid the issues
raised by Bohle et
al., speci�cally the
ground truth issue.
The proposed Occl-
usion method is
implemented and
tested.

T1-weighted
MRI
volumes

Various 2D and 3D
CNNs trained on the
same dataset to clas-
sify volumes as AD
or not. The newly
proposed Occlusion
method was then ap-
plied to explain dec-
isions, and the resu-
lting saliency maps
compared to existing
techniques.

Occlusion saliency maps
were deemed satisfactory
compared to existing me-
thods. Large computatio-
nal overhead was identif-
ied as a major drawback,
but the establishment of a
proxy ground truth may
serve as a better quantitat-
ive validation built into
the framework.

Table 2.1: Summary of key brain imaging developments

Nigri et al. [15] used a novel method of heatmap production called the Swap Test to explain multiple
CNN models trained to diagnose Alzheimer’s through MRI scans. The authors aimed to perform heatmap
implementations that avoided the limitations of LRP, DeepLIFT and others, as pointed out for example in [14],
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which they believe could be due to the nature of the data. The method, very similar to Occlusion Testing,
compares a given image I to another image chosen randomly from within either the healthy control group (if
I is classi�ed as AD) or the AD group (if I is classi�ed as healthy). Patches of the comparison image are then
cropped into I in the same positions and the resulting image passed through the network to determine again
the probability of AD. This is done for regions of a �xed size for every cubic region in the image, and thusly
a heatmap is produced. For a more robust heatmap, this process can be applied multiple times with di�erent
comparison images. This serves as a proxy ground truth comparison, since the areas of interest are shown
as compared to the opposing case, but are comparisons to a �nite number of di�erent subjects. Compared
to known areas of saliency in AD, the resulting heatmaps were deemed satisfactory. It is clear though that
since a forward pass is needed for every iteration of the heatmap procedure, it is extremely computationally
intensive, especially in comparison to methods such as LRP and DeepLIFT. The �ndings of this section are
summarised in Table 2.1.

2.7 Brain Ageing
We focus in particular on the e�ects of ageing on the brain. There are many contributing factors to brain age-
ing [49], including current and past physical activity, the presence of neurodegenerative disease or epilepsy,
presence of type 2 diabetes or HIV, traumatic brain injury, and of course chronological age. There are also
mitigating factors to brain ageing such as physical exercise, level of education, and diet.

Analysing the brain through T1-weighted MRI scans limits our assessment to large-scale structural changes,
and since factors such as neural plasticity and vascular health are not immediately visible at these scales, we
cannot expect a network to focus on them.

There are many physiological changes occurring in the ageing brain. The �rst and most notable is overall
shrinkage of the brain due to neuron loss and neuron shrinkage [140, 11, 141, 142] among possible other
cumulative causes, especially in the frontal cortex [140, 141]. Another change we are interested by is the
decrease in grey matter density [140, 141, 142], which occurs from early adolescence onward, but is accelerated
in old age [141, 142]. We are also interested in the dilation of the cerebral ventricles with age [11, 142] and the
�lling of these spaces with cerebrospinal �uid. An example comparison between youthful and elderly brain
structure is shown in Figures 2.11a and 2.11b below. Another large-scale age-related structural change is the
decrease of white matter concentrations, which begins after about age 40 in most adults [140, 11, 141, 142].
Signi�cant numbers of lesions occur in these areas as well with old age [140]. This is more di�cult to quantify
in T1-weighted images. Gunbey et al. [143] also examined the degradation of the limbic system with age. They
found that the hippocampus, parahippocampus and fornix are a�ected signi�cantly by ageing.

In assessing BA using CNNs, Cole et al. [49] examined only T1-weighted images, and looked at isolated
white matter maps, isolated grey matter maps, combination white matter/grey matter maps and minimally
processed, ‘raw’ T1 images. The authors found greatest success (assessed by network accuracy) with a CNN
using the grey matter and white matter/grey matter combination maps, although there was relatively similar
success with the other map types as well. Using a Gaussian Process Regression (GPR) approach as a con-
textualisation method, the authors again found greatest success with the grey matter and white matter/grey
matter combination maps, with signi�cantly less success in the raw maps. In both cases the lessened relative
success of the raw maps was likely due to the complexity of the raw images over the other types. One may
have more success on the raw images with a more complex architecture than used by the authors to capture
the complexities of the raw structure of the brain. A trade-o� may be present between simpli�cation and the
loss of information as produced by pre-processing (which yields, for example, the isolated grey matter maps).
This is an important consideration to the model structure and any explanations thereof.

The Brain Age Delta (DBA) is the di�erence between predicted and chronological ages of individuals in the
set, δ1 = Ypred − Y . Smith et al. [144] discuss the reliability of DBA as a bio-marker for accelerated brain
ageing. This measure of DBA, however, is biased by a model’s tendency for regression towards the mean;
the quantity δ1 is not independent of age. Despite the presence of bias between δ and chronological age Y , a
simple linear correction can yield a more reliable marker:

δ2 = MYXX
+Y (2.29)
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(a) 18 year old male subject (b) 87 year old female subject

Figure 2.11: Comparison of transverse brain volume sections of a young individual (left) and an elderly in-
dividual (right). These sections clearly show the individuals’ lateral ventricles in the middle of
the images (dark), �lled with CSF. On the outside of the brain matter (dark grey), we see in both
images high concentrations of grey matter in the cerebral cortex. From the images it is clear that
the elderly individual’s lateral ventricles are signi�cantly more dilated, and that the density of
grey matter in her cerebral cortex is signi�cantly lower. In fact, there is clear shrinkage of the
outermost layer of the cortex as compared to the younger individual.

where MY is a term which orthogonalises δ2 with respect to chronological age, X is the input and X+ =
(XᵀX)−1Xᵀ is the pseudo-inverse of X . This is derived from the formulation of δ2 as:

δ2 = δ1 − Y Y +δ1 (2.30)
where we treat Y as anN×1 matrix to form the pseudo-inverse. Since δ2 removes the dependence of DBA

on chronological age, and DBA dependence on chronological age is a result of regression towards the mean
[144], the quantity |δ1 − δ2| = Y Y +δ1 is a measure of the tendency of a model to regress towards the mean.
It would be useful to analyse this as a metric for model reliability. No literature could be found to this end,
but we would expect that lower values of the correction |δ1 − δ2| would imply that a model does not badly
regress toward the mean. Large positive or negative DBA has been shown to predict accelerated or slowed
brain ageing respectively [144, 145, 146].

2.7.1 ML Applications of Brain Ageing

ML techniques to quantify BA have been used ubiquitously in the history of computer vision. In 2010 Dosen-
bach et al. [147] used fcMRI images to predict brain ages of 7- to 30-year-old participants using support-vector
machine pattern analyses. Franke et al. [148] used T1-weighted images to predict the ages of healthy partic-
ipants with a relevance vector machine, using the mean Brain Age Gap Estimate (BrainAGE). The BrainAGE
framework has shown a high degree of e�cacy in determining the brain ages of children and adolescents in
particular [149].

Meier et al. [150] used a support-vector machine to examine the reorganisation of functional brain networks
associated with brain ageing, by analysing fMRI images. The authors claim that this analysis method removes
confounding factors such as strategy or motivation for performing the relevant tasks during the scanning
process. The study aimed to investigate which functional connections best characterised brain ageing. The
dataset used was extremely small (n = 52). 84% accuracy was achieved in BA classi�cation.
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Lin et al. [50] used a basic Neural Net architecture to classify T1-weighted and DTI MRI images according
to age, reaching a correlation of r = 0.8 and MAE of 4.29y with chronological age. The models looked at
grey matter concentrations and white matter connectivity.

These are insightful and useful early applications of BA regression, but in none of these has saliency map-
ping been used. Furthermore, since these are earlier attempts at the task, many of them do not use CNNs for
the analysis. Since saliency mapping has not been applied to BA regression in CNNs before 2020, it is useful
to look at past cases of saliency mapping with CNNs applied to diagnosis of diseases of ageing.

Mwangi et al. [51] used relevance vector regression on Di�usion Tensor Imaging (DTI) volumes to deter-
mine BA in a cohort of participants ranging in age from 4 to 85 years. Sensitivity maps were then extracted
to localise areas of saliency for ageing in the regression models. The authors reported accurate age prediction
on all markers, and that the sensitivity maps tended to highlight known areas of saliency to brain ageing.

Eitel et al. [75] used LRP to form a transparent CNN for the diagnosis of Multiple Sclerosis (MS). The typical
presentation of MS in MRI images is the presence of white matter lesions in T2-weighted images. The cohort
consisted only of 76 MS patients and 71 healthy controls. To compensate for the small number of test subjects,
the authors employed the use of transfer learning with a set of 921 MRI scans initially to separate AD patients
from normal controls, later �ne-tuning to discriminate MS patients. Individual heatmaps were formed after
training, as well as average heatmaps for MS individuals and healthy controls, both for grey matter and white
matter regions. Using the 30 regions for each group with highest absolute relevance means, the areas of
highest and lowest relevance on average were captured for the MS and healthy control groups. The authors
showed that the transfer learning technique signi�cantly increased the clarity of the LRP explanations. The
explanations primarily focused on lesions (particularly in white matter and particularly in areas strongly
associated with MS) as expected. The explanations also highlighted grey matter regions such as the Thalamus,
an area well-known to be heavily a�ected early in the onset of MS. Lesions were removed from some of the
test samples and the resulting images were tested and revealed signi�cantly greater relevance scores in the
corpus callosum, an area known to be a�ected by axonal loss and di�use atrophy. The removal of lesions also
slightly increased the relevance assigned to the fornix – lower anisotropy of which is exhibited in MS patients
than the healthy controls. The authors conclude that LRP is useful not only for explaining a single network’s
decisions, but also for assessing the depth of learned features from a DNN.

Grigorescu et al. [16] used LRP in assessing a 3D CNN used to classify T2-weighted MRI scans of infants
according to whether or not they had been born pre-term. They used values of α ranging from α = 1 to
α = 3 and presented example heatmaps. The dataset was of 157 di�erent scans, which is relatively small. The
network obtained a true positive score of 100% and a true negative score of 86%. The resulting heatmaps
highlighted in particular areas of cerebrospinal �uid, which agrees to some extent with previous work having
shown that pre-term infants have a greater volume of cerebrospinal �uid, and less cortical folding.

Authors Task Data
Model,
Saliency
Mapping

Results

Cole
et al.
[49]

BA
Regression

T1-weighted brain volumes;
white matter isolated, grey-
matter isolated, raw and
combined grey- and white-
matter maps. Data from 14
public sources validated on
Brain-Age Healthy Control
(BAHC) dataset.

CNN,
None

Grey matter and combination
grey matter/white matter maps
yielded greatest test accuracy.
Raw map performance was
signi�cantly lower, likely due
to much more complex structure.

Meier
et al.
[150]

BA
Regression

fMRI volumes from Inter-
national Consortium for
Brain Mapping (ICBM)

SVM,
None

84% accuracy achieved in BA
prediction, but with a very small
dataset.
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Lin
et al.
[50]

BA
Regression

DTI and T1-weighted brain
volumes, mapped onto
region scores. Data gathered
by authors (N=112)

Fully-
connected
NN,
None

Correlation with chronological
age of r=0.8, and MAE of 4.29
years.

Mwangi
et al.
[51]

BA
Regression

DTI brain volumes from
International Neuroimaging
Data Sharing Initiative
(INDI).

RVR,
Sensitivity
Mapping

High accuracy achieved in BA
prediction across prediction var-
iables. Sensitivity maps highli-
ghted relevant anatomical regi-
ons on aggregate.

Eitel
et al.
[75]

MS
Diagnosis

T2-weighted brain volumes
from Alzheimer’s Disease
Neuroimaging Initiative
(ADNI).

CNN,
LRP

The saliency maps produced cl-
early showed areas of known
importance to MS pathology.
The removal of lesions high-
lighted by the saliency maps led
to the highlighting of other
known areas of saliency.

Grigorescu
et al.
[16]

Neonate
term/pre-
term
classi�-
cation

T2-weighted brain volumes
from developing Human
Connectome Project
(dHCP).

