
University of Cape Town

Faculty of Science

Department of Mathematics and Applied Mathematics

Applied Mathematics Masters Thesis

submitted for the degree of

Master of Science

Biologically Motivated Reinforcement Learning in Spiking

Neural Networks

by

Dean Rance

Student Number: RNCDEA001

Submission Date: March 1, 2022

Supervisor: Dr Jonathan Shock



Declaration of Authorship

I, DEAN RANCE, declare that this thesis titled, ‘BIOLOGICALLY MOTIVATED REINFORCE-

MENT LEARNING IN SPIKING NEURAL NETWORKS’ and the work presented in it are my

own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree at this

University.

� Where any part of this thesis has previously been submitted for a degree or any other quali-

fication at this University or any other institution, this has been clearly stated.

� Where I have consulted the published work of others, this is always clearly attributed.

� Where I have quoted from the work of others, the source is always given. With the exception

of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself.

Signed:

Date:

2



Abstract

I consider the problem of Reinforcement Learning (RL) in a biologically feasible neural network

model, as a proxy for investigating RL in the brain itself. Recent research has demonstrated that

synaptic plasticity in the higher regions of the brain (such as the cortex and striatum) depends

on neuromodulatory signals which encode, amongst other things, a response to reward from the

environment. I consider which forms of synaptic plasticity rules might arise under the guidance of

an Evolutionary Algorithm (EA), when an agent is tasked with making decisions in response to

noisy stimuli (perceptual decision making). By proposing a general framework which captures many

proposed biologically feasible phenomenological synaptic plasticity rules, including classical Spike-

Time-Dependent Plasticity (STDP) rules and the triplet rules, and rate-based rules such as Oja’s

Rule and BCM rules, as well as their reward-modulated extensions (such as Reward-Modulated

Spike-Time-Dependent Plasticity (R-STDP)), I allow a general biologically feasible neural network

the ability to evolve the rules best suited for learning to solve perceptual decision-making tasks.
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3.7 Final firing rates as a function of inter- and intra-population synaptic strengths w−
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4.3 Maximal performance for each coherence level. The grey line shows the average
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Chapter 1

Introduction

My son, be warned! Neither soar to high,

lest the sun melt the wax; nor swoop too

low, lest the feathers be wetted by the sea

Daedalus to Icarus, as told by Robert

Graves in The Greek Myths volume 1, [1]

Research within the past few years has begun to uncover the myriad of ways by which neuro-

modulatory signals or changes in the concentration of neuromodulators at the synapse can alter or

influence the plasticity dynamics dependent on timing, synapse type, plasticity induction protocol

and neuromodulator type [2, 3, 4, 5]. As the number of potential interactions grows, so too does

the amount of experimental exploration required to investigate these phenomena. Such experi-

mentation might be better guided with a theory-first approach, whereby normative descriptions of

how such interactions should appear can be posited and confirmed or rejected.

One such signal thought to be correlated with neuromodulatory activity is reward in the form of

Reward Prediction Error (RPE) signals encoded in the dopaminergic activity of Ventral Tegmental

Area (VTA) neurons [6, 7, 8, 9]. What this means is that theoreticians can postulate about

dopamine-modulated synaptic plasticity from a normative standpoint by combining Reinforcement

Learning (RL) with biophysically inspired models of neural activity. One can ask, “Given what we

know about RL and maximising reward, how should dopamine modulate plasticity?”

A normative approach to biology often receives criticism [10]. However, aside from suggesting

further experiments, there are at least two (albeit related) ways in which an optimisation approach

to fitting a biological model can offer insight, assuming the function being optimised for, the

fitness function, is biologically relevant: it can provide a prior distribution over the true state of

a biological phenomenon [10], and it can provide a regularising prior for fitting a model meant to
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describe such a phenomenon [11].

A step in this process is the optimisation procedure itself. On deterministic optimisation

problems Evolutionary Algorithms (EAs) are global optimisers in that given enough time, when

mindful of introducing sufficient randomness and meeting fairly liberal criteria such as elitism,

they are guaranteed to find a global optimum [12, 13]. However, just as importantly, they are

incredibly versatile and can easily be implemented for optimisation of fitness functions which are

non-differentiable or difficult to define or compute [13]. Their primary drawback may be the many

(highly parallelisable) evaluations of the fitness function which need to be performed [14].

Figure 1.1: Neural activity can be modelled at various scales. One can model the geometry of
the neuron, treat each neuron as being composed of various compartments or being point-neurons,
or even model the rates of populations of neurons directly. Image created with BioRender.com
software.

Yet a biologically inspired1 neural network model can come in various forms, from the truly

biophysical models incorporating cell structure and ion concentrations, through the coarser biolog-

ically inspired multicompartment or point-neuron Spiking Neural Networks (SNNs) with realistic

membrane potential dynamics, to population-level rate-based models. Generally as one increases

the coarseness of the model, one can also increase the efficiency at which the dynamics are sim-

ulated. Biophysical models of synaptic plasticity, on the other hand, require information about

the synaptic dynamics usually excluded from these larger network models (such as calcium ion

concentration at the synapses [15]). As such, when considering plasticity in a coarser biologically

inspired model, one turns to phenomenological models of plasticity [16]. These models may posit

abstract variables, such as “synaptic tags”, with little to no attempt to identify them with any

underlying biomolecular substrate or process.

One such family of biologically inspired neural network models are attractor decision making

models, or recurrent neural circuit models [17]. These models can be seen to generalise the Drift

1One should be careful to use “biologically inspired” or “biophysically inspired” phrasal nomenclature. The

adjective “biological” is reserved for models which capture a higher degree of biological realism such as spatial

extent, ion currents, temperature of the extracellular fluid, etc. In a sense, the neurons of a biologically inspired

SNN are to the study of actual cellular neurons as spherical cows in a vacuum are to dairy farming.
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Diffusion (DD) models of decision making [18] for perceptual decision making tasks such as the

Random Dot Motion (RDM) task, while also providing a potentially better fit to data and a biolog-

ical interpretation of their components [17]. They effectively bridge the gap between psychological

phenomenology and neural dynamics.

In this thesis I will use one such model, which I will call the Wang model, originally having

been developed to account for persistently increased neural activity under neuromodulation [19]

but adapted to explain firing rates of neural populations in the Lateral Intraparietal (LIP) area in

the brains of monkeys performing the RDM task [20]. This model will be used to implement the

action selection step, allowing the network to engage with the environment in pursuit of rewards.

The family of tasks I will consider is an artificial version of the RDM task parameterised by

coherence, and the fitness function will be determined by the number of correct successive trials on

the RDM task. Performance on this task will be optimised by using Covariance Matrix Adaptation

Evolution Strategy (CMA-ES) - an EA which performs well in continuous domain optimisation

[21] - to determine independently both the synaptic weights of the model, and the plasticity rule

driving synaptic weight changes. Avoiding potentially nonsensical questions about the interactions

between biological substrates and abstract concepts, I will only consider the affects of an abstract

reward variable R on the synaptic weight dynamics. I will use a coarse rate-based population level

model, but one which faithfully represents a biophysically inspired SNN, to account for the many

simulations the EA will run. In turn, building on the work done by [22, 23], I will use the Volterra

extension to derive a family of Spike-Time-Dependent Plasticity (STDP) plasticity rules capturing

many of the features typically included in such phenomenological models of plasticity, and under

the assumption of inhomogeneous independent Poisson-like dynamics, determine the rate-based

analogue of this family of rules which can be used to extend the rate-based Wang model to include

plasticity dynamics.

The research topic of this thesis is to ascertain whether and how an EA can be used to determine

biophysically inspired phenomenological synaptic plasticity dynamics capable of solving RL tasks

when implemented in a biophysically inspired recurrent neural network model of decision making.

Some other work has used similar methods in various forms to those presented here. In [24]

the Wang model is combined with a reward-driven plasticity rule which produces matching-law

behaviour. However the plasticity rule considered was stochastic with discrete synapses, and thus

not within the collection of STDP rules I considered. In [25] the Volterra framework for All-to-

All (A-A) STDP rules was combined with CMA-ES, very similar to this work, but on different

network topologies in an attempt to recover common unsupervised plasticity rules. Their work

further considered inhibitory plasticity, but did not consider reward-driven plasticity.

Indeed most work I reviewed considered in isolation either unsupervised or reward-driven plas-

ticity, with the notable exception of [26]. Their method of combining these two forms of plasticity

was functionally distinct from my own, of incorporating an adjustable parameter β. In their model,
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they implement independent eligibility traces for Long-Term Depression (LTD) and Long-Term Po-

tentiation (LTP) which can be differentially influenced by dopamine concentrations. In the absence

of a reward signal, these traces can still induce plasticity. In [27, 28] it is shown that there may be

distinct eligibility traces for LTD and LTP (discussed below).

There has also been work on using EAs to fit SNNs to supervised learning problems. A compre-

hensive review of the innumerable times this has been tried cannot be provided, but a few insightful

cases can be mentioned. In both [29] and [30] an SNN is fitted to solve a classification task. In

the former they outline that any second-generation/analogue neural network can approximate any

continuous function on a bounded domain, known as the Universal Approximation Theorem, and

moreover that any such neural network of n neurons can be approximated arbitrarily well with

n + c spiking neurons in an SNN where c is a small number, implying a universal approximation

property for SNNs.

There are also non-biological examples which nonetheless may inspire further work. In [31] a

neuromodulation-dependent plasticity rule was evolved alongside the network topology, but little

attempt is made to keep the model biophysically inspired, while [32] considers a neuromodulation-

driven metalearning approach where a neuromodulatory network gates the plasticity in another

prediction network. Other work on metalearning has considered learning the update rule for unsu-

pervised learning, which is encoded by an artificial neural network, via stochastic gradient descent

on the performance of the learnt unsupervised representations of data on later semi-supervised

tasks [33, 34, 35]. This work provides a potentially alternative approach to determining the learn-

ing rule (via backpropagation and stochastic gradient descent) and it may be interesting to compare

the resultant neural network with anatomy; however, they omit reinforcement or neuromodulatory

signals, and thus their learning rules are not akin to the three-factor learning rules discussed herein.

In what follows, Chapter 2 provides a background of the relevant literature on the topics

discussed, including phenomenological models of synaptic plasticity, models of decision making,

and EAs as well as justification for an optimisation-driven approach. Chapter 3 provides the

extension to the plasticity rules, and discusses implementation details of the task and network

simulations. The results of the experiments with CMA-ES are discussed in Chapter 4, where it is

observed that the evolved plasticity rules for different coherence values are significantly different.

Chapter 5 discusses potential extensions to this work, alongside limitations. Finally, Chapter 6

concludes.

The Wang model itself, both the original SNN as well as its reduction via mean-field theory

to a rate-based model, can be found in several standard texts including [19] and [36]. However, I

have included both in the Appendix A.
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Chapter 2

Literature Review

When an axon of cell A is near enough to

excite a cell B and repeatedly or

persistently takes part in firing it, some

growth process or metabolic change takes

place in one or both cells such that A’s

efficiency, as one of the cells firing B, is

increased.

Donald Hebb, [37]

Here I will discuss the background and literature on the various topics brought together in this

project, most notably synaptic plasticity, but also decision making, evolutionary algorithms, and

ideas about normative approaches to biology (in this order). For reference, neurons and synapses

are discussed first.

2.1 Background

The aim of this section is simply to describe the neurons of a Leaky Integrate-and-Fire (LIF)

SNN model, as well as the currents arising from the conductance-based synapses, sufficiently to

understand the Wang model as well as ideas of synaptic plasticity.

The main idiosyncrasies of the synapses discussed here are this: charge is not modeled as

immediately added to the postsynaptic membrane potential as is sometimes done (see for examples

[38]), but rather occurs over time due to the fraction of open synaptic channels following their own

dynamics. Moreover, two sources of excitatory input are considered: α-amino-3-hydroxy-5-methyl-

4-isoxazolepropionic acid (AMPA) mediated inputs and N-methyl-D-aspartate (NMDA) mediated
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inputs, where the latter has a nonlinear voltage-dependent conductance given by the Jahr-Stevens

formula (2.38) [39]. Inhibitory inputs are mediated by γ-aminobutyric acid (GABA).

2.1.1 Neurons

Neurons maintain a membrane potential Vi (where i is the neuron index), which, when rising above

a threshold Vthr, leads to a cascade of biomolecular activity resulting in an Action Potential (AP),

or spike [40]. We say the neuron fires an AP. The characteristic feature of an AP is the propaga-

tion of an electrical signal along the neuron’s axon inducing the release of a neurotransmitter into

the synaptic clefts between the axon and the cell bodies (usually on the dendrites) of the post-

synaptic neurons. The neurotransmitters are biomolecules which bind to receptor proteins in the

membrane of the postsynaptic cell. This binding leads - either directly or indirectly - to the open-

ing of ion channels in the postsynaptic cell membrane, through which charged ions flow following

their electrochemical gradient and thus changing the membrane potential of the postsynaptic cell.

Importantly, the ion channels are selective to specific ions, meaning that the binding of specific

transmitters to specific receptors can selectively increase or decrease the charge of the postsynaptic

cell depending on the charge of the ion and the relative concentration of the ion within and without

the cell.

When the AP is fired, it also propagates back into the dendritic arbor of the cell, called a

Backpropagating Action Potential (BPAP). This BPAP can signal to synapses on the dendrites

that the cell has recently fired.

At its baseline, the cell membrane is already polarised. Any phenomenon which causes the cell

to depolarise towards its threshold Vthr is called depolarising or excitatory. Conversely, anything

effecting an increase in polarisation is called hyperpolarising or inhibitory.

In the Wang model used in this thesis, there are two principle types of cells: pyramidal cells,

exerting an excitatory influence on their postsynaptic targets, and inhibitory interneurons. Many

of the parameters discussed below depend on the cell type. There are many more types of neurons

in the brain but the grouping of neurons as being either excitatory or inhibitory is fairly general

with few neurons belonging in both groups, an observation known as Dale’s Law [41].

We can model the trajectory of the membrane potential of the neuron i with differential equation

[38]

Cm
dVi(t)

dt
= −gm(Vi(t)− VL)− Ii(t) (2.1)

where Cm is the membrane capacitance, gm is the membrane leak conductance (describing the

permeability of the membrane) and Ii(t) is the positive current flowing out of the cell (equivalently,

negative current flowing in).
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This can also be written with the membrane time constant τm = Cm/gm:

τm
dVi(t)

dt
= −(Vi(t)− VL)− Ii(t)

gm
(2.2)

Having a single variable for membrane potential per neuron implies that the neurons are of

the point-neuron type. One could add components, in which case Vi(t) inherits a spatial partial

derivative describing current flow between components [38], but that is not done here.

In Integrate-and-Fire (IF) neurons we model the firing of an AP and resetting and refraction of

the cell by adding the resetting rule Vi(t)←− Vreset whenever V (t) crosses the threshold Vthr from

below [38]. After this the membrane potential remains at Vthr for a time τrefrac describing the

absolute refractory time of the neuron. The crossing or resetting times of the membrane potential

are captured by the variable Si(t), called the spike train. That is,

Si(t) :=
∑
f

δ(t− tfi ) (2.3)

where the sum is taken over the firing times tfi of the cell, and δ is the Dirac-δ function. Combined

with (2.1) or (2.2), this gives the LIF model. Other IF models do exist, such as the Adaptive

Exponential LIF (AdEx) model [42, 43] which includes an exponential in its membrane dynamics

and allows for an adaptive threshold and hence better captures the subthreshold membrane po-

tential, or the Izhikevich neurons [44] which use polynomials for computational efficiency but can

also capture qualitatively different spiking behaviour. However, in this project I will only use the

simpler LIF model.

I will use subscripts such as i or j to index neurons, with the convention that j is the presynaptic

neuron and i is the postsynaptic neuron. When considering a focal synapse between two neurons,

such as when looking at the Volterra series for the plasticity dynamics as in (2.10), to be succinct

I will use the notation of X(t) = Sj(t) for the presynaptic spike train and Y (t) = Si(t) for the

postsynaptic spike train, following the convention of [22].

2.1.2 Synapses

The Wang model considers the two most common neurotransmitters and three receptor types [19].

The neurotransmitter glutamate has an excitatory effect inducing AMPA to bind to the fast-acting

AMPA Receptor (AMPAR) and by inducing NMDA to bind to the slower acting NMDA Receptor

(NMDAR) [40]. Magnesium Mg2+ can bind to sites on the NMDARs restricting ion flow through

the channel effectively reducing the average conductance of all the NMDARs at the synapse, but

these ions can be dislodged by increasing the membrane potential. In this way the NMDAR ion

channels are voltage dependent.
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The neurotransmitter GABA binds to the relatively fast-acting GABAA receptors and has an

inhibitory effect on the postsynaptic cell.

At each synapse ij we have the fraction sj,rec of open channels of each type of receptor rec with

dynamics dependent only on the presynaptic neuron j. Each receptor type also has a corresponding

conductance grec(Vi) which may (for NMDAR) or may not (for AMPA and GABAA receptors)

depend on membrane potential. Finally, each synapse has its synaptic strength wij which scales

the relative conductances of the cells. It is this variable wij which undergoes change, or synaptic

plasticity.

To determine the current Ii out of the postsynaptic cell, we also need to know the driving force.

This is given by the difference between the membrane potential and the reversal potentials of the

excitatory (VE) and inhibitory (VI) effects. Thus we arrive at, for the contribution of a single

presynaptic neuron j,

Ii(t) = wij gNMDA(Vi(t)) sj,NMDA(t) (Vi(t)− VE)

+ wij gAMPA sj,AMPA(t) (Vi(t)− VE)
(2.4)

if the presynaptic cell is a pyramidal (glutamatergic) cell, or

Ii(t) = wij gGABA sj,GABA(t) (Vi(t)− VI) (2.5)

if the presynaptic cell is an inhibitory interneuron (GABAergic). This dependence on the driving

forces, (Vi(t) − VE/I), means that the model is of the conductance-based type. The total input

current Ii(t) becomes a summation over all presynaptic neurons with indices j in a collection P:

IAMPA(t) + INMDA(t) := (V (t)− VE)
∑
j∈P

wj [gAMPA · sj,AMPA(t) + gNMDA(V (t)) · sj,NMDA(t)] ,

IGABA(t) := (V (t)− VI)
∑
j∈P

wj · gGABA · sj,GABA(t),

I(t) = IAMPA(t) + INMDA(t) + IGABA(t)

(2.6)

Because Vi(t) is in the range [VI , VE ] with VE > VI , the sign of the depolarising current is

negative, and positive for hyperpolarising current.

The dynamics of the fast-receptor gating variables are described by the dynamics

dsj,AMPA/GABA(t)

dt
= −

sj,AMPA/GABA(t)

τAMPA/GABA
+ Sj(t) (2.7)

where Sj(t) is the spike train of the presynaptic neuron. The slower NMDARs have a rise process
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xj,NMDA(t) as well, collectively described as

dxj,NMDA(t)

dt
= −xj,NMDA(t)

τNMDA,rise
+ Sj(t)

dsj,NMDA(t)

dt
= − sj,NMDA(t)

τNMDA,decay
+ αxj,NMDA(t)(1− sj,NMDA(t))

(2.8)

The Wang model uses the Jahr-Stevens formula [39] to describe the dependence of the NMDA-

conductance on the membrane potential

gNMDA(Vi) =
gNMDA

1 + γJS exp(−βJSVi)
. (2.9)

2.2 Synaptic Plasticity

The strength wij of a synapse from neuron j to neuron i can be measured as the height at the peak

of the Postsynaptic Potential (PSP) or Postsynaptic Current (PSC) following a presynaptic AP or

as the slope of the PSC [16]. For our purposes, and as mentioned above, the synaptic strengths

wij can be seen as multipliers which scale the conductances grec of the various ion channels.