3D CNN,
LRP

100% sensitivity and 86% spec-
i�city reached in classi�cation.
The saliency maps accurately
highlighted areas of greater CSF
volume and less cortical folding
in pre-term scans.

Gupta
et al.
[151]

AD/MCI
diagnosis

Functional connectivity fea-
ture maps from fMRI scans
from ADNI dataset

DNN and
SVM,
DeepLIFT

SOTA performance levels were
reached by the DNN. DeepLIFT
picked up on known areas of
saliency for AD and MCI. Rem-
oval of areas reported as minim-
ally salient increased the netw-
ork’s diagnostic accuracy.

Table 2.2: Summary of DL applications to brain imaging

Gupta et al. [151] used DeepLIFT to determine areas of saliency in the brain when diagnosing AD and Mild
Cognitive Impairment (MCI). The diagnoses were carried out by a 5-layer DNN using functional connectivity
features, and relevance was propagated to identify brain connections associated with the neurodegenerative
diseases. The authors showed that limiting the input data to empirically relevant subsets improved the ac-
curacy of the network. These subsets were isolated by recursively removing the 10% least relevant areas as
measured by DeepLIFT. The authors compared the accuracy of predictions between AD/MCI samples, AD/-
control samples, and MCI/control samples, as opposed to the simple accuracy of each in overall classi�cation.
The authors also achieved state-of-the-art classi�cation accuracy with their network as compared to other
uses of the same dataset, as a multi-diagnostic tool. The heatmaps revealed particular relevance of two re-
gions of the uncus (an extremity of the parahippocampal gyrus). It is understood that early atrophy in this
area is associated strongly with cognitive impairment [152]. Several other regions in the medial temporal
lobe were also found to have high relevance, which have been previously reported. These �ndings have been
summarised in Table 2.2.

Levakov et al. [17] used a CNN ensemble model to regress BA. Their model achieved 3.2y MAE and a
Pearson Correlation Coe�cient of 0.98, with a dataset of 10176 participants, 526 of whom were held out for
testing. They used the SmoothGRAD saliency mapping technique to create population-level explanations on
the input space. This was done by aggregating within each sub-ensemble the saliency maps of 100 subjects.
These aggregated saliency maps were compared and contrasted between each of the trained models of the
ensemble to assess the diversity in explanation among the CNNs. They showed that although by the Dice
metric there was not a signi�cant similarity in aggregated heatmaps between CNNs, there was a moderately
low distance by the Modi�ed Hausdor� Distance, showing that while there is overlap in the saliency attribu-
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tions, there is signi�cant enough distance between them that the overlap is only moderate. This may explain
why the ensemble model performs signi�cantly better than any of the individual CNNs. The authors also
examined which brain regions corresponded with the highest attribution of saliency. To do this, they took
the median value for each voxel across the CNNs in the ensemble to create a single population saliency map
representative of the whole model. They then thresholded the top-1% of saliency voxels in the saliency map
and examined clusters of such points with > 100 voxels. The regions in which the clusters lay were deter-
mined using an atlas and were ranked according to cluster size. The authors found that by far the greatest
attribution of saliency went to the cisterns and the ventricles.

Hofmann et al. [18] used two multi-ensemble CNN models for BA regression. The �rst model made use of
di�erent imaging modalities in its sub-ensembles (T1, FLAIR and SWI), and the second made use of di�erent
brain regions in the sub-ensembles (cerebellum, subcortical and cortical). The LIFE-Adult dataset was used,
which has 2637 subjects, aged 18 − 82. The �rst model achieved an MAE of 3.72y on the held-out test set
of 631 participants, while the second achieved an MAE of 3.38y. The authors noted that the SmoothGRAD
technique used by Levakov et al. is not directional, while LRP can di�erentiate between areas of input that
are supportive of the output, and areas which contradict the output. They used LRPCMP with α = 1 to create
individual saliency maps. Their �rst experiment was to verify the utility of the saliency mapping in the age
regression task using a toy model with a ground truth. Ageing was simulated by adding accumulated lesions
and atrophies to a 2D ‘brain’ (a torus) in proportion to an assigned age, with some random variation. The
accumulated atrophies and lesions served as the ground truth for the explanations of age. They found that
intact regions were assigned low relevance scores, whereas regions containing atrophies and lesions were
assigned high relevance. This indicates that increased local ageing (lesions and atrophies) is characterised
by increased relevance clustering. For the real BA regression task, the authors created one saliency map
per individual in each of the sub-ensembles for both models, then averaged these across sub-ensembles to
create two saliency maps per individual (one per model). The authors also found that the greatest amount of
relevance was assigned in and around the ventricles. Signi�cant relevance was also attributed to the grey-
matter-dense outer cortex of the brain. The authors also conducted permutation-based one-sample t-tests to
determine statistical signi�cance to BA and found that in each of the MRI modality sub-ensembles, nearly the
whole brain contained meaningful information. This does not, however address the concern of Geirhos et al.
[85] and of Sixt et al. [82], that LRP tends simply to recreate the input of the model. The authors also contrasted
the saliency maps of individuals in a younger and an older cohort to determine the di�erence in attribution of
relevance. They also examined the change in relevance maps as a function of DBA in an older cohort. They
found that all clusters indicating signi�cant association corresponded spatially with increased relevance. In
the T1-weighted images, large DBA was related more strongly with higher relevance in the frontal poles, the
brainstem, the outer cerebellar borders, the cortical spinal tract, the putamen, caudate, amygdala, pre- and
post-central gyri, and the cingulate gyri. The strong association between increased relevance and large DBA
indicates further that large assignment of relevance is associated in the BA regression task with accelerated
ageing in the given area.

As of the time of writing, there have been no publications of DeepLIFT being used for the BA regression
task. Table 2.3 summarises the �ndings of [17] and [18].

Author Ref. Model Test
MAE (y)

Dataset
Size

Saliency
Mapping

Regions of
Greatest
Saliency

Levakov
et al. [17] CNN Ensemble 3.2 10176 SmoothGRAD Ventricles,

Cisterns

Hofmann
et al. [18] Modality multi-ensemble,

Structural multi-ensemble
3.72,
3.38 2637 LRP

Ventricles,
Cortical
grey matter

Table 2.3: Summary of key BA saliency mapping studies
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2.7.2 Architectures for Brain Imaging with CNN

One of the most important aspects of our task is to create as accurate a regression model as possible. For
a task with data as complex and multivariate as ours, it is highly unlikely that the dataset can be learned –
especially with a large enough dataset – in order to increase the accuracy of the model arti�cially and impede
its generalisability.

It must necessarily be true that a change in network accuracy can only occur from a change in the areas
upon which the network focuses most. This can happen by changing or shifting areas of interest in the input,
or by changing the intensity with which it focuses on areas. In either case, this will a�ect the outputs of our
decomposition methods, either by region location or relative region intensity. It is therefore imperative that
we use an architecture optimally suited to the task of BA regression.

Cole et al. [49] in the early days of BA regression used a simple convolutional block architecture, which
provided reasonable accuracy on the data they used, as previously discussed.

Kossai� et al. [153] introduced Tensor Regression Networks, with the use of Tensor Contraction Layers
(TCLs) and Tensor Regression Layers (TRLs). Using TCLs to replace pooling and TRLs to replace �attening
and fully-connected layers, the authors were able to achieve state-of-the-art MAE of the time of publication
on the BA regression task, or slightly above, while simultaneously reducing drastically the number of network
parameters. The baseline comparison network was a 3D-ResNet which achieved 2.96 years MAE on the UK
Biobank dataset [154]. In all cases using TRLs of varying core sizes on the model instead of fully-connected
layers, the MAE achieved was lower than baseline, with the lowest achieved at 2.69 years. These TRL models
also signi�cantly outperformed the baseline on BMI prediction and gender prediction from the scans.

It would be interesting to test our relevance decomposition methods on the tensor regression methods, but
this has not been done before and the methods of best practice are not clear for saliency mapping on the new
architecture. For the main experiment, we will be using a standard 3D-ResNet, as used as the baseline by
Kossai� et al. This is a well-studied and reliable model for many computer vision tasks, and achieves close to
State-of-the-Art (SOTA) performance on the BA regression task, as shown by the authors.

It was discovered after the experiments had been performed that both Levakov et al. [17] and Hofmann et
al. [18] had used CNN ensemble models to great success in their BA regression tasks. Although they have
achieved highly accurate models, SOTA performance is still held by models like that of Kossai� et al. and the
ResNet.

ResNet

The explanation and form of ResNet architectures that we provide closely follow those of Géron [155]. A
ResNet typically cycles through modules of convolutional blocks. The blocks consist of a 3× 3 convolutional
layer followed by a BatchNorm layer and then by a nonlinear activation layer. The BatchNorm layer prevents
gradients from becoming too large or too small during training, while the nonlinearities prevent sequences
of blocks from becoming a single linear function. The modules, called residual modules, are formed from a
pair of such blocks in a main branch, coupled with a skip connection. The skip connection contains another
block, with only a 1× 1 convolution, which takes the same input as the �rst layer of the other two blocks in
the main branch. The output of the skip connection is then added to that of the �nal layer in the main branch.
This is illustrated in Figure 2.12a.

The purpose of the skip connection in a residue block is to provide a copy of the input to the end of the
computation of the block. This has been shown to increase learning speeds, especially early in training [155].
Down-sampling in a ResNet is traditionally performed when the number of �lters is changed, by using a
convolutional stride > 1 in the skip connection and the �rst convolution of the main branch. This saves
on computational overhead as compared to down-sampling by pooling layers, since if pooling layers are
implemented, the �lter size must be increased before and with a unit convolutional stride to ensure minimal
loss of information. As pointed out by Hui and Binder [80], using a convolutional stride > 1 creates a grid
pattern if concentrated relevance in saliency maps. This is illustrated in Figure 2.13, showing results of two
preliminary experiments. One model used convolutional strides> 1 for down-sampling, while the other used
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(a) > 1 Convolutional Stride (Original)
(b) Average Pooling, useful for Relevance Propagation to

avoid grid patterns

Figure 2.12: Con�gurations of the Residual Module, depending on the method of down-sampling

average pooling. A residual module that uses average pooling to down-sample is shown in Figure 2.12b. The
issue that this grid pattern presents is that regions of the brain are not smoothly assigned relevance, and so
there is undue relevance assigned to parts of regions which otherwise would not be considered as relevant,
and relevance removed from parts of regions which otherwise would be considered more relevant.

The input layer of a ResNet is typically followed by a reshaping layer, which is used to add an extra dimen-
sion to the data shape to initialise the number of convolutional �lters. This is simply set to size 1. After this
comes the �rst convolutional layer of the network, and the only one which is not part of a residual block. In
the 3D case, this usually has a convolutional window of size 5×5×5 or 7×7×7, and 32 �lters. After the �rst
convolutional layer comes a BatchNorm layer, followed by a nonlinearity layer. After this comes an average
pooling layer, to down-sample the data. Typically this is followed by a sequence of residual modules. When-
ever the number of convolutional �lters is increased, down-sampling occurs in the module. This is largely
to save computational cost, but also helps to narrow down features of relevance to the model with greater
network depth. A typical sequence of �lter sizes for convolutional blocks will increase only in powers of 2
(doubling the number of �lters occasionally). The number of residual blocks, and of course the sequence of
�lter sizes, are hyper-parameters of the model. The last of a ResNet’s residual modules is typically followed
by a Global Average Pooling layer which averages over the spatial dimensions of its input to give a single
activation per convolutional �lter from the residue module. This gives individual feature scores at a low di-
mensionality. This is followed by a fully-connected layer, and a �nal output layer. In the case of a regression
network, the output layer will be a single neuron with a linear activation. Figure 3.5 in Section 3.2.2 shows a
diagram of the ResNet we developed for our experiment.