The synaptic strength wij can be decoupled into the product of the amount of neurotransmitter

released into the synaptic cleft (itself a product of the release probability and the available neu-

rotransmitter) and the density of available receptors on the postsynaptic membrane [45, 46, 47];

these variables might be treated as dynamic on a short timescale with an Short-Term Plasticity

(STP) model [16, 41]. However, in this thesis wij is treated as a single isolated variable.

Most of these models consider excitatory plasticity, but there also exists literature on inhibitory

plasticity models which seems to perform the distinct functions such as maintaining a balance of

excitation and inhibition and thus keep the population of neurons in the asynchronous firing

regime [48, 49, 50] (discussed below, in Section 2.2.4). In this thesis I will only consider plasticity

of synapses with excitatory presynaptic neurons.

2.2.1 Phenomenological Models

A simple LIF model only attempts to capture the membrane potentials and the spike times of the

neurons. As such, any model of plasticity built upon it can only be phenomenological, depending

on the variables present in the underlying neuron model. A review of such feasible rules can be

found in [16]; below I consider the relevant points.

To classify plasticity rules, it is helpful to consider the length of the period over which the

changes will persist. STP rules model changes which last for under a second, and are putatively
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driven by changes in the release probability and available neurostransmitter at the axon terminal

[16, 41]. Long-Term Potentiation (LTP) and Long-Term Depression (LTD) describe longer lasting

increases and decreases (respectively) of the synaptic strength, which can persist for more than an

hour. Finally there is late-phase plasticity which occurs on much longer timescales; models such

as the TagTriC model [51] or a bistability model [16] exist for this, but these timescales will not

be considered here.

LTP and LTD are usually combined into a single framework, where depending on the variations

within induction procedure the the same plasticity rule yields either one or the other. The induction

procedures compatible with an LIF model depend on time-averaged firing rates (or low-pass filtered

spike trains), which may be called rate-based learning rules, or on the precise timing of the spikes,

called Spike-Time-Dependent Plasticity (STDP). These learning rules may also depend in some

way on the membrane potential, such as in the Clopath model [52, 53] but more biological models

such as the Shouval model [15] (which depends on calcium ion concentrations) are incompatible.

Another way to characterise plasticity rules is by whether the synaptic strengths are discrete or

continuous [16]. In the framework discussed here, I only model synaptic strengths as continuous;

this is justified as I will use a point-neuron model which for simplicity admits one synapse between

pairs of neurons. This single synapse captures the sum of individual discrete synapses which might

be modeled independently in a multi-compartment neuron model.

Finally, in a number of ways the plasticity rule can be probabilistic or deterministic. Proba-

bilistic rules for a continuous-valued synaptic strength variable may be achieved by converting the

synaptic strength dynamics dw
dt into in Itô process, while for a discrete learning rule one can use a

Markov chain over the discretely many states.1

2.2.2 The Volterra Series

A Volterra series expansion is an infinite sum over multidimensional convolution integrals. It can

be thought of as a Taylor series which captures memory effects through the convolutions. Here I

give a brief conceptual introduction to them.

Given a sufficiently nice function f taking as input a vector xt indexed by time lags xt =

1For an example using a Markov chain, one can consider [24] while the Itô process is a natural extension of the

drift-diffusion dynamics considered in [54] to determine the steady-state of the membrane potential distribution.
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(xt, xt−τ , . . . , xt−(n−1)τ )> where t = mτ for some m, we can expand f(xt) around x0 as

f(xt) = f0 + f1
1 (0)(xt − x0)

+ f1
1 (0)(xt−τ − x−τ ) + · · ·+ f1

1 (0)(xt−(n−1)τ − x−(n−1)τ )

+ f1,1
2 (0, 0)(xt − x0)2 + · · ·+ f1,n

2 (0, 0)(xt − x0)(xt−(n−1)τ − x−(n−1)τ )

...

+ f j,j2 (0, 0)(xt−jτ − x−jτ )2 + · · ·+ f j,n2 (0, 0)(xt−jτ − x−jτ )(xt−(n−1)τ − x−(n−1)τ )

...

+ fn,n2 (0, 0)(xt−(n−1)τ − x−(n−1)τ )2

+ f1,1,1
3 (0, 0, 0)(xt − x0)3 + . . .

In this expansion the coefficients are all functions of vectors of zero, or in another word, constants.

In a Taylor expansion they would be determined by the partial derivatives of f at x0, but for

our purposes all that matters is that such a representation exists. The zeroes are included for

illustrative purposes. Rewriting, or rather reindexing, f j1 (0) as f1(jτ), and writing xt as x(t), we

can simplify this to

f(xt) = f0 +

n−1∑
k=0

f1(kτ)(x(t− kτ)− x(−kτ))

+

n−1∑
j,k=0

f2(jτ, kτ)(x(t− kτ)− x(−kτ))(x(t− jτ)− x(−jτ)) + . . .

Now, since t is a multiple of τ we can rearrange and group terms that are multiplied by the same

x(t)’s, introducing new coefficients fn to catch the grouped coefficients, yielding

f(xt) = f0 +

n∑
k=0

f1(kτ)x(t− kτ)

+

n∑
j,k=0

f2(jτ, kτ)x(t− kτ)x(t− jτ) + . . .

Taking the limit as x becomes a function over R we get the Volterra expansion

f(x) = f0 +

∫ ∞
0

f1(s)x(t− s)ds

+

∫ ∞
0

∫ ∞
0

f2(s, s′)x(t− s)x(t− s′)dsds′ + . . .

fk is called the k-th order Volterra kernel. This can be generalised straight-forwardly to a functional

over multiple functions, such as used below.
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2.2.3 Spike-Time-Dependent Plasticity

A Volterra series expansion is used on the synaptic weight dynamics in [22, 23], whereby they find

the simplest functionals F and G which satisfy the experimental data of plasticity induction with

various protocols. This also provides an effective general starting point for discussion of STDP

rules. In their formalism, one can describe the dynamics of the synaptic strength as

dwij
dt

= X(t)F(X,Y ) + Y (t)G(X,Y ) (2.10)

where X(t) =
∑
δ(t− tfj ) is the presynaptic spike train, the sum over Dirac functions centered at

the presynaptic spike times tfj , and similarly Y (t) =
∑
δ(t− tfi ) is the postsynaptic spike train.

The functionals F and G can be expanded into Volterra series as

F(X,Y ) = FX0 +

∫ ∞
0

FX,X1 (s)X(t− s)ds+

∫ ∞
0

FX,Y1 (s)Y (t− s)ds

+

∫ ∞
0

∫ ∞
0

FX,X,X2 (s, s′)X(t− s)X(t− s′)dsds′

+

∫ ∞
0

∫ ∞
0

FX,X,Y2 (s, s′)X(t− s)Y (t− s′)dsds′

+

∫ ∞
0

∫ ∞
0

FX,Y,Y2 (s, s′)Y (t− s)Y (t− s′)dsds′ + . . .

(2.11)

and similarly

G(X,Y ) = GY0 +

∫ ∞
0

GX,Y1 (s)X(t− s)ds+

∫ ∞
0

GY,Y1 (s)Y (t− s)ds+ . . . (2.12)

The product of the functional outputs with the spike trains in (2.10) implies that STDP rules

implement changes at the times of the pre- and postsynaptic spikes.

Classic STDP

Early STDP rules considered pairs of spikes where the magnitude of the LTP or LTD depended

on the time between the spikes in the pair being considered. Typically this amplitude would decay

exponentially (see Figure 2.1) leading to the STDP rule

dwij
dt

= X(t)

∫ ∞
0

FX,Y1 (s)Y (t− s)ds+ Y (t)

∫ ∞
0

GX,Y1 (s)X(t− s)ds (2.13)

where

FX,Y1 (s) = −A− exp

(
−s
τ−

)
=: FX,Y exp

(
−s

τF,X,Y,0

) (2.14)
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Figure 2.1: Stereotyped STDP Windows. The change in synaptic strength ∆w can be approxi-
mated as a function of the difference ∆t between postsynaptic spike time and presynaptic spike
time for pair-based STDP rules. On the left, excitatory STDP windows typically induce pre-
before-post LTP and post-before-pre LTD, while on the right the iSTDP of [48] implements LTP
for coincident firing and LTD for APs spaced further apart.

and

GX,Y1 (s) = A+ exp

(
−s
τ+

)
=: GX,Y exp

(
−s

τG,X,Y,0

) (2.15)

with A± ≥ 0 being the peak allowed depression or potentiation following a pre- or postsynaptic

AP, respectively. These simple pair-based STDP rules with exponential decay kernels are fully

characterised by A± and the decay times τ±. However, to generalise to the inclusion of other

Volterra kernels, more notation is needed. I have introduced in the second lines of (2.14) and

(2.15) the notation I will use for this, where the non-calligraphic F and G denote constants and

τF,X,Y,0 and τG,X,Y,0 are the decay times. In full, and without loss of generality, we can write the

k-th order exponential decay kernel for presynaptic spikes as

FX,X,...,X,Y,...,Yk (s, s′, . . . , s(k−1)) = FX,X,...,X,Y,...,Y × exp

(
−s

τF,X,...,X,Y,...,Y,0

)
× · · · × exp

(
−s(k−1)

τF,X,...,X,Y,...,Y,k−1

)
.