An example of a light-weight ResNet implemented for the BA regression task is that of Jónsson et al. [156].
Their model is considered light-weight since it only has 5 residual blocks, while many have up to 25 [155].
The model achieved a test MAE of 4y on the UK Biobank T1 volume dataset [154]. The authors explain that
the model has only 5 residual blocks, making it a ResNet-10, since it has 10 main-branch convolutional layers.
They do not give the exact sequence of �lter sizes for the main branch convolutions in the residual blocks, but
they reveal that the �nal convolution has �lter size 128. The number of �lters generally increases in powers
of 2 with depth in a ResNet.
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(a) DeepLIFT saliency map, down-sampling by
convolutional stride > 1

(b) DeepLIFT saliency map, average pooling
down-sampling

(c) LRPCMP, α = 1 saliency map, down-
sampling by convolutional stride > 1

(d) LRPCMP, α = 1 saliency map, average pool-
ing down-sampling

Figure 2.13: Di�erences in saliency map smoothness as a result of the down-sampling technique. In both
LRP and DeepLIFT, down-sampling by convolutional stride > 1 causes a grid pattern overlay
in the saliency maps, whereas no grid pattern appears in saliency maps produced with pooling
down-sampling.

2.8 MRI Databases
For the task of creating an accurate baseline model for healthy brain ageing at a macro level, we need a dataset
with the following characteristics:

1. A total number of scans as large as possible – it is well-understood that a model performs better over a
speci�c domain with greater training data volume from that domain.

2. Even distribution of sex – it is well-established that the process of ageing is di�erent between sexes
[157]. It is also well-documented the females experience a greater risk of developing age-related cogni-
tive impairments such as Alzheimer’s [158]. To maximise the applicability of our model to patients of
both sexes, it must understand the ageing process across both.

3. Maximally uniform representation across ages – in order for our model to perform well in understand-
ing the age of a given brain, it must have exposure to as many individuals as possible in each age group
within our range of ages. Furthermore, the age range must be as wide as possible, accommodating
young adults up to elderly individuals.

It is a di�cult task to accumulate large pools of MRI data for healthy individuals. Not only is this a storage-
intensive datatype, but the issue of creating MRI data in the �rst place is extremely time-consuming and costly.
Furthermore, people are far less likely to be subjected to MRI imaging if they are healthy than if they are not,
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and so the proportion of healthy individuals among brain MRI scans is low. We have also already discussed the
di�culty in homogenising MRI intensities and contrasts. Many large MRI datasets are prohibitively di�cult
to access for researchers as well [49, 159, 160]. Table 2.4 shows some MRI datasets that have been used for
BA regression in the literature, and compares their sizes, distributions of sex and age ranges.

Dataset
Number of
T1-Weighted
Volumes

Sex
Distribution
(% Male)

Age
Range

Pathology
Present Accessibility

Alzheimer’s Disease
Neuroimaging Initiative [161]
(ADNI 1),
(ADNI 2)

189,
324

52.9,
44.8

59-89,
56-95 AD By application

Cambridge Center for Ageing
Neuroscience (Cam-CAN)
[21, 162]

656 49.4 18-89 None By application

Brain-Age Healthy Control
(BAHC) [49] 2001 50.8 18-90 None Proprietary

LIFE-Adult [163] 2016 (Unknown) 18-82 Various By application
LIFESPAN [159] 10477 46.2 3-96 None Proprietary
UK Biobank [160] 14503 46 42-82 None By application

Table 2.4: Size, sex distribution and age range information of six popular MRI databases, as well as the presence
of pathology, and the accessibility of these datasets.

From the table, we see that there are not many datasets containing large numbers of T1-weighted volumes
that are both easily accessible and have age distributions which span the whole of adult life. From those that
we have examined, we determine that the most suitable dataset for our purposes is the Cam-CAN dataset.

2.9 Summary and Conclusions
In this chapter we reviewed ML and subsequently its application to brain imaging, with speci�c focus on
CNNs and BA regression. We also examined multiple saliency mapping techniques as methods of model
explanation, and their uses and limitations, with speci�c focus on LRP and DeepLIFT. Our main focus was
the application of saliency mapping techniques to the BA regression task.

From the literature we gather that brain ageing is a highly nonlinear process that takes many di�erent tra-
jectories. Particular areas of interest in T1-weighted imaging for brain ageing are the ventricles and cisterns,
and cortical grey matter. Some subcortical areas such as the thalamus are also of high relevance to BA. ML
has been used with great success for the regression of BA. The most commonly used tool for BA regression
in ML is the CNN. ResNet architectures have shown particular utility, and have achieved SOTA performance
in the task. We have established that for the task of brain age regression there are few suitable datasets which
are both publicly available and large. We have determined that the most suitable dataset to our task is the
Cam-CAN dataset.

LRP and DeepLIFT have both been used with great success in multiple classi�cation tasks, including brain
MRI analyses. Although there have not been many applications of either method to regression, LRP in par-
ticular has recently been used successfully for analysis of the BA regression task. It is clear that saliency
mapping can reliably highlight key areas of brain ageing. Although there has been some criticism of XAI in
general, and in particular of LRP, improvements have been made to mitigate some of these concerns. It is
considered best practice, for example, to use LRPCMP so as to minimise concerns of explanation faithfulness.
Both DeepLIFT and LRP are computationally inexpensive as compared to other methods of saliency mapping,
such as Occlusion [92], Integrated Gradients [89] and VDSM [103] as they are backpropagation techniques.
They are also among the most commonly used backpropagation saliency mapping techniques [103, 82, 108],
especially in medical imaging [14, 75, 16, 151].
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No previous work has been found that compares the relevance maps produced for BA regression by di�erent
methods, and none have utilised DeepLIFT on BA regression. While the LRP method employed by Hofmann
et al. [18] has directionality, it is unable to assign negative relevance without demeaning the data. Negative
relevance values can be assigned by some LRP methods with di�erent parameterisations, and by DeepLIFT.
While Hofmann et al. compared a younger and older cohort in their study, no previous work has focused on
the change in relevance attributions to brain regions as a function of subject age. Furthermore, the concern
raised by [85] and [82] about modi�ed backpropagation algorithms like LRP (that they attempt simply to
recreate the input) has not been addressed in this context.

Saliency maps can be used to show the trajectories of regional saliency within the brain towards BA. We
aim to do this with LRP and DeepLIFT methods, due to their computational e�ciency and reliability shown
from the literature. We aim also to compare the results from these methods. The link between DBA and brain
region relevance can be further explored to this end as well.
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Chapter 3

Experimental Design

In this chapter we discuss the layout of the experiment to be performed and the methods by which we will
evaluate the results.

We created a BA regression model and applied our chosen saliency mapping methods to determine areas of
saliency to BA. Using the data from the saliency maps, we evaluated their utility in comparison to known areas
of BA relevance. We also analysed the di�erences between the maps produced through di�erent methods,
examined the link between region-speci�c saliency and accelerated brain ageing (positive DBA), and assessed
region-speci�c trajectories of BA saliency over ages.

3.1 Dataset
The Cambridge Center for Ageing Neuroscience (Cam-CAN) has been assembling brain MRI volumes and
accompanying data since before 2014 [21]. Currently held in their cc700 dataset are N = 656 T1- and T2-
weighted pairs of MRI brain scans of healthy individuals (no symptoms of physical or mental disease, and no
symptoms of cognitive decline). There are 75 subjects in the age range 18-29y, 94 in the range 30-39y, 110 in
the range 40-49y, 97 in the range 50-59y, 104 in the range 60-69y, 111 in the range 70-79y, and 65 in the range
80-89y. There is relatively good age uniformity in the cohort, except for at the extremes1. The substantial size
of this dataset (as compared to, say the ADNI datasets), its relative uniformity in sex and age distribution, and
its homogeneity in scan size, scale and resolution make it an extremely useful tool for the purpose of creating
a healthy brain ageing model.

(a) Age distribution of the subjects in the Cam-CAN
cc700 dataset.

(b) Handedness distribution of the subjects in the
Cam-CAN cc700 dataset.

Figure 3.1: Demographic information for the Cam-CAN cc700 MRI dataset

1This is to be expected – very young individuals are unlikely to receive MRI scans, and there are few individuals who are both
healthy and very elderly
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We chose to use the Cam-CAN dataset due to its relatively large size for a healthy MRI dataset, as well
as its large span of ages and its ease of accessibility, as discussed in Section 2.8. We show in Table 2.4 the
demographic data and accessibility of several popular MRI datasets in comparison to Cam-CAN. While the
Cam-CAN dataset is not the largest available dataset, it is not so large as to cause issues with local storage.
The dataset is also freely available upon request. Although the database is smaller than any that have been
used before in the BA regression task within the literature, it is not of great concern that this will hinder the
performance and generalisability of our model to any great degree.

Each subject in the dataset is assigned a patient ID. The following data is available on the subjects from the
dataset:

• Age

• Sex

• Handedness (ranked on the ‘Edinburgh scale’ of -100 to 100 with -100 being strongly left-handed and
100 being strongly right-handed)

• Which MRI Repetition Time is used (30ms or 50ms). This is the amount of time between successive
pulses while acquiring the scans (see Section 2.1).

Following the actions from within much of the literature [49, 50, 137, 139, 17], we chose to use only the
T1-weighted images. We also chose to use all volumes of the dataset, regardless of handedness. Limiting the
data only to right-handed individuals would decrease the size of the dataset further. The ages of subjects in
the dataset range from 18 to 89, with a mean age of 55. The age and handedness distributions of the dataset is
shown in Figures 3.1a and 3.1b. Nm = 324 of the subjects (49.39%) were male. 380 of the individuals (57.93%)
had 30ms repetition times, 237 had 50ms repetition times (36.13%), and the rest did not have their repetition
times recorded. Other than this data, the subjects were completely anonymised. The facial structures of the
subjects were also masked in the raw MRI volumes. Like all previous studies on BA regression mentioned in
the literature review, we chose not to consider the factors of sex, handedness and repetition time. Our model
only had the pre-processed T1 MRI volume as input. This data is summarised in Table 3.1.

Number of
Participants Age Range (Mean) Sex Dist. (% Male) Avg. Handedness

Score RT (%30ms, %50ms)

656 18-89 (55) 49.39 76.10 57.93, 36.13

Table 3.1: Demographics data for the Cam-CAN dataset

3.2 Experimental Pipeline
The experimental pipeline is outlined in Figure 3.2. We started by pre-processing the data, using techniques
discussed in Section 2.4.1. We then used the pre-processed data to train our ResNet model. The development of
our model is discussed in Section 3.2.2 and the training and testing of the model is discussed in Section 3.2.3.
Once we trained the model, we evaluated its performance on the test set, and executed all of our saliency
mapping methods on the test set. For ease of storage and computation, we only performed the saliency
mapping on the test set subjects. Storage was limited in the course of experimentation, and due to the large
size of the data (volumes of shape (233× 189× 197)) there was a heavy computational burden. We used
the subjects’ pre-processed brain volumes as input to the regression model to make a prediction of their age.
Using the activations at each layer of the model at inference time, we then applied the various methods to
create saliency maps for each individual. This is described in Section 3.2.4. Once we have all the saliency
maps for each individual in the test set, we commence with the evaluation of the data toward answering each
of our research questions. This is detailed in Section 3.2.5.
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Figure 3.2: Experimental Pipeline for the creation and analysis of our BA regression model and the saliency
maps

3.2.1 Pre-processing

The pre-processing pipeline for the experiment is outlined in Figure 3.3. It is common practice in the BA
regression literature to perform skull-stripping [49, 50, 51, 17]. At the �rst stage of pre-processing, we use the
Brain Extraction Tool (BET) provided by FSL [2] to skull-strip the volumes in the dataset, leaving only brain
tissue and cerebrospinal �uid (CSF) in the volumes on a ‘black‘ background (voxel values of zero). A fractional
intensity of 0.5 was used in this step; this is the value recommended by the developers. We do this to remove
non-brain tissues such as bone and eyes from the volumes, such that only brain tissue is considered in the BA
regression.

Using as reference a Standard MNI Volume [8], we then registered (align) all the skull-stripped volumes
in the dataset to MNI space such that they were aligned with one-another, the reference MNI volume, and
the corresponding region atlas [6, 7]. As discussed in Section 2.4.1, we do this so as to have all the volumes
aligned in MNI space with the same orientation, such that the atlas can be used to determine areas of saliency
by simple spatial correspondence. The registration was completed using FSL’s FLIRT tool [3, 4]. Initially,
there was a 30% error rate (198 of 656 volumes) using the FLIRT tool, but after repeatedly rotating and re-
registering the volumes, this was brought down to an error rate of < 0.5% (3 volumes). Errors were found
by checking manually the alignment of each of the volumes. The three remaining volumes were manually
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Figure 3.3: Pre-processing Pipeline

rotated and adjusted to be approximately aligned to the MNI volume. Finally, we use Global Contrast Normal-
isation (GCN) to normalise the volumes to have voxel activation contrasts of 1. As discussed in the Literature
Review in Section 2.4.1, this is a normalisation step recommended by Goodfellow and Bengio [9], and is one
of the most commonly implemented normalisations. We normalise the data this way to ensure that the voxel
values lie in a similar distribution for all individuals. At the end of pre-processing, the volumes have shape
(233× 189× 197).

To create the training and test sets, we randomised the order of the patient IDs and split them into a
training set comprised of 80% of the dataset (524 individuals), and a test set comprised of the other 20% (132
individuals). The corresponding ages and pre-processed MRI volumes were split into the appropriate training
and test sets according to the ID sets. The true ages were the targets for the regression model. During training,
80 training volumes (15% of the training data) were set aside for validation. These were randomly chosen at
the start of training as part of the training pipeline.

The age distributions of the training and test sets are shown in Figures 3.4a and 3.4b. 262 of the training
set individuals (50%) were male, while 62 of the test set individuals (47%) were male. Minor disparities in the
age and sex distributions between the training and test set are due to the fact that the split was completely
random and there was not strati�cation for either variable.

(a) Age distribution of the subjects in the training set (b) Age distribution of the subjects in the test set

Figure 3.4: Age distributions for training and test split

3.2.2 Model Development

We implemented a ResNet architecture, as shown in Figure 3.5. We did this for two reasons, the �rst being
that this is an architecture that reaches SOTA BA regression performances on large datasets, as shown by
Kossai� et al. [153]. The second reason is that the ResNet architecture is comprised of layers that easily allow
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for relevance decomposition (as opposed to, say, the tensor regression layer, on which saliency mapping has
not been performed before). For a detailed explanation of the ResNet structure, see Section 2.7.2.

The �rst convolutional layer – the only one not part of a residual module – was chosen to have a 7× 7×
7 convolution window with 32 �lters, as is often the con�guration [155]. For all the nonlinearities in the
network, we used a Softplus layer, as recommended by Dombrowski et al. [108] to avoid instabilities in the
explanations. We also only used average pooling for down-sampling, so as to avoid the grid-like overlay on
saliency maps.

Figure 3.5: Architecture of our ResNet model

Our ResNet model used 5 consecutive residual modules, making it a ResNet-10 (the number of main branch
convolution layers being 10). The main branches of our residual modules had convolutional layers with
windows of size 3 × 3 × 3 (the standard main branch window size), and �lters of sizes [32, 32, 64, 64, 128].
This con�guration of residual blocks was inspired by Jónsson et al. [156], who trained a ResNet to achieve
a test MAE of 4y on the UK Biobank dataset [154]. Their model is discussed in Section 2.7.2, and used �ve
residual blocks, the �nal of which had 128 �lters. The skip connections of our model had convolutional
windows of size 1× 1× 1 (the standard skip connection window size). To avoid the overlaid grid pattern of
relevance brought about by convolutional stride lengths > 1, we used average pooling to down-sample the
data. The con�guration of our residual modules is shown in Figure 2.12b of Section 2.7.2. We down-sampled
resolution when the number of convolutional �lters is increased.

As discussed in Section 2.7.2, the residual modules are followed by a Global Average Pooling layer that
in our case produces an activation of 128 neurons (the number of �lters at the �nal residual module). This
is followed by a �attening layer to reduce the number of dimensions to 1 (since the global average pooling
averages over the spatial layers but does not get rid of them, having output shape (1, 1, 1, 128) per volume).
This then connects to a fully-connected layer of 128 neurons with a Softplus activation. A �nal fully-connected
single output neuron with linear activation delivers the prediction.

3.2.3 Training and Testing the Model

The model was created, trained and tested using Tensor�ow Keras, on the Lambda Cloud Computing plat-
form2. GPUs were necessary for computational time, as well as for the version of Tensor�ow that needed to

2https://lambdalabs.com/
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be run. The initial CPU version that was being run caused issues with the BatchNorm parameters at inference
time, giving model predictions that were o� by a large constant.

Hyper-parameter tuning was implemented to determine the optimal loss function, optimiser and starting
learning rate. A grid search was performed across the Mean Squared Error (MSE) and Mean Absolute Error
(MAE) losses, the Adam [164] and RMSProp optimisers, and starting learning rates of

{
5× 10−4, 10−3, 5× 10−3

}
.

This gave us a total of 2 = 12 hyper-parameter con�gurations. Each con�guration was trained three times
over 8 epochs each to determine the best performance. Con�guration performance was measured by the av-
erage MAE over the three training runs. Early stopping was implemented to end training when the validation
did not increase for 20 epochs, and the model was only saved on the best validation scores. A custom decaying
learning rate was employed during training as well, whereby the learning rate would be halved after every 20
epochs. Decaying learning rates have been shown to increase model performances substantially [9]. Jónsson
et al. [156] employ a decaying learning rate in the training of their model. The metrics we used for evaluation
were MSE, Mean Absolute Percentage Error (MAPE) and MAE.

Memory use was continually an issue in training, testing and the production of the saliency maps. The size
of the test set was 9.16GB uncompressed, and that of the training set was 36.37GB uncompressed. To this end
we used two NVIDIA RTX A6000 GPUs with 48GB VRAM each for training, testing and saliency mapping.
To maximise the batch size for training, we used a Tensor�ow ImageDataGenerator object to feed volumes
into the model from a directory as opposed to loading the entire dataset into memory. This allowed us to
increase the batch size to 4. The highest batch size that we have found in the literature was 8, used by Peng
et al. [146], who used volumes of size 160× 192× 160 – about 60% of the total volume of our pre-processed
scans. Jónsson et al. [156] also used a batch size of 4 in their model training.

3.2.4 Saliency mapping

Using the trained model, the saliency maps were created for DeepLIFT using two di�erent reference volumes,
and for LRPCMP using three values of α. The �rst DeepLIFT reference volume was the MRI volume back-
ground, of all zeros. This was a suggestion o�ered by the authors of the DeepLIFT paper [86]. The second
reference volume that we used was a composite image made of all the test set volumes. This was created
simply by adding the volumes all together, and dividing through by the total number of individuals in the test
set (that is, 132). Respectively we call these DeepLIFTbg and DeepLIFTcomp. For LRPCMP, we used the three
values of α = 1, 2, 3, like Grigorescu et al. [16]. Algorithms 1 and 2 show how the saliency mapping methods
were implemented on the trained model.

Algorithm 1 Pseudo-code for implementing the LRP methods on the trained model. The LRP function takes
as input the current state of the saliency map, the parameters of the given layer, the activations at that position,
and the relevant value of the parameter α. Text in italics, marked by an empty triangle, is a comment on a
speci�c part of pseudo-code.

for α in {1, 2, 3} do
for subject in test_set do

subject_activations← F (subject) . F returns list of activations at each model layer, speci�c to input
for layer in model do . Layers in order from output to input

map← LRPCMP (map, layer.parameters, subject_activations[layers.position], α)
end for
save map

end for
end for

We can visualise the 3D saliency maps as we would the 3D MRI volumes. One method of doing so is
through the display of sections along di�erent axes of the brain volume. This is commonly done in clinical
and research settings e�ciently using the FSLEyes application [1], which we utilised for our visualisations. It
is easy to see relative assignments of relevance between and within large areas, and perhaps which areas were
overall the most or least salient. However, to quantify the relevance assigned to each region of the brain, we
must use numerical measures. To this end we threshold the saliency maps to determine the voxels of greatest
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Algorithm 2 Pseudo-code for implementing the DeepLIFT methods on the trained model. For each of the
DeepLIFT methods, we have to compute the di�erence-from-reference values. The DeepLIFT function takes
as input the current state of the saliency map, the parameters of the given layer, and the di�erence-from-
reference values at that position. Again, text in italics, marked by an empty triangle, is a comment on a
speci�c part of pseudo-code.

for method in
{

DeepLIFTbg,DeepLIFTcomp

}
do

if method=DeepLIFTbg then
reference← background_volume

else
reference← composite_volume

end if
reference_activations← F (reference) . F returns list of activations at each model layer, speci�c to

input
for subject in test_set do

subject_activations← F (subject)
subject_di�erences← subject_activations− reference_activations . Di�erence-from-reference
for layer in model do . Layers in order from output to input

map← DeepLIFT(map, layer.parameters, subject_di�erences[layers.position])
end for
save map

end for
end for

saliency. For each individual the top 1% of activations in their saliency map is thresholded, for each method.
These correspond spatially to the voxels in the individual’s pre-processed MRI volume which were the most
relevant (top-1%) to the regression output. We refer to such activations as Top-1% Relevance (T1R), and these
were our primary measurement of relevance distribution. This measure of regional relevance attribution is
similar to the method employed by Levakov et al. [17]. Using the region atlas, we determine the number of
T1R activations which lie in each region.

While Hofmann et al. [18] showed statistical signi�cance toward BA in their LRP saliency maps, they did
not address the concerns of Geirhos et al. [85] and Sixt et al. [82]. The concern raised was that modi�ed
backpropagation techniques like LRP tend to recreate the input as opposed to focusing solely on regions of
saliency. To determine statistically signi�cant di�erence from the input, we create di�erence maps between
the input volumes and their corresponding saliency maps (each normalised to have unit variance). These were
the inputs to a permutation-based one-sample t-test to determine statistical signi�cance. FSL’s randomise tool
[5] was used for this. 5000 permutations were performed for each method (the number recommended by the
creators for publication), using threshold-free cluster enhancement (TFCE). The output of the test is a 3D
volume of (1− p)-values. We hope to show that the majority of the saliency mapping volume is signi�cantly
di�erent from the input.

3.2.5 Evaluation Technique

To evaluate the saliency maps we turned to the analysis of a domain expert. In this analysis, we aimed to show
whether or not the regions that were assigned most relevance were those expected of the ageing process. Dr
Jonathan Ipser, our domain expert, is a Senior Research O�cer in Neuroimaging at the University of Cape
Town. His research directly concerning neuroscience dates back as far as his 2005-2010 PhD thesis, entitled
‘The relationship between impulsivity, a�ect and a history of psychological adversity: A cognitive-a�ective
neuroscience approach’. Dr Ipser’s expertise in brain ageing has been acquired through familiarity with the
relevant peer-reviewed literature, as well as his own studies. Both of these have guided his focus toward
regions of interest particular to brain ageing in general, as well as in psychiatric populations. The most salient
structural features of interest to Dr Ipser indicative of ageing are the cerebral ventricles (known to dilate with
age [11, 142]), the density of grey matter in the frontal cortex (known to decrease with age [140, 141, 142]),
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and hippocampal structures (known to play a role in healthy ageing [143]).

Beyond the domain expert analysis, we wish to determine some other characteristics of the data. We
performed the following analyses:

1. Determined on average over the test set, which regions were most heavily assigned relevance for each
method, and which were least assigned relevance.

• This was assessed by our domain expert. T1R was compared across regions for di�erent methods.
The similarities and di�erences between methods was analysed, as well as agreement with areas
known to be relevant to BA.

2. Examined the relationship between high DBA and region-speci�c saliency.
• To determine DBA, we used the de�nitions of Smith et al. [144]. The uncorrected score δ1 =
Ypred−Y is age-dependent, where Y is the column vector of chronological ages in the test set and
Ypred is the predicted ages. The age-orthogonalised score δ2 = (I − Y Y +) δ1 is independent of
age, where Y + = (Y ᵀY )−1 Y ᵀ is the pseudo-inverse of Y (treating Y like anN×1 matrix). Using
the age-orthogonal measure of DBA, δ2, the distribution of DBA becomes approximately normal
(see Section 4.1.1). It is of interest to us to examine the correction di�erence, |δ1−δ2| = |Y Y +δ1|,
as this quanti�es the extent to which the model regresses towards the mean (regression towards
the mean is the cause of chronological age-dependence of DBA; see Section 2.7).