It is notationally cumbersome yet necessary to keep track of all these decay times and coefficients.

STDP rules can be formulated as either A-A or Nearest Neighbours (N-N) [16] (see Figure 2.2).

In the A-A formulation, all pairs of pre- and postsynaptic spikes are summed over, as is captured

by the convolution with the spike trains in equation (2.13). However, in the alternative N-N, a

presynaptic (postsynaptic) AP only induces a change in the synaptic strength determined by the

difference in time from the nearest postsynaptic (presynaptic) APs. Whether every spike produces

a change, or only every presynaptic spike, or only the presynaptic (postsynaptic) spikes which are
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closest to some postsynaptic (presynaptic) spike, will determine slightly different learning rules.

Figure 2.2: Various Nearest Neighbours spike pairing schemes. In each row, presynaptic spike
trains are shown above and postsynaptic spike trains are shown below. Lines between the spike
trains indicate the pairs which will be considered in the pairing scheme. Changes from dark
grey lines mark pairs inducing changes at the presynaptic spike time (and induce depression in
standard Hebbian STDP), while light grey lines mark pairs inducing changes at the postsynaptic
spike time (inducing potentiation in in standard Hebbian STDP). In A the symmetric scheme is
shown where each presynaptic spike is paired with each its nearest prior postsynaptic spike, and
each postsynaptic spike is paired with its nearest prior presynaptic spike; this is the scheme used
in equation (2.16). In B the presynaptic centered scheme is shown where each presynaptic spike
is paired with its nearest earlier and later postsynaptic spikes; this is the scheme used in [55] and
discussed in regards to BCM theory. In C the reduced symmetric scheme is shown, similar to as
in A but with each spike included in at most one pair. Image taken from [16].

We can also derive a formulation for the N-N STDP with the symmetric scheme (see Figure

2.2) as follows. We denote the most recent postsynaptic AP time prior to presynaptic spike time

tfj with fY

(
tfj

)
= maxt t ∈

{
tfi |t

f
i ≤ t

f
j

}
, and similarly use fX to find the last presynaptic spike

time. Then, using the same kernels, we can write the classical STDP rule with N-N pairs as [22]:

dwij
dt

= X(t)FX,Y1 (t− fY (t)) + Y (t)GX,Y1 (t− fX(t)) (2.16)

As in [56, 57], STDP rules often include the linear terms or zero-th order Volterra kernels FX0
and GX0 and possibly an extra constant homeostatic decay term C [58] yielding

dwij
dt

= X(t)

[
FX0 +

∫ ∞
0

FX,Y1 (s)Y (t− s)ds
]
+ Y (t)

[
GY0 +

∫ ∞
0

GX,Y1 (s)X(t− s)ds
]

+ C (2.17)

The homeostatic decay term C can be made to be weight-dependent and/or dependent on the

postsynaptic firing rate. It will be discussed below in Section 2.2.4.
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At this point various questions can be asked about the learning rule, such as under what

conditions the output firing rate might tend to a stable fixed point [58] or even whether the

weights themselves will tend to a stable fixed point or unimodal distribution [54, 16]. For the

former, inequalities can be found such as the necessary (but not sufficient) condition that if linear

terms FX0 ,GY0 are absent then the integral over the learning window

W (∆t) =

F
X,Y
1 (|∆t|) if ∆t ≤ 0

GX,Y1 (∆t) otherwise

(2.18)

is negative i.e.
∫
W (∆t)d∆t < 0, whereas if there are linear terms then GY0 needs to be sufficiently

negative [58]. For the latter question, a general result is that the synaptic strengths will tend to

saturate at their upper and lower bounds, or more precisely the steady-state for the Fokker-Planck

dynamics of synaptic strength distribution will be bimodal near these bounds unless the plasticity

dynamics depend on the weights themselves [54, 59, 16]. However, in observed populations of

neurons, the synaptic strengths tend to be unimodal and generally close to lognormally distributed

[60]. Suffice to say, the zero-th order kernels cannot be neglected and the kernels need to depend

on the synaptic strengths, as I will discuss below in the Weight Dependence subsection.

Postsynaptic Rate Modulation and the Triplet Rules

Another way to modulate the postsynaptic firing rates is to choose a learning rule which satisfies

the criteria of BCM theory.2 BCM theory sets out several criteria such that when satisfied by a

rate-based learning rule certain predictions can be made, such as that the dynamics of the model

will stabilise. Such BCM models can account for a range of experimentally observed features such

as the development of receptive fields, ocular dominance and synaptic scaling [62]. The criteria

are:

1. The change in synaptic strength should be linear in the presynaptic firing rate, which we can

denote νj .

2. For low postsynaptic firing rates νi below a threshold θthr, the synaptic change should be

depressing, while for high postsynaptic firing rates the synaptic change should be potentiating

(see Figure 2.3).

3. The threshold itself, θthr, should be a superlinear function of the time-averaged postsynaptic

firing rate. It is this adaptive threshold that ensures the dynamics stabilise.

Although the theory is developed for rate-based plasticity rules, STDP rules can also satisfy

these criteria on average and thus account for the same experimental observations.

2BCM theory is named after the researchers Bienenstock, Cooper, and Munro, authors of [61].
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Attempts to reconcile BCM theory with STDP rules seem to begin with [55], where it was shown

that an N-N STDP rule much like (2.16) with mild assumptions, such as Poisson-like activity of

the pre- and postsynaptic firing, yields a learning rule which, when averaged across spike pairs,

meets the criteria of BCM theory.3 The synaptic dynamics are given by

〈
dwij
dt

〉
= νiνj

(
FX,Y

νi + 1/τF,X,Y,0
+

GX,Y

νi + 1/τG,X,Y,0

)
(2.19)

This matches some of the requirements of BCM theory, as can be seen in Figure 2.3. However,

an extra mechanism needs to be added to allow for the BCM threshold, determined as

θthr = −G
X,Y /τF,X,Y,0 + FX,Y /τG,X,Y,0

FX,Y +GX,Y
,

to be adaptive; in [55] it is suggested that τG,X,Y,0 might vary depending on the state of the

NMDARs.

(a) The BCM Rule. (b) Classical N-N STDP.

Figure 2.3: The threshold θthr changes as a superlinear function of the postsynaptic firing rate νi,
while the magnitude of dw

dt depends linearly on the presynaptic rate νj and non-linearly on the
postsynaptic rate. In Figure 2.3a the arrows indicate that the threshold is adaptive. In Figure 2.3b
the average synaptic strength follows dynamics qualitatively similar to the BCM rule. Figure 2.3a
adapted from www.scholarpedia.org/article/BCM theory. Figure 2.3b computed using parameters
given in [55] and formula (2.19).

Another way to satisfy the BCM criteria is to consider higher-order Volterra kernels and explic-

itly add the dependence on the postsynaptic firing rate. Triplet STDP rules selectively consider

pairs and triplets of spikes: in [22] only FX,Y1 and GX,Y,Y2 are considered, while in [23] the full

triplet model with both first order kernels are considered alongside FX,X,Y2 and GX,Y,Y2 , and in [63]

both first order kernels are considered alongside only GX,Y,Y2 . In all cases the kernels are of the

form of exponential decay, and if the depressive terms kernels (in these models, FX,Y1 and FX,X,Y2 )

3It should be noted that the rule in [55] is presynaptic-centered, as explained in [16] and shown in Figure 2.2. That

is, each presynaptic spike is paired with the nearest postsynpaptic spikes before and after it, but some postsynaptic

spikes are not paired at all unless they are nearer to some presynaptic spike - either occurring before or after - than

any other postsynaptic spike.
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are given a superlinear dependence on a low-pass filtered postsynaptic firing θ where

τθ
dθ

dt
= −θ + Y (t) (2.20)

then the BCM theory criteria are recovered. Here θ should not be confused with the threshold θthr

in BCM theory. In fact, one may use the relationship

θthr =

(
θ

ν0

)p
where ν0 is a baseline postsynaptic firing rate provided p > 1 to implement the superlinearity

dependence.

Ultimately in [22] they use functionals of the form (where I’ve absorbed the baseline firing rate

into the coefficient)

FX,Y1 (s; θ) = θ2FX,Y exp

(
−s

τF,X,Y,0

)
,

GX,Y,Y1 (s, s′) = GX,Y,Y exp

(
−s

τG,X,Y,Y,0

)
exp

(
−s′

τG,X,Y,Y,1

)
,

(2.21)

and similarly in [23] and [63].

For A-A interactions, this yields trial-averaged plasticity rules of the form

〈
dwij
dt

〉
= θ2FX,Y τF,X,Y,0νjνi +GX,Y,Y τG,X,Y,Y,0τG,X,Y,Y,1νjν

2
i (2.22)

and for N-N interactions, rules of the form

〈
dwij
dt

〉
=

θ2FX,Y νjνi
νi + 1/τF,X,Y,0

+
GX,Y,Y νjν

2
i

(νj + 1/τG,X,Y,Y,0)(νi + 1/τG,X,Y,Y,1)
(2.23)

Aside from the BCM results, the triplet rules also have various other nice features. They can

generalise the BCM results to higher order statistics [63] and can account for yet more experimental

protocols [23]. As an example, consider the LTP induction protocol of inducing a presynaptic spike

followed by a postsynaptic spike some ∆t1 time later, then repeating this procedure after a time

∆t2 > ∆t1. As ∆t2 → ∆t1, the classic STDP protocol (2.13) will predict less potentiation as the

time between successive post-pre pairs decreases. However, experimentally more potentiation is

observed, as is predicted by these triplet models.