• Using δ2 as a measure of DBA instead of δ1 not only removes the dependence on chronological age
(see Section 2.7), but also allows us to threshold ‘high’ DBA using the standard deviation of the
DBA scores. This has not been done before in the literature, and so we make the simple choice of
threshold DBA value δ∗ = σ for which δ2 ≥ δ∗ determines ‘high’ DBA. σ represents the standard
deviation of the value δ2 over the test set. For each method we examined the distributions of T1R
for three groups of individuals:
� Individuals with high DBA δ2 ≥ δ∗ in an older age-group (> 50y)
� Individuals with high DBA δ2 ≥ δ∗ in a younger age-group (< 50y)
� Individuals with small-to-moderate DBA |δ2| ≤ δ∗

We chose to split the high-DBA individuals into an older and younger cohort to examine the
e�ect of age on the distribution of T1R in high-DBA individuals. We chose 50y as the old/young
threshold since this is roughly the mean of our dataset ages.

3. Created region-speci�c trajectories of BA saliency.
• We split the test set into seven age bins of equal age range, and examined for individual structures

the trajectories of T1R for each method over the ages. For each region, the trajectory was calcu-
lated as the average of the proportions of T1R across all individuals lying within each age bracket.
We chose seven bins because this was the largest number that a�orded a non-trivial number of
individuals per age bracket (with more brackets, some contained fewer than 5 individuals, which
was deemed insu�cient).

• We are most interested in those highly-salient regions whose T1R changes most over the course of
ageing, and those whose T1R changes least. These regions are of interest because they are the most
illustrative of changes or the lack of changes in T1R over the course of ageing. The regions with
greatest change were quanti�ed by the highest Standard Deviations (SD) in T1R across the age
brackets. The regions with lowest change were quanti�ed by the lowest Coe�cients of Variation3

(CoV) in T1R across the age brackets. We use these separate metrics for the two quantities, since
those regions with low SD tend to have very low total relevance, and so do the regions with high
CoV. The latter is due to the fact that small perturbations in T1R for regions with very low average
T1R lead to large CoVs. We wish to focus on regions that are highly salient overall, but either have
a very high degree of change or a very low degree of change over the age brackets.

3SD normalised by the mean T1R across age brackets
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3.3 Overview of Experiment
We train a ResNet model to regress BA on T1-weighted MRI volumes. We then apply LRP and DeepLIFT
saliency mapping techniques to determine relevant areas to brain ageing. We are most interested in the
highest contributions towards brain ageing. We therefore examine the distribution of top-1% relevance (T1R)
in our analyses:

1. We compare the distributions of T1R between methods to determine the similarities and di�erences in
explanations of BA. We also examine how each method’s explanations compares to the expectations of
our domain expert and the current literature.

2. To determine saliency trends for accelerated brain ageing, we examine the e�ect of large DBA on re-
gional T1R distribution. We are interested in how this changes with age as well, and so we examine
high-DBA subjects in an older and a younger group, in comparison to individuals with low to normal
DBA.

3. We are interested in how regional relevance assignment changes over the course of ageing, especially
in highly salient regions. We create population trajectories of T1R for each region to determine how
saliency distributions change with age.
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Chapter 4

Experimental Results

In this chapter we will discuss the results of our experiment and the associated data. To begin, we will examine
the training and test performance of the regression model. We will then examine the results of applying the
saliency mapping techniques to the model. In analysing the saliency mapping results, we focus on answering
each of our research questions.

4.1 Brain Age Regression
We performed hyper-parameter tuning with a grid search over 2 × 2 × 3 = 12 con�gurations, detailed in
Section 3.2.3. We found that the best hyper-parameter con�guration was with the Adam optimiser [164], the
MSE loss function, and a starting learning rate of 5× 10−3. Over the three tuning runs of 8 epochs each with
this hyper-parameter con�guration, an average test MAE of 19.84y was achieved. The training and validation
performance are shown in Figure 4.1.

Figure 4.1: Metric performances of the model during training
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Training ended at the 143rd epoch due to the early stopping callback, by which point the learning rate
had decreased to 4×10−5. The instance of the model with lowest loss was saved, which had 31.99y2 MSE,
4.56y MAE and 9.72% MAPE on the training set. On the test set, the model achieved an MSE of 72.55y2,
an MAE of 6.55y, and an MAPE of 13.53%. The coe�cient of regression corresponding to this performance
was r = 0.89. The regression plot for the test set performance is given in Figure 4.2. Our metrics of model
performance were the MAE, MSE and MAPE. As is most common in the literature, we report with greatest
interest the MAE.

While this performance is far from SOTA, with Kossai� et al. [153] achieving a test MAE of 2.69y (see
Section 2.7.2), the BA regression task has not been performed on a dataset this small before, and a relatively
good coe�cient of regression has been achieved (see Lin et al. [50]). There are clearly several extreme mis-
classi�cations though. These individuals have very high absolute values of DBA. DBA is not a metric that
interests us for the model performance, but rather it is an indication of what the model treats as deviations
from a normal ageing trajectory.

Figure 4.2: Regression plot of the trained model on the test set. Dotted line shows the ideal best �t line, where
the predicted age equals the chronological age. The Pearson correlation coe�cient for the test set
predictions on this line is r = 0.89. Solid black line shows the actual line of best �t, with gradient
0.89 and o�set 4.41y. The Pearson correlation coe�cient for the test set predictions on this line is
r = 0.96.
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4.1.1 Test set DBA

Figure 4.3: Distributions of the calculated values δ1 and δ2, as de�ned in Equation 2.29 in Section 2.7 and again
in Section 3.2.5, within the test set. The age-orthogonality correction for the quantity δ2 shifts the
distribution to the left to become approximately normal.

The distribution of the DBA values in the test set is shown in Figure 4.3 for the quantities δ1 and δ2 as de�ned
by Smith et al. [144], in Equation 2.29 in Section 2.7 and again in Section 3.2.5. The age-orthogonalisation
correction of δ2 shifts the distribution of DBA to become approximately normal. The mean of the δ1 values
is 3.30y with a range of (−24.98, 32.70); the mean of the δ2 values is 0.98y with a range of (−27.79, 30.47).
This allows us to de�ne thresholds for ‘extreme’ DBA symmetrically, in terms of the standard deviation.

Figure 4.4: Bottom: DBA values δ1 and δ2 for the individuals in the test set, with the di�erence (green) in-
creasing linearly in age. Top: The di�erence δ1 − δ2 = Y Y +δ1 (see Section 2.7) as a function of
chronological age. The linear increase illustrates the expected regression towards the mean. The
small gradient of 0.02 shows that our model does not badly regress towards the mean.

The correction of individual DBA values is shown in Figure 4.4. The lower plot is a scatter plot of the
DBA value pairs (δ1 and δ2 for each individual), ordered by chronological age. The correction (δ1 − δ2)
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goes up linearly in age by Equation 2.30, and this di�erence is shown in green in the lower plot and in the
upper plot. The linear increase in this di�erence is expected, and illustrates the extent to which the model
regresses towards the mean (see Section 2.7). The regression of our model towards the mean is very moderate,
considering the fact that the corrections to the DBA values are mostly small [144] (with a small correction
gradient of 0.02) and that while our MAE of 6.55y is not small, we have a strong coe�cient of correlation,
r = 0.89.

4.2 Saliency Mapping
Saliency mapping was completed for the �ve methods on all individuals in the test set. Figures 4.5 and 4.6
show sections (slices) of the average T1R over the test set for each method, overlaid onto the composite MRI
volume. The saliency maps and the composite volume correspond spatially, such that highlighted areas show
population average T1R within the composite volume. This was done using FSLMaths and FSLEyes [1] tools.
In Figure 4.7, we compare the T1R thresholded aggregated saliency maps for DeepLIFTcomp and LRP1.

(a) DeepLIFTbg T1R

(b) DeepLIFTcomp T1R

Figure 4.5: Coronal (left), transverse (middle), and mid-sagittal (right) sections of top-1% of relevance voxels
from aggregated saliency maps for both DeepLIFT methods (yellow and red), overlaid on the com-
posite test set volume (grey). The lateral ventricles (dark grey spaces in the center of each section
of the composite volume) are surrounded by a high proportion of T1R.
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(a) LRP1 T1R

(b) LRP2 T1R

(c) LRP3 T1R

Figure 4.6: Coronal (left), transverse (middle), and mid-sagittal (right) sections of top-1% of relevance voxels
from aggregated saliency maps for each LRP method (yellow and red), overlaid on the composite
test set volume (grey). The lateral ventricles (dark grey spaces in the center of each section of the
composite volume) contain a high proportion of T1R.

The permutation-based t-test yielded statistical signi�cance in almost the entire brain volume (p < 0.001).
Figure 4.8 shows two sections of a brain region atlas, illustrating the positions of several brain regions relevant
to our discussion.
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(a) LRP1 T1R in foreground

(b) DeepLIFTcomp T1R in foreground

Figure 4.7: Comparison between top-1% of saliency voxels for the aggregated maps of DeepLIFTcomp (Blue)
and LRP1 (Red-Yellow)

(a) Mid-sagittal section of brain region atlas. (b) Coronal section of brain region atlas.

Figure 4.8: Labelled sections of brain atlases, showing some brain regions that we refer to. Images courtesy
of article by Dr Matthew E. Bain (28-02-2011) in HealthPages.org

.
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In our analyses of the saliency of individual regions1, we average the proportion of T1R between hemi-
spheres. This is common practice, and makes for less cluttered analyses. To justify this, we can analyse the
correlation coe�cients between the hemispheric region pairs, as in Figure 4.9. This shows the histograms for
each method of correlation coe�cients for T1R in each brain region. Every region has some positive correla-
tion between left and right hemispheres, and those with the lowest correlation coe�cients tend to be assigned
T1R in very low proportion.

(a) LRP1 (b) LRP2 (c) LRP3

(d) DeepLIFTbg (e) DeepLIFTcomp

Figure 4.9: Histograms of correlation coe�cients of T1R between left- and right-hemispheric structures. Many
regions have high correlation coe�cients between hemispheres, and those that do not tend to be
assigned very little relevance in total on average.

4.2.1 Relevance Assignment Between Methods

In Figures 4.6 and 4.5 we see many similarities and di�erences between the methodological assignment of T1R.
There is a striking similarity between the T1R distributions of the two DeepLIFT methods. The LRP methods
are very similar to one-another, although the clustering of T1R is increasingly noisy with greater values of the
parameter α. This is to be expected, as we understand that larger values of α correspond to greater contrast in
the resulting saliency maps. A key di�erence is that of assignment of T1R to the ventricles. The LRP methods
tend to assign a high degree of relevance to the ventricles themselves, as shown in the overlay �gures. The
DeepLIFT methods on the other hand, tend to assign relevance not to the ventricles so much, but rather to
the regions immediately surrounding the ventricles.

To assess quantitatively the di�erences in T1R distribution between methods, we examine for each method
the proportion of each region containing T1R. This is shown in Figure 4.10. We see that largely the same
downward trend is present across the methods, in descending order of T1R for LRP1. The LRP methods assign
T1R to a particularly large proportion of the ventricles; for example, over 10% of the lateral ventricle contains
voxels in the top-1% of total brain age saliency by each of the LRP methods. While the DeepLIFT methods
do so as well (with particular exception of the fourth ventricle, which is assigned almost no T1R for either
DeepLIFT method), it is not nearly to the same extent. Large proportions of T1R are assigned by all methods
to the surrounding limbic regions such as the caudate nucleus, hippocampus, thalamus, diencephalon, and
parahippocampal gyrus. By the analysis of our domain expert, these are areas known to be involved in
brain ageing. DeepLIFT tends to attribute greater proportions of T1R to these regions however, especially
the parahippocampal gyrus. The parahippocampal gyrus is located near the fourth ventricle, and DeepLIFT
tends to assign almost no T1R here; the disparity in these two regions between the LRP and DeepLIFT methods
may be explained by DeepLIFT’s proclivity to highlight the areas surrounding the ventricle as opposed to the
ventricle itself.

1Apart from individual region-wise saliency trajectories
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Figure 4.10: Proportion of each region assigned Top-1% Relevance per method. Regions are ordered in de-
scending proportion of T1R as determined by LRP1.

We refer the reader again to Figure 4.8 for reference to the positions of some regions within the brain. One
region that is universally assigned T1R in large proportion is the transverse temporal gyrus (in the temporal
lobe). This is to be expected according to our domain expert, as this structure comprises part of the auditory
cortex, and is known to play a role in healthy ageing [152]. The optic chiasm is assigned T1R in large propor-
tion too. Grey-matter-dense structures such as outer cortical regions and the vermal lobules of the cerebellum
tend to be assigned T1R in large proportion. It is interesting to note however that the cerebellum white matter
is universally assigned T1R in very low proportion. Also, as partly illustrated in Figures 4.6 and 4.5, there is
generally very little T1R assigned to white matter regions in the saliency maps for the T1-weighted volumes.

Between the LRP methods there is a high degree of similarity in assignment of T1R to brain regions. There
is an even higher degree of similarity between the DeepLIFT methods; Figure 4.10 shows that the curves of the
two DeepLIFT methods almost perfectly overlap. There is a high degree of consistency between DeepLIFT
and LRP in regional BA relevance assignment, apart from the major disparity in assignment between the
ventricles and the parahippocampal gyrus.

4.2.2 Relevance Assignment for Large DBA

Since thresholding DBA for BA analysis has not been performed before in the literature as far as we could
�nd, we chose for our experiment the simple DBA threshold value δ∗ = σ, where σ is the standard deviation
of the quantity δ2 in the test set. In the test set, we had σ = δ∗ = 11.58y. In Figures 4.11-4.15, we show the
e�ect of large DBA on regional T1R distribution in older (> 50) and younger (< 50) individuals. Again we
have averaged the relevance between the two hemispheres.

Several highly relevant structures show signi�cant change in the proportion containing T1R between the
older and younger individuals with high DBA, and as compared to the individuals with moderate DBA. One
such region is the thalamus; all methods assign signi�cant relevance to the thalamus in the younger high-DBA
group, less relevance to the baseline group, and less still to the older high-DBA group. In the LRP methods,
the same is true for the fourth ventricle.

The basal forebrain and (in the case of LRP) the transverse temporal gyrus tend to have the opposite trend,
whereby more relevance is assigned to older high-DBA individuals, and less to younger high-DBA individ-
uals.On the other hand, some structures tend not to change much in their assignment of relevance due to
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Figure 4.11: Distributions of Top-1% Relevance, via DeepLIFTbg, in young (≤ 50y) individuals with high DBA
(δ2 > δ∗), elderly individuals (> 50y) with high DBA, and individuals with small-to-moderate
DBA (|δ2| < δ∗). Regions are ordered by descending proportion of T1R in the small-to-moderate
DBA group.

high DBA or age. In the case of both DeepLIFT methods, the transverse temporal gyrus does not change in
relevance to a great degree from one group to another.

Figure 4.12: Distributions of Top-1% Relevance, via DeepLIFTcomp, in young (≤ 50y) individuals with high
DBA (δ2 > δ∗), elderly individuals (> 50y) with high DBA, and individuals with small-to-
moderate DBA (|δ2| < δ∗). Regions are ordered by descending proportion of T1R in the small-to-
moderate DBA group.
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Figure 4.13: Distributions of Top-1% Relevance, via LRP1, in young (≤ 50y) individuals with high DBA (δ2 >
δ∗), elderly individuals (> 50y) with high DBA, and individuals with small-to-moderate DBA
(|δ2| < δ∗). Regions are ordered by descending proportion of T1R in the small-to-moderate DBA
group.

Figure 4.14: Distributions of Top-1% Relevance, via LRP2, in young (≤ 50y) individuals with high DBA (δ2 >
δ∗), elderly individuals (> 50y) with high DBA, and individuals with small-to-moderate DBA
(|δ2| < δ∗). Regions are ordered by descending proportion of T1R in the small-to-moderate DBA
group.
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Figure 4.15: Distributions of Top-1% Relevance, via LRP3, in young (≤ 50y) individuals with high DBA (δ2 >
δ∗), elderly individuals (> 50y) with high DBA, and individuals with small-to-moderate DBA
(|δ2| < δ∗). Regions are ordered by descending proportion of T1R in the small-to-moderate DBA
group.

4.2.3 Relevance Assignment Across Age brackets

Figure 4.16: Standard Deviation in regional proportion of T1R over the age brackets for each method. Regions
are ordered in descending SD of LRP1.
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Figure 4.17: Coe�cient of Variation in regional proportion of T1R over the age brackets for each method.
Regions are ordered in ascending CoV of LRP1.

(a) Right Transverse Temporal Gyrus. Large Standard
Deviation in T1R over age brackets, and relevance
increases with age.

(b) Right Fourth Ventricle. Large Standard Deviation
in T1R over age brackets, and relevance decreases
with age.

(c) Right Lateral Ventricle. Low CoV in T1R over age
brackets.

(d) Right Caudate Nucleus. Low CoV in T1R over age
brackets.

Figure 4.18: ‘Proportion’ of Top-1% Relevance per method over the age brackets. The proportion of T1R is
normalised in each sub-�gure such that either the youngest or oldest group have T1R assignment
of 1. Brackets all have an age range of 9.57y. Four example regions are shown.
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Trajectories of BA relevance are created for each region of the brain, for each method, by grouping individuals
into seven bins of equal age range and determining within each bin the average proportion of the region is
assigned T1R. Figures 4.16 and 4.17 show the Standard Deviations and Coe�cients of Variation respectively of
the proportion of T1R over these age brackets within each region of the brain. We argue the case for using two
separate metrics for the greatest and least change in relevance in Section 3.2.5. We are interested in regions
that have a high proportion of T1R but either change a lot over age brackets or change very little. Regions
with small SDs tend to have very little relevance assigned overall, and the same is true for regions with high
CoVs. An example of such a structure is the putamen. The CoV of the putamen is very high, while its SD is
very low. This is due to its generally low proportion of T1R, and because of this low proportion, we are not
interested in the small �uctuations in proportion of T1R.

Figure 4.18 shows the change with age in relevance assignment to four example regions in the test set. We
normalise the proportion of assigned T1R such that the relevance of either the oldest or youngest bracket
is unity for all methods in each region. Figure 4.18a shows the assignment of T1R to the right transverse
temporal gyrus over the age brackets. For each of the methods we see a clear upward trend in relevance
with age. Figure 4.18b shows the assignment across age brackets for the right fourth ventricle. We see in this
case that the proportion of the region assigned T1R decreases with age. Figure 4.18c shows the age bracket
distribution of T1R for the right lateral ventricle. Apart from in the �nal age bracket, this region maintains
a uniform proportion of assigned T1R, especially by means of LRP2 and LRP3. In Figure 4.18d we see a
similar trend for the right caudate nucleus. With the exception of some middle-aged to older age brackets by
DeepLIFT, there is a very uniform distribution of assigned T1R across ages.

4.3 Summary of Results
We trained a BA regression model on a small dataset to a test MAE of 6.55y. While this is not SOTA, we note
that the coe�cient of regression achieved is high (r = 0.89), and no other work has used a dataset of this
size.

The saliency mapping techniques were largely similar in their distribution of T1R within the brain volume,
apart from a marked di�erence between LRP and DeepLIFT in allocation of T1R in and around the ventricles.
While LRP tends to assign T1R to the ventricles in high proportion, DeepLIFT does so to the areas immediately
surrounding the ventricles such as the parahippocampal gyrus.

We found that high-DBA individuals have T1R distributions that can vary greatly from those of medium-
to-low-DBA individuals. Furthermore the direction and extent of this variation can be age-dependent. It was
not the case that highly-relevant regions only increased in signi�cance with age and high DBA. Indeed, many
regions are assigned greater relevance in the younger high-DBA group than the older high-DBA group.

We found that regions with high SDs in age-bracket assignments of T1R tend either to increase in T1R
proportion with age or decrease in T1R proportion with age. We found also that regions with low CoV in
age-bracket relevance assignment tend to have uniform proportion of T1R across age brackets. It was not the
case that highly-relevant regions only increased in relevance with age. In fact, there were many such regions
which decreased in the proportion of assigned T1R with age.
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Chapter 5

Discussion

The goal of this study was to train an accurate BA regression model from which we could create saliency
maps to extract meaningful data about brain ageing. In this chapter we examine our results and discuss the
extent to which each of our goals was met, and how the results answered our research questions.

5.1 BA Regression Model
Newer architectures were considered for the task of BA regression, such as the Tensor Regression Networks
of Kossai� et al. [153]. Since, however, they have not previously had saliency mapping techniques applied to
them, the high-performing ResNet model was employed.

The hyper-parameter tuning phase indicated that for our model the best optimiser was Adam [164]. Some
current BA regression literature makes use of this [18], while some others use RMSProp [145] or stochastic
gradient descent methods [49, 17]. There does not seem to be a favoured optimiser in the literature. The loss
function that was indicated as best was the MSE. Although the MAE is used commonly as the standard metric
by which BA regression performance is measured, some authors choose to use MSE for the loss function in the
task [145, 18]. The MSE and MAE seem to be the two most commonly used loss functions for the BA regression
task. A major di�erence between the two is that the MSE penalises large errors to a much greater extent than
the MAE, and small errors to a lesser extent. Peng et al. [146] use the Kullback-Leibler divergence loss to
great success, which was not considered in the hyper-parameter optimisation. Performance was drastically
improved by the use of a decaying learning rate as compared to a constant learning rate (which yielded an
MAE of > 9y on the test set), as well as increasing the batch size to 4 by many means of conserving RAM.
Most methods used for conserving RAM are not discussed to a great extent in the literature. Instead, the
methods we used come from advice given in online forums.

The hyper-parameter tuning phase was limited in the number of hyper-parameters that were considered. It
may be the case that tuning other features of the model, such as the number and size of residual blocks would
produce more accurate models. Furthermore, only one model was trained with the chosen hyper-parameters.
It may easily be the case that many such models may perform better with similar training times but di�erent
random parameter initialisations. It would be advisable to train multiple models for the task in the future, and
either select the best model, or create an ensemble model like Levakov et al. [17] and Hofmann et al. [18].
Our model’s performance is compared to some other key works in BA regression in Table 5.1, taking dataset
size into consideration.

The regression model was successfully trained to a correlation coe�cient of r = 0.89 (strong correlation).
While the MAE of 6.55y is not SOTA, no BA model in the literature has utilised a dataset of this size to
this level of accuracy. This would indicate that while very large datasets may be necessary for SOTA per-
formance, they may not be necessary simply to train a BA regression model of reasonable accuracy, such as
our strong correlation of r = 0.89. As stated in Section 2.8 it can be prohibitively di�cult to access large
MRI datasets, and working with such datasets introduces considerable computational overhead. It may be
preferable therefore for some researchers to use smaller datasets if SOTA accuracy is not necessary.

Our main reason for using such a small dataset was for ease of computational burden. Compared to other
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Author Ours
Cole
et al.
[49]

Jónsson
et al.
[156]

Kossai�
et al.
[153]

Levakov
et al.
[17]

Hofmann
et al.
[18]

Peng
et al.
[146]

Dataset Size 656 2001 12378 19100 10176 2016 14503
Test MAE (y)
on T1 Volumes 6.55 4.65 4.00 2.69 3.02 3.95 2.14

Table 5.1: The test MAE performances of several key BA regression studies in comparison with ours, consid-
ering the size of datasets used.

works using datasets of thousands or even ten of thousands of scans, this work can be seen as under-powered.
Indeed, using a larger dataset would allow not only for better model performance, but statistically stronger
saliency mapping results.

5.2 BA Regional Saliency
Regions which were expected to be of greatest saliency towards BA by our domain expert were the ventri-
cles and surrounding regions, grey-matter-dense regions such as the outer cortex of the cerebrum and the
cerebellum, and frontal and temporal structures of the brain. As expected, a signi�cant proportion of T1R
was assigned to the ventricles, especially by LRP. This is in accordance with not only the expectations of our
domain expert and the relevant literature [11, 142], but also the �ndings of Levakov et al. [17] and Hofmann
et al. [18].