The observed dependence on triplets of spikes might be an epiphenomenon arising from the de-

pendence on postsynaptic membrane potential fluctuations. This dependence is directly modelled

in the Clopath model [52], and other voltage-dependent plasticity rules. If the membrane potential

fluctuations are induced primarily by BPAPs then the Clopath model and the triplet model of [22]

become equivalent [38]. This suggests that little is lost when considering a biophysically inspired
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SNN with plasticity dependent only on spike times.

Finally, the triplet rules (and voltage-dependent rules) allow for more complex network topolo-

gies to arise [53]. Indeed, the standard STDP rule all but forbids strong bidirectional connections

due to the learning window W being qualitatively antisymmetric around ∆t = 0: that which is

a pre-before-post pair of spikes for the synapse ij from neuron j to neuron i is a post-before-pre

pair for the synapse ji. This can however be circumvented somewhat by incorporating axonal and

dendritic delays [64, 16].

Weight Dependence

There is direct biological evidence that the changes in synaptic strengths over a trial depend on the

initial synaptic strengths [65, 16], as well as indirect evidence for this, namely that unimodality of

the synaptic strength distribution will not be achieved with a pair-based plasticity rule if increments

in synaptic strength do not depend on the present value itself [54, 59, 16]. This is fairly intuitive:

as synaptic strength increases, the expected time to the next postsynaptic spike time following

a presynaptic spike decreases, which increases the value in the LTP side of the learning window

and leads to further potentiation. To offset this, the integral of the LTD side of the window needs

to be greater (in magnitude) than that of the LTP side, but if it is too large it leads to runaway

depression.

Figure 2.4: Percentage change of synaptic strength, measured in EPSC amplitude. Empty circles
show changes in synapses exposed to presynaptic stimulation with positively correlated postsy-
naptic spiking, leading to LTP. Filled circles show the same, but with negatively correlated post-
synaptic spiking, leading to LTD. Data is plotted as a function of mean initial EPSC amplitude.
The straight line fitted for LTD suggests that the absolute change in EPSC amplitude depends
multiplicatively on initial EPSC amplitude. Image taken from [65].

A multiplicative weight dependent update of the form

FX,Y1 (s, wij) = wijFX,Y1 (s)
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Figure 2.5: Empirical probability densities of synaptic strengths after 100 seconds of simulation
time. Probability density is plotted with darker shades corresponding to high probabilities. This
is a reconstruction of the plot from [16] with a wider range of values for µ, using STDP and LIF
parameters from brian2.readthedocs.io/en/2.0rc/examples/synapses.STDP.html.

can be fitted for the LTD data of [65], while the LTP data is better fitted with a power law update

with power µ in the form

GX,Y1 (s, wij) = wµijG
X,Y
1 (s)

An alternative form of weight dependence is also suggested in [16], to implement soft upper

and lower bounds (wmax and 0, respectively) using rules of the form

FX,Y1 (s, wij) = wµij F
X,Y
1 (s),

GX,Y1 (s, wij) = (wmax − wij)µ GX,Y1 (s)
(2.24)

with µ ∈ [0, 1]. Classical STDP with kernels of this form in (2.24) yield unimodal distributions for

a wide range of values for µ, as can be seen in Figure 2.5.

2.2.4 Rate-Based Plasticity

As has been seen in the Postsynaptic Rate Modulation and the Triplet Rules subsection, and has

been discussed in [56, 57, 66, 58, 55, 23, 22, 16, 38], if one assumes that the pre- and postsynaptic

spike trains are generated by a Poisson process - where the latter may be an inhomogeneous Poisson

process driven by the former - then one can derive various analytical results regarding the trial-

averaged behaviour and synapse-average behaviour (assuming neurons are homogeneous and their

activity is effectively uncorrelated, which may be nearly true in the limit of many neurons) of the

network, such as querying the presence of postsynaptic rate modulation [58] or determining the

fixed point of the synaptic weights dynamics [16]. This is usually done for simple neuron models,
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as the correlation function between pre- and postsynaptic spike times can be difficult to determine

analytically for complex models [56]. However, this becomes more difficult as higher-order Volterra

kernels are included in the rule, as the correlation function itself now depends on multiple differences

in time between different spikes. Nonetheless, in the limit of many weak synapses this correlation

all but vanishes and the approximation that the pre- and postsynaptic spike trains are uncorrelated

becomes more feasible.

This approximation of inhomogeneous Poisson spike trains allows us to consider plasticity rules

of the form [22]

〈
dwij
dt

〉
= 〈X(t)F(X,Y )〉+ 〈Y (t)G(X,Y )〉

=

〈
X(t)

[
FX0 +

∫ ∞
0

FX,X1 (s)X(t− s)ds+ . . .

]〉
+

〈
Y (t)

[
GY0 +

∫ ∞
0

GY,X1 (s)X(t− s)ds+ . . .

]〉
= 〈X(t)〉

[
FX0 +

〈∫ ∞
0

FX,X1 (s)X(t− s)ds
〉

+ . . .

]
+ 〈Y (t)〉

[
GY0 +

〈∫ ∞
0

GX,Y1 (s)X(t− s)ds
〉

+ . . .

]
= 〈X(t)〉

[
FX0 + 〈X(t)〉FX,XτF,X,X,0 + . . .

]
+ 〈Y (t)〉

[
GY0 + 〈X(t)〉GX,Y τG,X,Y,0 + . . .

]

(2.25)

where the first step is simply using the Volterra expansion, the second step relies on independence of

the spike trainsX and Y , and the final step uses exponential decay kernels for F and G. Considering

that the neurons are assumed to be homogeneous (at least within the same populations) and nearly

independent, we get that the average firing rate νk of a population of neurons (where k denotes

the population index) is nothing but a trial average estimate of the firing rates of the individual

neurons within the population [38]. So if we consider the presynaptic neuron j to be in population

k′ and the postsynaptic neuron i to be in population k, this reduction (2.25) gives us the population

averaged dynamics

〈
dwij
dt

〉
= νk′

[
FX0 + νk′F

X,XτF,X,X,0 + . . .
]

+ νk
[
GY0 + νk′G

X,Y τG,X,Y,0 + . . .
]

(2.26)

whence we get rules of the form (2.22) [38]. To consider the role of only admitting N-N pairs, the

procedure is more involved but the result is a rule of the form we saw in (2.23) [22, 23].

How realistic is the assumption that the spike trains are generated by inhomogeneous Poisson

processes? That depends on the input strength. Broadly speaking, a population of spiking neurons

may be in one of four activity regimes [67]:

1. asynchronous regular activity, where the individual neurons fire regularly but the population

rate is roughly constant;
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2. synchronous regular activity, where the neurons fire regularly and the population firing rate

oscillates;

3. synchronous irregular activity, where the individual neurons fire irregularly but the popula-

tion rate oscillates nonetheless;

4. asynchronous irregular activity, where the population rate is roughly constant and the neu-

rons fire irregularly.

This last regime may be the norm, encouraged by inhibitory plasticity [48, 49, 50]. Which

regime a population of neurons finds itself in depends on the strength of the input current and the

noise in the input to the neurons: under strong inputs, where the mean input is strong enough to

induce spiking, the neurons adopt regular spiking (see Figure 2.6 for a schematic) which, in the

absence of noise in a current-based LIF model, is guaranteed to induce synchronisation [68], but

will generally lead to synchronisation for a broader class of models. If excitatory and inhibitory

inputs to the neuron are balanced, such that the mean input is not strong enough to induce spiking

behaviour but the fluctuations in the input can allow the membrane potential to rise sufficiently

to induce an AP, then the neuron is said to be in the balanced regime and the spike train statistics

appear to be Poisson-like, with an exponential Interspike Interval (ISI) distribution. Indeed, these

asynchronous and irregular population dynamics might be fingerprints of chaos in sufficiently large

neural networks, although it is common to treat the unpredictable inputs as random noise in smaller

models [67]. In short, one might approximate the neurons spike trains in the asynchronous irregular

regime as being generated by independent inhomegeneous Poisson processes with rates given by

the population firing rate, reducing the task of modeling the population to that of modeling only

the population firing rate.

Historically, before observations of dependence of plasticity on precise spike times, one would

start with a rate-based learning rule. Many such rate-based rules can be shown to be special

cases of the averaged rules considered above. We have seen that this is the case for the BCM

rule. Another such example is Oja’s rule which arises from considerations of stable learning of the

covariance of the input stimuli by implementing weight decay [41, 38].

Weight Decay and Heterosynaptic Plasticity

Heterosynaptic plasticity refers to the process whereby activity at one synapse tends to influence

the plasticity of other synapses on the shared postsynaptic neuron. Homosynaptic plasticity,

by contrast, does not seem to provide sufficient competition between synapses to drive effective

learning, nor to discourage runaway growth of weights [69]. In the absence of a weight-dependent

update rule such as discussed in Section 2.2.3, heterosynaptic plasticity provides a way to stabalise

weights and consequently postsynaptic activity levels.
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Figure 2.6: Comparison of firing regimes. In the first row, the mean-driven regime, the two
LIF neurons are driven by the mean of a noisy input, leading to regular firing and a narrow ISI
distribution. In the second row, the balanced regime or fluctation-driven regime, the synaptic
inputs (here modeled by a white noise process) are balanced so that only fluctuations in the noise
drive the neurons to fire. This leads to an almost exponential ISI distribution. In the left column,
trajectories of membrane potentials of two neurons over 500ms are shown. Spike times are indicated
by dotted lines. In the right column, ISI distributions are shown for the same trajectories over a
longer time.

While it seems that heterosynaptic mechanisms might be local to regions along a dendritic

branch [69], in point-neuron models such locality cannot be implemented.