One region that is universally assigned T1R in large proportion is the transverse temporal gyrus (in the
temporal lobe). This agrees with the expectations of our domain expert, and is known to be a�ected by
healthy ageing [152], and partly comprises the auditory cortex. Grey-matter-dense areas such as the vermal
lobules of the cerebellum were also assigned high proportions of T1R. This is in accordance with many medical
�ndings that grey matter density decreases with age, starting from late adolescence [140, 141, 142]. On the
other hand, it was found that white matter regions generally were not assigned high proportions of T1R. This
is despite the fact that white matter lesions are well-known markers of brain ageing [140, 11, 141, 142]. The
lack of relevance assigned to white matter regions is likely due to the fact that we used T1-weighted volumes
in our experiments. As discussed in Section 2.1, T1-weighted volumes are less telling of white matter lesions
than T2-weighted volumes. The optic chiasm is assigned T1R in large proportion too. This was not expected
by our domain expert; however, it agrees with the �ndings of Levakov et al. [17], due to the position of
the optic chiasm within the interpeducular cistern. Many limbic structures such as the amygdala, caudate
nucleus, thalamus and hippocampus were assigned T1R in large proportion. This is in agreement with the
expectations of our domain expert and previous �ndings of brain age with regard to the limbic system by
Gunbey et al. [143].

5.3 BA Saliency Mapping Methods
We implemented two DeepLIFT saliency mapping techniques and three LRP techniques for the BA regres-
sion task. For DeepLIFT we used a reference input of MRI background activations (voxel values of 0) and a
composite MRI volume formed from all of the test set MRI volumes. For LRP, we used the composite method
with α = 1, 2, 3.

We analysed the regional distribution of top-1% of total brain volume relevance (T1R) to evaluate the
utility of the saliency mapping methods. All methods strongly highlighted brain regions known to be key
contributors to BA pathology. The ventricles and their surrounding regions were consistently assigned a very
high proportion of T1R (except for the fourth ventricle by DeepLIFT), which agrees strongly with the �ndings
of Levakov et al. [17] and Hofmann et al. [18], as well as the expectations set by the medical literature [11, 142].
Grey-matter-dense regions and limbic regions were also assigned a high proportion of T1R, especially by
DeepLIFT. This too is in concordance with the medical literature [140, 141, 142, 143], but no previous BA
regression analysis has produced such strong relevance in the limbic system. Since DeepLIFT has never been
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used for the BA regression task before in the literature, it is not too surprising that we �nd a di�erent relevance
distribution. Indeed, this may call for the implementation of other saliency mapping methods to this task in
the future, to examine other possible di�erences in saliency distribution.

Although the trend of regional T1R distribution is largely similar among the methods used, there were
some notable di�erences. The biggest di�erence was that the LRP methods assigned most relevance to the
ventricles, while the DeepLIFT methods assigned most relevance to the regions immediately surrounding the
ventricles. This trend is shown clearly in Figure 4.7, where the aggregated T1R maps from DeepLIFTcomp and
LRP1 are compared. Initially this was thought to be due to the masking-like e�ect of the DeepLIFT methods,
whereby contribution scores are computed as the direct product of the input di�erence-from-reference and the
multipliers, C∆x∆t = m∆x∆t∆x. Since the values of the voxel activations of the ventricles tend to be close to
0 (‘dark’ CSF-�lled volumes), this was thought possibly to mask out a signi�cant amount of relevance assigned
by the multipliers. Upon inspection of the multipliers, however, it was revealed that the same distribution
emerges, and a masking e�ect did not take place.

While LRP assigns very high proportions of T1R to the fourth ventricle, for example, the DeepLIFT meth-
ods assign almost none here, and instead assign the highest proportion of T1R to the parahippocampal gyrus,
which is very close. While LRP focuses on the dilation of the ventricles with age, it would appear that
DeepLIFT focuses more on the atrophy of the surrounding regions with age. Interestingly, this would in-
dicate that the model has developed a di�erent concept of the CSF-�lled ventricles as compared to other
structures in the brain, since these are the only areas showing such great disparity in the di�erent expla-
nation methods. The explanations o�ered by DeepLIFT tend to highlight solid structures more favourably
(non-CSF structures), while the LRP methods distribute relevance both to the solid brain matter and the CSF-
�lled ventricles. This does not appear to be a matter of choice of reference image for DeepLIFT, since the
relevance distributions are almost identical for the di�erent choices we have implemented.

While in the literature, LRP and DeepLIFT have been compared for classi�cation and detection tasks [92,
82], we have not found any comparisons between the two in the case of regression. The two methods act
similarly under classi�cation and regression circumstances, since they both tend to highlight the relevant
area of an input data point (an image for example) to the output. In the case of regression however, relevance
must be distributed throughout the entire input region (at least, the parts of the input region that are subject
to change from one data point to another) [165].

Given that the LRP and DeepLIFT methods both perform well by assessment of our domain expert, and
that the major di�erences between the two are perspectival (ventricles versus surrounding regions), neither
is necessarily more suitable toward the task of BA explanation than the other in this context. By way of
recommendation, it may be best to employ both LRP and DeepLIFT methods towards BA explanation, as the
di�erences in explanations can be complementary. While LRP highlights the ventricles for example, DeepLIFT
highlights the exact areas of brain matter that recede with age. The DeepLIFT methods are highly consistent
in their assignment of T1R. The distributions across regions are almost identical for the two reference inputs.
Neither of the DeepLIFT methods is preferable over the other in this sense, and so a choice of reference input
is at the user’s discretion. In light of the DeepLIFT author’s comments on what would constitute a reasonable
choice of reference input [87], this would indicate that both reference inputs serve their function well. The
LRP methods are also highly consistent, but not to the same degree. It seems that the disparities in T1R
distributions between the LRP methods lies in the fact that for α ∈ {2, 3}, LRP has very high contrast, and
the saliency map volumes become somewhat noisy, even when thresholded for T1R. To this end, it may be
best to recommend α = 1 as the parameter of choice when utilising LRPCMP. This will produce less noisy
and generally more visually appealing saliency maps [69]. This is the most commonly used form of LRP in
the current literature [73, 74, 71, 75, 16, 76, 18].

5.4 BA Relevance for Large DBA
With a threshold DBA value of δ∗ = σ = 11.58y, we showed that large DBA (δ2 > δ∗) corresponds to sig-
ni�cant changes in the proportion of T1R in many brain regions, and that this change can be age-dependent.
The only examination in the literature that could be found of the relationship between DBA and BA rele-
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vance was that of Hofmann et al. [18]. Their �ndings showed that voxel clusters associated with large DBA
corresponded spatially with increased relevance. However, only an older cohort was analysed (≥ 50y).

We know that large relevance assignment to an area indicates that the area is predictive of accelerated
BA. For individuals with large DBA, di�erences in proportional assignment of T1R to regions should indicate
which regions are contributing most to the discrepancy. We showed that not only is the distribution of T1R
di�erent for those with large DBA and those with moderate DBA, but that the di�erence is often dependent
on age-group. This was contrary to the �ndings of Hofmann et al.[18], since we found that in many regions
lower T1R was assigned in older subjects with large DBA. Indeed this is the case for many regions via each
method. Two such regions are the parahippocampal gyrus and the thalamus.

We found for example that both the thalamus and the fourth ventricle had a signi�cantly greater proportion
of assigned T1R in the younger high-DBA group (∼ 11% and ∼ 15% respectively) than the low-to-moderate
DBA group (∼ 8% and ∼ 11% respectively), and a signi�cantly lower proportion in the older high-DBA
group (∼ 2% and ∼ 6% respectively). Since increased relevance is predictive of higher DBA, this would
suggest that in younger individuals, the thalamus and fourth ventricle are each more telling of accelerated
brain age (and hence increased DBA) than in older individuals. We also found that the basal forebrain and
(in the case of LRP) the transverse temporal gyrus tend to have more relevance assigned in older high-DBA
individuals (∼ 7% and ∼ 8% respectively), and less in younger high-DBA individuals (< 1% and ∼ 4%
respectively). This would suggest that these regions are more telling of accelerated BA in older individuals
than in younger individuals. Severe neuronal loss has been found to occur in the basal forebrain in Alzheimer’s
Disease patients [166, 167]. Since not all elderly people experience Alzheimer’s Disease, it may be the case
that DBA is contributed to by the degradation of the basal forebrain only in some elderly individuals. This
could partially explain why there is a marked increase in relevance in the region in elderly subjects with high
DBA. The transverse temporal gyrus has been shown to be a�ected by healthy ageing [152], and this may
be due in part to its partial comprising of the auditory cortex. Not all people experience dramatic hearing
loss with age, but it is associated strongly with the onset of dementia and cognitive dysfunction [168]. This
may be part of why there is an increase in relevance of the transverse temporal gyrus in older individuals
with high DBA, as we would expect that degradation of the area would entail some attenuation in hearing,
which we know to be associated with neurodegeneration. From these �ndings, it would appear that regional
relevance can be more informative of DBA at some ages than at others.

In all of our analyses of saliency map data, we are faced with the issue of having only 132 subjects. It would
be advisable in future to perform saliency mapping on the entire dataset, for the sake of statistical power.
Alongside this, a larger dataset would allow for even greater statistical power in the analyses.

We have established that depending on the age of the individual, large DBA can correspond to lower-than-
normal or higher-than-normal proportions of T1R in brain regions. In other cases, the proportion of assigned
T1R does not change signi�cantly, regardless of the age-group. These �ndings were novel, and gave precedent
for the examination of region-wise trajectories of BA relevance over age.

5.5 BA Relevance Across Age Brackets
We examined the trajectories of the proportion of brain regions assigned T1R over age brackets. With special
interest we examined which highly-relevant brain structures change the most and the least over age brackets
with respect to the proportion assigned T1R. We found that while some highly-relevant regions changed
signi�cantly in assigned T1R over age brackets, other highly relevant regions did not change much. We then
regarded some example regions which illustrate the tripartite pattern of relevance trajectories that appears
across ages. Our primary source from the literature of what to expect from this analysis was again Hofmann
et al. [18]. Although they did not examine the trajectories of relevance over age, they did compare regions
of saliency between an older and younger cohort. The authors reported statistically signi�cant increases in
BA relevance in several regions in the older cohort, but did not report on any decreases in relevance. Our
expectation was that brain regions that were assigned T1R in high proportion overall would increase that
proportion in older individuals, and other, less salient regions would necessarily decrease in their proportion
of assigned T1R.
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For some regions, such as the right transverse temporal gyrus, the proportion assigned T1R increased
with age. Greater attribution of relevance in older individuals suggests that while the region is generally
highly informative of BA, it bears more information about BA and DBA in older individuals than in younger
individuals [18]. This agrees with our �ndings about relevance distribution based on DBA. These regions, and
those highly-relevant regions whose proportion of T1R decreased with age, had high SDs in assigned T1R over
age brackets. For some other regions, such as the right fourth ventricle, the proportion assigned T1R decreased
with age. This would indicate that the region is more informative about BA and DBA in younger individuals
than in older individuals. We did not expect this �nding, and indeed there are many regions which exhibit
this characteristic.

One may make sense of decreasing relevance trajectories by considering the fact that these regions do not
necessarily indicate that a young subject is older than expected, but simply that the region is more indicative
of DBA in younger individuals than older individuals. For example, it is well-established that the ventricles
dilate with age [11], and these structures are assigned a large proportion of T1R, especially by LRP. As we
have seen however, the right fourth ventricle is far more relevant to BA in younger individuals than older
individuals. This makes sense if we consider that an elderly person is expected to have large ventricles; on the
other hand, if a younger person has severely dilated ventricles, this would be indicative of accelerated brain
ageing. Indeed, Cannon et al. [169] showed that clinically high-risk individuals who later went on to develop
psychosis showed greater ventricular dilation at young ages as compared to high risk individuals who did
not go on to develop psychosis. With this in mind, we might expect many regions to have such decreasing
relevance trajectories. Other structures remained roughly uniform in their proportion of assigned T1R across
ages, such as the right lateral ventricle and the right caudate nucleus. This would suggest that the region is
uniformly informative of BA and DBA between young and old individuals. These are the regions with low
CoV.