Heterosynaptic plasticity may also play a role in long-term consolidation of memories and

homeostatic processes, but such homeostatic processes seem to happen on a timescale much slower

than what is required for the stability of models, suggesting a dual mechanism of short term het-

erosynaptic plasticity - called a Rapid Compensatory Process (RCP) - and long-term homeostatic

effects [70].

Heterosynaptic plasticity is primarily implemented via implementing a weight decay in one of

two forms [71, 41]. In subtractive weight decay, the synaptic weights are bound by their cumulative

strength, and each weight decays with the same increment. The plasticity rule obtains a term such

as
dwij
dt

= · · · − c
∑
j

wmij (2.27)

where m might be 1 or 2 and c > 0. If synaptic weights are allowed to be negative, then their

absolute values |wij | would be used. Such a learning rule is arguably non-local, however, as all the

synapses need to be “aware” of the strength of the other synaptic weights which may in part be

encoded presynaptically [46], and hence may not be particularly biologically feasible.
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A more biologically feasible alternative form of weight decay, multiplicative weight decay, adds

a term of the form
dwij
dt

= · · · − c νni wmij (2.28)

The mechanism for heterosynaptic plasticity in this type of local weight decay can be seen by

approximating the input-output function by a linear function i.e. approximating νi =
∑
j wijνj .

Inserting this into (2.28) gives
dwij
dt

= · · · − c
∑
k

νnkw
m+n
ik

Stimulating the postsynaptic neuron into firing more indirectly decreases the strength of other

synapses onto the same neuron, thus implementing competition between the synapses.

Oja’s Rule

Oja’s rule can be seen as a special case of implementing multiplicative weight decay (2.28) [41]. It

takes the form
dwij
dt

= νiνj − c ν2
jwij (2.29)

When implemented in a rate model with firing dynamics of the form νi =
∑
j wijνj , this rule

performs online principal component analysis on the input stimuli by driving the weight vector to

align with the first principal component, thus causing the postsynaptic firing rate to be a projection

of the stimuli onto that component. By adding lateral inhibition in a two layer model, Sanger’s

Rule (or the Generalised Hebbian Algorithm) allows the input stimuli to be projected onto the

k-th principal subspace where k corresponds to the number of postsynaptic neurons [72]. Thus it

may prove to be a convenient mechanism for early unsupervised learning of stimuli, although these

rules were considered in feedforward linear networks and not the recurrent neural networks used

in this thesis.

2.2.5 Three-Factor Learning Rules

All of the rules considered until now are unsupervised (in the machine learning nomenclature) or

Hebbian [37] in that they rely on statistical relationships between stimuli to drive their plasticity.

However, the class of problems which can be solved with such learning rules is restricted, and these

rules say nothing of what role neuromodulator-encoded signals such as reward or novelty might

play in the plasticity [73].

On the one hand, attempts have been made to experimentally determine the dependence

of synaptic plasticity on neuromodulators [2], while on the other hand theoretical studies have

attempted to derive descriptive or normative accounts of how synaptic plasticity should alter
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with a reward signal (for descriptive accounts, see [74, 75, 76, 27]; for normative accounts, see

[77, 78, 79, 80, 81]; a review can be found in [73] and further reviewed in [3]).

The plasticity rules up to here now depended only on the presynaptic and postsynaptic activity,

as well as potentially on the current strength of the synapse. In brief, they have been rules of the

form
dwij(t)

dt
= H2(pre,post;wij(t))

where pre and post capture the relevant local features (rates, membrane potentials, spike trains,

etc.) and H2 is an arbitrary plasticity rule, a functional over pre and post parameterised by

w(t). To incorporate the potential for a modulatory signal M , one can extend this framework to

accommodate so-called three-factor (or neoHebbian) learning rules [73, 3]:

dwij(t)

dt
= H3(M, pre,post;wij(t))

where M describes the modulatory signal and H3 is an arbitrary three-factor learning rule. In

principle one can repeat the Volterra expansion, but the number of kernels grows combinatorially

with the number of function inputs, and more so when considering that M might be vector-valued

for all the relevant neuromodulators. Herein I will consider a simpler approach. I will restrict

the approach to a one-dimensional reward signal R(t) which is thought to be losslessly encoded in

the neuromodulators such that there exists a g where R(t) = g(M(t)), and I consider the task of

maximising this total reward
∫
Rdt.

Descriptive Models

A simple approach might be to allow the reward signal to directly gate plasticity, such is in [74],

yielding a rule such as
dwij(t)

dt
= RH2(pre,post;wij(t))

But this leads to the problem that the reward signal needs to be co-occurring with the neural

activity that gave rise to it. In behavioural studies, this is known as the distal reward problem:

how do rewards received at later times reinforce behaviour from earlier times? This is related to

the temporal credit assignment problem of RL: determining which actions or features from a prior

time were responsible for a reward or instructive signal at a later time. These can be resolved by

introducing an eligibility trace, an idea taken from RL [75, 76].

Introducing an eligibility trace eij gives us a learning rule of the form

τe
deij
dt

= −eij +H2(pre,post;wij)

dwij
dt

= eij R

(2.30)
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For example, if we restrict H2 to consider only pre- and postsynaptic spike trains and a low-pass

filtered postsynaptic spike train θ we get the Reward-Modulated Spike-Time-Dependent Plasticity

(R-STDP) rule [75]

τe
deij
dt

= −eij +H2(X,Y ; θ, wij)

dwij
dt

= eij R

(2.31)

If we replace reward with its zero-meaned value D = R − 〈R〉 then using H2 as the simple

classical STDP allows a network to solve precise-timing biofeedback-like tasks [76].

Conversely, if R does not have zero-mean we can factor it as R = ∆R − 〈R〉 where ∆R is the

fluctuations of R around 〈R〉. Hence the dynamics become

dwij
dt

= eij ∆R− eij 〈R〉 .

In this case simulations show that we require the STDP window to have zero-mean [73] or that it

must be slightly negative as in [75] or the learning dynamics will be dominated by the Hebbian or

unsupervised component eij 〈R〉 while the rewarded component eij∆R is suppressed [80].

Moreover, if multiple tasks are to be learnt simultaneously, then 〈R〉 needs to be computed at

a state-specific level where the state is taken simultaneously over the tasks i.e. we need to replace

〈R〉 with 〈R|state〉.4 This way rewards received for correct or improved behaviour on one task do

not reinforce behaviour on the other task. This requires an extra mechanism to estimate 〈R|state〉,

known as a critic in RL theory [79, 81, 73, 82], but can lead to much faster learning as the plasticity

rule does not need to rely on the averaging of covariance estimates as done in covariance-driven

rules (described below).

Covariance-Driven Rules

The low-pass filter, or eligibility trace, of the first line in (2.30) can be thought of as computing a

running average of H2, which we can denote as H2,5 which allows us to describe (2.30) in a single

line [73]
dwij
dt
∝ RH2

4State here refers to the state in a RL description i.e. the state of the Markov decision process.
5The reader is advised to note that the overline notation is not used for running averages throughout this thesis,

only here.

41



which means the expected weight change across trials is given by〈
dwij
dt

〉
∝
〈
RH2

〉
∝ Cov(R,H2)− 〈R〉

〈
H2

〉

Replacing R with D = R − 〈R〉, as in [76] - which provides neat theoretical guarantees and

the ability to solve complex tasks - or choosing a plasticity rule H2 such that
〈
H2

〉
trials

= 0, as is

found with the policy gradients methods [73] (discussed below) implies that the plasticity will be

driven by the covariance of the reward signal and filtered proposed weight changes H2. Replacing

H2 with any neural activity signal N and using a learning rule of the form

〈
dwij
dt

〉
= Cov(R,N) (2.32)

yields a covariance-driven learning rule [83, 84]. Such learning rules have as a fixed-point matching

law behaviour, which is often experimentally observed and which can maximise reward in stationary

foraging tasks [85].

Since matching law behaviour would not make sense in the context of my tasks, I shall not

review this further save to say that undermatching is often observed, which may be optimal in

non-stationary environments when there are multiple timescales present, and which may arise due

to separate learning mechanisms with their own distinct timescales [85].

Normative Models

In policy gradient learning [82] the agent adapts the parameters describing its policy - or distribu-

tion over action choices - directly by increasing the probability of repeating actions which led to

reward. In a multi-agent environment one finds that the policy gradient update distributes over

the agents; treating various neurons as independent agents in a multiagent environment, Bartlett

and Baxter [86] arrive at a policy-gradient learning rule for spiking neural networks. Building on

their work for infinite-horizon policy gradient learning [87], Florian in [78] extended this rule using

the Spike Response Model (SRM) (of which the basic current-based LIF model is a special case)

with escape noise [38] and considered the continuous time case. In the discrete time setting a

policy gradients rule can also be determined directly with an LIF model extended with adaptation

as in [77].

What these methods have in common is that they result in a learning rule of the formHPG(pre,post) =

H2(pre,post) − 〈H2(pre,post)|pre〉 [73]. Generally these rules have the curious property of only

predicting LTP but when considering postsynaptic rate modulation, one can arrive at an LTD

component as well [78]. However, it is not clear that the learning rules I will consider admit an
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estimate 〈H2(pre,post)|pre〉.6

2.3 Decision Making

It is all well and good to consider how plasticity behaves in the presence of a reward signal, but

it is likely that the reward signal comes indirectly from interactions with the environment. The

full biological architecture of action selection, including the direct and indirect pathways and the

anatomy of the basal ganglia, are well outside the scope of this thesis. In what follows I will

consider only a neural correlate of decision making, that is the firing rate of individual neurons in

some particular region of the brain - in our case, the LIP area - and how a recurrent neural circuit

model of their activity can be used to simulate action choice.

Modeling the (perceptual) decision making process is more than trying to match the proportion

of correct and incorrect responses. Theoreticians attempt to account for features of the decision

making process, such as the time taken to make incorrect decisions, or whether and how the accu-

racy of decisions made is changed by adding a time delay between the cessation of the perceptual

stimulus and the response time, that is, the time at which the decision is made [17]. Various

different models of this process exist, as reviewed in [17]. For our purposes we will consider Drift

Diffusion (DD) models, which may be linear as in [18] or nonlinear such as in [88].

Neural correlates of decision making have been observed in the mammalian brain to arise from

collective dynamics of neurons [17]. Biophysically inspired models have been developed to bridge

the levels of description from network and cellular mechanisms to behavioural performance. A

subset of the models, called “recurrent neural circuit models” [17], are characterised by a few

distinguishing features: recurrent synaptic excitation is assumed to be sufficiently strong so as

to be able to generate multiple persistent states of increased activity, or attractor states, and

that this reverberating excitation is instantiated by slower cellular processes leading to a slow

ramping of neural activity similar to the increase in population activity observed in the LIP area

when performing the RDM task (discussed below), that feedback inhibition is incorporated to

instantiate competition between neurons and finally that stochastic choice behaviour arises from

irregular spiking activity. This last feature we will drop, and consider that there simply needs to

be intrinsic noise in the model, so that we can include rate-based models in this class.

One such model with sufficient generality, which will be used herein, is the model by Wang

[20], adapted from [19] for exactly this purpose of explaining LIP data on monkeys performing the

RDM task.

6While escape noise models can compute this expectation explicitly using the escape rate, diffusive noise as used

in the reduced Wang model is much less tractable and it is not apparent what that a biological substrate for this

expectation would be present.
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In what follows, first I will describe the RDM task that the Wang model was adapted to account

for, then I will discuss DD models of decision making in general as contrasted with recurrent neural

circuit models. Finally I will discuss the Wang model itself.

2.3.1 The Random Dot Motion Task

Figure 2.7: The Random Dot Motion Task. The subject is required to fixate on a point on a
screen while dots are displayed moving in random directions. A fraction of dots (known as the
coherence) move in the same direction. Afterwards, the subject is required to perform a saccade
in the direction in which these dots moved. The task comes in two forms: either the subject is
cued to make a response, or allowed to determine when to make a response on their own. In the
former case one can measure performance as a function of the exposure-to-stimulus time or delay
time before the cue, while in the latter one can evaluate the relationship between RT and decision
accuracy. Image taken from [17].

The RDM task is the canonical task that will be used in the EAs here. It is an example of a

2-alternative forced choice perceptual decision making task. In it, the subject - such as a monkey

- is taught to fixate at a point on a screen. While doing so, several moving dots are displayed on

the screen. A fraction of these dots, called the coherence, will be moving in the same direction,

one of two directions, while the remaining dots move about randomly. The subject is required

to perform a saccade in the direction of the coherently moving dots and if successful receives a

reward. In the fixed-duration version of the task, the subject must wait for a cue at which time

they must perform the task. In the reaction time (RT) version, the subject can choose to perform

the saccade whenever they are ready [17].

In RT tasks experimentalists can assess the relationship between reaction times and accuracy

or error rate, while in the fixed-duration tasks experimentalists can alter the difficulty of the tasks

by adjusting the time of exposure to the random dots stimulus. Recordings of cellular activity

can be done while the task is performed, particularly of the Middle Temporal (MT) area, which

responds to motion in the visual field, and the LIP area, which is implicated in decision making
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[17]. What is typically observed is that neural populations in the MT area respond most strongly

to the signal, increasing their firing rate in proportion to their selectivity for motion in the direction

of the coherent subset of dots, while neurons in the LIP area increase their firing rate in proportion

to the decision made [17]. Moreover, on RT trials once the population activity reaches a threshold

the saccade is performed, while on tasks where there is a delay before the saccade cue, neural

activity remains near this threshold until the cue is received. Thus the population activity of cells

in the LIP area serves as a neural correlate for the decision making process.

A few other salient features of these experiments are [17]: Firstly, on error trials, the RT is

usually longer than on correct trials. Secondly, even if the exposure to the stimulus is extended in

fixed-duration trials, performance on the trials plateaus early and there remains a non-zero error

probability. Thirdly, if a brief motion pulse is included as part of the signal, the effect of this pulse

is more significant if it is provided earlier on, suggesting that earlier stimuli are more important

in the decision making process than later stimuli. All of these features are recreated in recurrent

neural circuit models, as well as one other: if a delay is provided on fixed-duration trials between

cessation of the stimulus and the saccade cue, performance does not noticeably drop. The first

three features are features which linear DD decision making models do not naturally replicate,

while the last feature leaky accumulator models - viable alternatives to DD models, but not which

will not be considered here - fail to replicate. Altogether, recurrent neural circuit models capture

a wide range of experimental data.

2.3.2 Drift Diffusion Decision Making

In the Sequential Probability Ratio Test (SPRT) one repeatedly samples data as evidence et for

one or another of a pair of hypotheses H0 and H1. One defines a decision variable XDV following

dynamics

XDV (t) = XDV (t− 1) + log
P(et|H0)

P(et|H1)
, XDV (0) = 0 (2.33)

and continues updating XDV until it crosses one or another threshold. The threshold crossed

determines the choice of the hypothesis. If each et is independently sampled, then the incre-

ments/decrements to XDV are should be independent of its current value. As such, the SPRT is

optimal [18].

In a DD model for decision making, the latent decision variable XDV is modeled as following

a DD process with drift U and diffusion D such that

dXDV (t) = U(XDV (t))dt+DdWt, XDV (0) = 0 (2.34)

where Wt is a 1-dimensional Wiener process. In the case of U(XDV ) = A for some constant A

we arrive at the continuous time analogue of the optimal SPRT where the decision variable XDV
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can be interpreted as a log-likelihood ratio [18]. Alternatively, one might consider the Ornstein-

Uhlenbeck process given by setting U(XDV ) to A + BXDV , which allows the modeler to include

primacy or decay effects (earlier information is weighted more, or forgotten) by altering B. U

therefore describes the influence of prior information on the inclusion of later information in the

decision making process. The diffusion term D is constant presumably as noise is assumed to arise

from the stimulus and thus be not be governed by the latent decision variable.

Coupled with this are two thresholds Xthr,± so that a decision is made when X reaches either

Xthr,+ from below or −Xthr,− from above. If each alternative is to be modeled as equally probable,

then Xthr,− = Xthr,+. One can introduce variability such as to capture bias in a task by adjusting

the thresholds or the initial conditions [18].

One of the major limitations of the DD model in (2.34) is that it only allows decisions between

two choices. Attempts to generalise this to multiple choices have been made. These include extend-

ing the Multisequential Probability Ratio Test (MSPRT) [18], which is asymptotically optimal, or

race models where the decision threshold becomes a curved boundary [89], or in the case of continu-

ous decision making considering a 2-dimensional process within a circle where the point of crossing

the circle corresponds to the decision made [90]. On the other hand, both the leaky-accumulator

models and the recurrent neural circuit models naturally accommodate multiple choices [17].

The simple linear model predicts longer RTs on error trials, as well as longer-tailed distribution

of RTs, than what is observed on perceptual decision making tasks [17]. While this does not

capture the data on the RDM task, it does capture a range of data on other decision making tasks

with human subjects [17]. Hence being able to relate DD decision making models to neural models

is an important step in studying the relationship between neural activity and decision making.

Indeed several neural decision making models can be shown to be equivalent to the linear DD

model when the parameters are appropriately chosen [18].

Conversely, correlates of several components of the DD model can be found in neurobiology,

including the threshold [91]. With neurobiology in mind, R-STDP (as in equation (2.31)) can be

shown to allow such a model to achieve the weights necessary to perform MSPRT [92]. Thus we

see how synaptic plasticity, neurobiological modeling, and the theory of decision making are all

three sides of the same coin.

Furthermore, a pooled-inhibition model, which is similar to a recurrent neural circuit model

but which does not necessarily require the slower reverbratory dynamics - and thus with strong

synapses and fast activity decay is formally equivalent to an Ornstein-Uhlenbeck model [18] -

has been combined with punishement-driven plasticity in the Drosophila [93] to explain orienting

behaviour.
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2.3.3 The Wang Model

The Wang model is a recurrent neural circuit model which stems from [19] where it was originally

used to account for how recurrent excitation arising from slow NMDA processes can lead to sus-

tained increased activity. It was adapted in [20] to describe LIP data of monkeys performing the

RDM, where it was modeled as receiving an external noisy stimulus as a proxy for area MT inputs

to the LIP area, and was found to be a good fit to data. This model thus provides a biologically

feasible candidate model for decision making tasks. While it was fitted to the LIP area, it can

be used to describe decision making more generally and agnostic of location in the brain [17]. As

discussed above, it both captures a wide array of data and can handle more than two choices.

However, as seen above it is also not the only biologically feasible option and in fact may not yield

optimal performance on some tasks.

Figure 2.8: Typical trajectories of firing rates in a recurrent neural circuit model. Here the 2-
variable reduced model from [94] has two selective populations with two firing rates. A step current
corresponding to the mean input of a coherence of 0.1 is provided. Two trajectories of firing rates
are shown. The black curves show the firing rate of the population selective for the direction of the
coherent dots’ movement, while the red curves show the firing rate of the population selective for
the opposite direction. During stimulation, slow ramping of activity occurs due to slow NMDAR
dynamics followed by competitive inhibition. Persistent elevated activity is not guaranteed. Param-
eters and code adapted from github.com/xjwanglab/book/blob/master/wong2006/wong2006.py.