It was found that each region followed one of these three trajectories over the age brackets. Given the fact
that increased relevance is indicative of accelerated BA [18], these trajectories imply the following:

1. Increased regional relevance with age indicates that the region is more informative of BA and more
salient towards large DBA in older individuals than in younger ones. The structure of the right trans-
verse temporal gyrus, for example, is more indicative in older people than in young people of patho-
logical brain ageing.

2. Decreased regional relevance with age indicates that the region is more informative of BA and more
salient towards large DBA in younger individuals than in older ones. The structure of the right fourth
ventricle, for example, is more indicative in young people than in older people of pathological brain
ageing. It may be the case that since the ventricles dilate with age for all individuals they are not very
telling of DBA in old individuals, whereas a young person with highly dilated ventricles is clearly ageing
at an accelerated rate. This would agree with our �ndings that for most of the ventricles, much higher
relevance is attributed in those younger individuals with high DBA than older ones.

3. Uniform or roughly uniform regional relevance with age indicates that the region is consistent
in its relevance toward BA and DBA.

The creation of region-speci�c trajectories of saliency over ages is the primary contribution of this work.
The establishment of these trajectories serves two purposes, as discussed in Section 1.6:

1. Determining the saliency of a given brain structure and the change thereof over time.

2. Allow for individual comparisons to a baseline relevance trajectory on a region-speci�c level. This can
be done to assess BA in a clinical setting.

We have discussed our contributions in regard to the �rst point. We now discuss how our �ndings have
served the second listed purpose and the utility to be found therein.

In a clinical application of the BA regression and saliency mapping tool, we can expect the following pro-
cedure to take place:

72



• An MRI scan is performed on a patient to acquire their brain volume.

• The brain volume is fed through the pre-processing/regression/saliency mapping pipeline to produce
BA and DBA predictions and a saliency map corresponding to the pre-processed volume, in just over a
minute (inference and DBA calculation is close to real-time; saliency mapping takes ∼ 1 minute on a
modern GPU).

• Regional distribution of T1R is determined (again, in close to real-time).

• The proportions of T1R per brain region can be compared to the baseline trajectories with particular
attention to the relevant age bracket. Signi�cant deviation from the trajectories within the age bracket
will warrant further investigation, especially in light of high individual DBA.

In this way we propose that this technology can be utilised in a clinical setting to determine regional
contributions to pathological brain ageing.
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Chapter 6

Conclusion

The primary aim of this work was to examine changes in BA saliency with age. We created a BA regression
model and performed LRP and DeepLIFT saliency mapping methods on unseen data. We then analysed the
similarities and di�erences between the saliency maps of the di�erent methods, in light of the literature on BA
regional importances and the knowledge of a domain expert. We then examined the di�erence between rele-
vance distributions for individuals with high DBA and those with low to moderate DBA, and further examined
the e�ect of age on the high-DBA relevance distributions. Our primary contribution was the examination of
the trajectories of saliency across ages for individual regions. We set about this aim through �ve objectives.

Objective 1: Create an accurate BA regression model using DL techniques

We have created a DL regression model that successfully (r = 0.8925) predicts chronological age based on
T1-weighted structural volumes. We were able to do this with a smaller dataset than has been used previously
in the BA regression literature. The main contributions of this work come from the creation and analyses of
saliency maps for the BA regression task.

Objective 2: Apply saliency mapping techniques to the BA regression model and compare
the results to known characteristics of brain ageing

This work compares and evaluates �ve di�erent saliency mapping methods – two DeepLIFT methods and
three LRP methods. The analysis of saliency map utility was performed through the assessment of T1R dis-
tribution by a domain expert. It was found that although there were di�erences in some distributions of T1R
between the methods, the areas of the brain deemed most salient were areas known to be a�ected by brain
ageing. These were the ventricles (particularly by LRP), grey-matter-dense areas such as the vermal lobules,
and surrounding limbic structures such as the thalamus, hippocampus and parahippocampal gyrus (especially
by DeepLIFT).

Objective 3: Analyse the di�erences between saliency mapping techniques speci�c to the
BA regression task, to determine the strengths and limitations of each

This objective addressed the �rst of our three research questions: What are the di�erences and similarities
between the explanations of BA from di�erent saliency mapping methods? Given the fact that all methods
focused on known areas of brain ageing, but that the LRP methods di�ered from the DeepLIFT methods in their
distribution of relevance relative to the ventricles, it is not of interest to recommend one group of methods
over another. In fact, the use of both methods may be preferable as an explanation for BA. Our �ndings proved
incorrect the hypothesis that was posed to this research question. Indeed there were meaningful di�erences
between the saliency mapping methods in their distribution of T1R, most notably in and around the ventricles.
This suggests that it may be of interest in the future to compare more methods of saliency mapping for the
BA regression task.
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Objective 4: Examine the link between region-speci�c saliency and accelerated brain age-
ing both in older and younger individuals

Our fourth objective addressed the second research question: How does accelerated brain ageing a�ect the
distribution of BA relevance? The regional distribution of T1R by each method was used to examine the
e�ects of large DBA on regional relevance. Individuals with large DBA were sub-categorised by age (older or
younger) and the distributions of T1R were compared to that of individuals with moderate DBA. It was found
that some regions increased or decreased dramatically in the proportion assigned T1R with high DBA, often
depending on age. The thalamus, for example, was found to have greater relevance in young individuals with
high DBA than those with low-to-moderate DBA by all methods, and less relevance in older individuals with
high DBA. On the other hand, LRP1 and LRP2 assign to the transverse temporal gyrus greater proportions
of T1R in older individuals with high DBA than in individuals with low-to-moderate DBA, and lower T1R
proportions in younger individuals with high DBA. This served as precedent to examine the distribution of
relevance in regions across age brackets. Our hypothesis was only partially correct in addressing this research
question. We do indeed see that relevance increased in some regions known to be a�ected by brain ageing, but
there was a strong age dependence in the change in relevance, and there were many regions which decreased
in relevance for speci�c age groups with high DBA compared to baseline.

Objective 5: Create region-wise trajectories of BA saliency over ages from a population
study

This addressed our third research question: How does BA saliency change with age on a region-wise basis? The
distribution of T1R allowed us to examine region-wise trajectories of BA relevance over age brackets. By
grouping subjects into seven age brackets, we were able to determine that a tripartite pattern of relevance
trajectories emerges. Regions tend to increase in relevance with age, decrease in relevance with age or remain
uniformly relevant with age, for all individuals, regardless of DBA. Our analyses suggest that this points
toward di�erential informativeness toward DBA on the basis of brain regions, as a function of age. Some
regions are more informative of DBA in younger individuals, such as the fourth ventricle; some are more
informative in older individuals, such as the transverse temporal gyrus; and some are uniformly informative
of BA and DBA across ages, such as the caudate nucleus. Our hypothesis to this end was again only partially
correct. While some regions decreased in relevance with age and others increased in relevance with age,
we found highly salient regions following each of these trends, as well as others which remained uniformly
salient with age.

6.1 Future Work
In the development of this work, the execution of experiments and the collation and analysis of data, several
avenues for future work have emerged. Due to constraints on time, not all the limitations of the work could
be addressed, and not all the ideas could be explored. In this section we describe avenues for future research
on the topics addressed in this work.

Dataset Size

The dataset used in this study was only of size n = 656. As we have discussed, this study can be seen as
under-powered. The main reasons for using such a small dataset was for ease of computational and storage
burden, and ease of access, since the dataset is freely available on application.

A larger dataset would allow for several improvements to the model and the analyses that were performed:

• Greater training data volume would allow for a more accurate BA regression model.
– A greater number of data points from a distribution allows for more accurate modelling of the

distribution (in this case, healthy brain volumes).
– Exposure to a necessarily more diverse set of individuals allows the model to generalise better in

its performance, and gives better representation of the population.
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• Greater test data volume would allow for greater robustness of the saliency mapping analyses.
– The distribution of DBA values would be more narrowly peaked with a better-performing model,

but the proportion of individuals lying outside of a threshold DBA value δ∗ = σ is expected to
remain roughly the same. We would expect that a larger number of individuals with ‘large’ DBA
(relative to the DBA distribution) would be made available for analysis.

– While the test set size of 132 is not too limiting for the comparison of regional T1R distribution
between methods broadly, the grouping of individuals into age brackets greatly diminishes the
power of regional relevance attribution analysis. A larger dataset (with a similar range and dis-
tribution of ages) would allow for a more robust modelling of region-wise brain age relevance
trajectories. With a big enough dataset, the age bracket size may be made smaller, such that a
�ner gradation of ages could be examined for these trajectories.

– Such improvements could also be made by using the entire dataset for saliency mapping as op-
posed to the test set only. We discuss this more below.

Strati�cation of Age and Sex in the Training-Test Split

We see in Figure 3.4 of Section 2.4.1 that the distributions of age in the training and test sets exhibit some
proportional disparity. The same is true of the proportional di�erences in sex between the two sets (50%
male in the training set and 47% male in the test set). This is because we did not stratify for age or sex in the
training-test split. In many brain imaging studies [49, 17, 18], the split between training and test sets strati�es
for age and sex, bringing the distributions into closer alignment. This would be advisable in future, so as to
expose the model to a closer representation of the underlying distributions both in training and testing.

Hyper-parameter Tuning

The hyperparameter tuning phase only focused on three elements of the model: the optimiser, the loss func-
tion and the starting learning rate. In future work, the model may bene�t from testing multiple values for the
following other hyper-parameters:

• The sequence of convolutional �lters.

• The number of residual blocks.

• The number and sizes of fully-connected �nal layers of the network.

• The method by which the three-dimensional data is �attened (e.g. �atten layer vs global average pooling
layer).

Number of Trained Models

Only one model was trained on the selected hyper-parameters. We do not know whether the model would on
average perform better or worse with di�erent random initial parameterisations. If more such models were
trained, we would be able to choose the best performer, or take a combination of results in an ensemble model
to create a better model than any single performer.

Ensemble Model

Levakov [17] and Hofmann [18] showed that not only does the BA regression task bene�t from the ensemble
method, but that saliency mapping works well on these models as well. As we discussed, it may be of great
utility to use the powerful ResNet architecture within ensemble models to boost performance further.

Hofmann et al. also showed that using multiple imaging modalities within an ensemble model greatly
enhances performance. Furthermore this allows for the production of modality-speci�c saliency maps. By
way of example, saliency maps from T2-weighted images are able to highlight white matter lesions much
better than those from T1 images. Including these di�erent modalities o�ers insight into a greater number of
aspects of BA.
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The ensemble model also o�ers quanti�cation of model uncertainty for regression, as well as for saliency
mapping. The ability to measure uncertainty would greatly improve the validity of results not only for the
brain age model, but for its explanations and the analyses of DBA and relevance trajectories. Combined with
a greater dataset size, this would greatly increase the power and reliability of the model and the analyses.

Saliency Mapping on the Entire Dataset

In future work, it would be advisable to perform the saliency mapping on the entire dataset, not only the test
set. Although we faced a burden of computational load and storage space, we could gain a lot of statistical
power by utilising the data from far more saliency maps. Using our entire dataset for the saliency mapping
techniques would multiply the number of assessed subjects by �ve. The statistical signi�cance of our �ndings
would be greatly strengthened by this. There would be no problem with inference on training data, since the
saliency mapping is not concerned with whether or not the data has been seen before. This improvement
would be supplemented by the use of a larger dataset too.

Other Saliency Mapping Methods

Considering the di�erences in explanations brought forth by DeepLIFT and LRP, it would be of great interest
to examine the explanations provided by other methods of saliency mapping. Having laid groundwork for
qualitative comparisons between methods, more computationally expensive but reliable methods such as
Integrated Gradients [89] could be employed to examine possibly di�erent patterns of explanation.

6.2 Closing Remarks
This work has shown new methods of examining BA saliency and its changes with age. We have provided
clinically relevant tools for the analysis of brain age saliency and believe that they can show regional contri-
butions to individual DBA. To our knowledge, this is the �rst work to compare saliency mapping techniques
for the BA regression task, and the �rst to use DeepLIFT for BA regression reasoning. This is also the �rst
work to examine the change in relevance distribution as a result of large DBA in both younger and older
individuals, as well as to create region-wise trajectories of BA saliency across ages.
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