The Wang model has a few distinguishing features. In [95] it has been extended to a multiple-

circuit model to account for different brain regions involved in decision making, including a bio-
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logically feasible implementation of a decision threshold. As can be seen in the Appendix A it can

be reduced to a rate-based model, but in [94] it has been reduced to a non-linear 2-dimensional

model (shown in Figures 2.8 and 2.9). Here it was studied and shown to exhibit a subcritical

bifurcation parameterised by the recurrent synaptic strength w+ and strength of the stimulus. For

a range of w+ and stimulus strengths, elevated firing rates - or, equivalently, elevated fractions

of open NMDAR channels 〈sNMDA〉 - could be achieved and through hysteresis would persist

once the stimulus was removed. A second bifurcation ensured that this effect would not happen

if too strong a stimulus was provided. In [88], using weakly nonlinear analysis and focusing on

this subcritical bifurcation, this model was further reduced to a 1-dimensional DD model. This

1-dimensional model captures the psychometric features which were explained by the Wang model,

and as such successfully finishes bridging the gap between the biologically inspired Wang model

and the psychometric decision making studies; however this 1-dimensional nonlinear model does

not capture the hysteresis and sustained activity of the prior models, likely due to limiting the

analysis to terms no more than cubic in the 1-dimensional decision variable.

Figure 2.9: Decision making with recurrent neural circuit models can be understood by their dy-
namics in their state space. Here, the firing rates of two populations develop over time. The x-axis
shows firing rates for the populations selective for the direction of coherently moving dots, the
y-axis shows firing rates for the population selection for movement in the opposite direction. As
the coherence rises and the task becomes easier, the probability of reaching the steady state corre-
sponding to the correct direction selection increases. Multiple trajectories are overlaid. Parameters
and code adapted from github.com/xjwanglab/book/blob/master/wong2006/wong2006.py.
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One caveat about these reductions is that once we move past the rate-based version considered

herein (and derived in the Appendix A), they obfuscate the effect of synaptic weights through

function fitting and thus make questions about synaptic plasticity unclear.

The Wang model has also been combined with a reward-driven synaptic plasticity rule [24],

which resulted in matching law behaviour consistent with the covariance-driven learning of Loewen-

stein [83, 84] (as discussed in Section 2.2.5), but this plasticity rule was stochastic and used discrete

synapses, and thus is not an example of the plasticity rules considered in this thesis.

As a side note, a two-population rate-based attractor model, or rate-based recurrent neural

circuit model, has been combined with the covariance-driven R-STDP rule in [96] to account

for behaviour in free-operant experiments where the subject can continuously engage with the

environment in a foraging task (rather than trial-to-trial experiments as are typically investigated),

and was also able to capture features of observed behaviour such as matching and the exponential

distribution of stay durations i.e. the amount of time the subject stays at one site before moving

to another.

The components of the Wang model were discussed in Section 2.1. For brevity and reference,

the complete model description is included here:

τm
dVi(t)

dt
= −(Vi(t)− VL)− Ii(t)

gm
(2.35)

Vi(t)← Vreset if V (t−) = Vthr (2.36)

Ii(t) =
∑
j∈PE

wij(Vi(t)− VE) (sj,AMPA(t)gAMPA + sj,NMDA(t)gNMDA(Vi))

+
∑
j∈PI

wij(Vi(t)− VI) sj,GABA(t)gGABA

+
∑

j∈Pext

(Vi(t)− VE) sj,AMPA(t)gAMPA,ext (2.37)

gNMDA(Vi(t)) =
gNMDA

1 + γJS exp(−βJSVi(t))
(2.38)

dsj,AMPA/GABA(t)

dt
= −

sj,AMPA/GABA(t)

τAMPA/GABA
+ Sj(t) (2.39)

dxj,NMDA(t)

dt
= −xj,NMDA(t)

τNMDA,rise
+ Sj(t) (2.40)

dsj,NMDA(t)

dt
= − sj,NMDA(t)

τNMDA,decay
+ αxj,NMDA(t)(1− sj,NMDA(t)) (2.41)

The first equation (2.35) along with the reset condition (2.36) give the LIF membrane potential

dynamics for the focal neuron i, while (2.37) gives the synaptic input current to neuron i. The Jahr-

Stevens formula for NMDAR dependence on membrane potential is in (2.38). Equations (2.39),

(2.40) and (2.41) describe the fast (AMPAR and GABAA Receptor) and slow (NMDAR) dynamics
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of the ion channels. PE , PI and Pext collect the indices of excitatory (pyramidal), inhibitory

(interneuron) and external Poisson neurons synapsing onto the focal neuron i, respectively. Coupled

with a plasticity rule, the full model would have the synaptic strengths wij be plastic as well.

2.4 Evolutionary Algorithms

EAs are a subset of the study of biologically inspired algorithms, explored primarily today in the

realms of artificial intelligence and operations research. They provide a broad, general purpose

solution to the task of global optimisation. Given a fitness function Φ to be optimised - such as

maximising reward on an RL task, or minimising travel time in a traveling salesman problem - an

EA strictly needs nothing more than a means by which to order candidate solutions, or genotypes,

γ within a population Γ by their fitness scores Φ(γ) to be able to determine the globally optimal

candidate [97, 13]. By comparison, RL usually require evaluative feedback Φ(γ) while supervised

learning methods require instructive feedback γ∗ = argopt Φ(γ) [82]. Moreover, EAs do not require

gradient information of the fitness function. That said, the more information provided, the better

the EA can be made to perform. Thus, the task of finding an optimal plasticity rule for an uncertain

RL task is a prime candidate problem for an EA.

In what follows, I will give the necessary background of EAs and in particular that of CMA-ES,

sufficient to understand the choices that need to be made in evolving a plasticity rule. Next I shall

discuss some other approaches, such as neuroevolution.

2.4.1 Background

Initially, the study of EAs was composed of three distinct branches: the study of Genetic Algo-

rithms (GAs) , the study of Evolutionary Programming (EP) and the study of Evolution Strategies

(ESs) [97, 13]. Later these algorithms were combined under a general framework [13] consisting

of the repeated application of various evolutionary operators: the recombination and mutation

operators are known together as the variation operators, but there is also the selection operator

which utilises the fitness information, potentially alongside a marriage operator. Below I will omit

discussion of marriage operators aside from saying that they allow one to implement speciation

effects by creating subpopulations which cannot - or are unlikely to - interbreed.

EAs work by the repeated application of these operators to the population. At generation g the

survivors, or parents, for the next generation are determined by applying the selection operator to

the population Γg. In turn, if necessary, these parents are matched up by the marriage operator.

New candidate solutions are produced by applying the recombination operator to the parents, and

finally the next generation Γg+1 is obtained by applying the mutation operator to these candidate

solutions.
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The choice of operators, as well as the choice of representation of the genotypes γ, depends on

the task at hand. Such considerations include whether the search space is discrete, such as solving

an integer programming task, or continuous, such as finding the minimum of a function on a vector

space over the real numbers, or even combinatorial, such as the collection of all permutations of

nodes in a graph, and it may depend on whether the search space is bounded or unbounded.

The Encoding

Occasionally a distinction is made between whether the candidate solutions are genotypes or phe-

notypes. The distinction is rather artificial, but pertains to whether the representation of the

candidate solution is in some way transformed (for genotypes) or left as is (for phenotypes) before

the selection operation is performed. Collectively, I will call the representation of a candidate

solution a genotype and denote it γ.

GAs originally considered the genotype to be a string of digits, from which it was proven

that a binary representation is optimal, at least for producing the first new generation [14, 13].

However, it is desirable that nearby7 genotypes have similar fitnesses so that the EA can make

many incremental improvements rather than relying on few chance improvements which might

achieve performance little better than a random search. Finding such a binary representation over

an interval of real numbers can be challenging: for example, representing numbers in the interval

[0,1] by their binary expansions truncated at some n bits shows that

1

2
= 0.10 . . . 0

is very far from the nearest representable preceding number

0.01 . . . 1

if the mutation operator implements component-wise changes. It is often advisable therefore when

considering a real domain to represent the genotypes with real numbers. When dealing with higher

dimensional candidates, genotypes might be represented by vectors.

Another consideration is that of boundaries. If there is a feasible region within which candidate

solutions must lie, but which the evolutionary algorithm can escape, one needs to find a way to

ensure that only feasible solutions are found. If the space is bounded in a known way, one might

pass the candidate solution through a bounded function. For example, when searching for a solution

within the interval (0,1), if mutation is determined by adding Gaussian noise then on chance a

genotype γ may escape the interval under mutation and yield an infeasible solution; if, for example,

the fitness function Φ depends on a logarithm, then Φ(γ) might not be well defined. If we denote

7Nearby in the sense that the expected number of mutations required to transform one genotypes into the other

is small.
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the logistic function by σlogistic, we are guaranteed that Φ(σlogistic(γ)) is a well defined solution

and the evolutionary algorithm can explore all of the preimage σ−1
logistic((0, 1)) = R for a solution.

Alternatively, penalties might be considered if Φ(γ) is still well-defined. Here one adds a penalty to

Φ(γ) if γ is not a viable solution so that this fitness becomes worse than that of the nearest viable

candidate, but not so poor that the EA is discouraged from finding the nearest viable candidate.8

The Selection Operator

Contrasted with the variation operators discussed below, the selection operator is the manner by

which fitness information is fed back into the EA. By design, the mutation and recombination

operators should be unbiased to avoid genetic drift that might run against the gradient of the

fitness function if the fitness function is differentiable, or more generally might run against the

optimal direction for improving performance.

The selection operator takes a population Γg and returns the survivors, or parents, for the

next generation. In ES notation, this number of survivors is typically denoted µ; I shall use µEA

to avoid confusion with the weight-dependence of the plasticity rules. There are several ways in

which the selection operator can be implemented [13]: deterministically, as is typically done with

ES where the top µEA candidates are selected based on their fitness scores, or randomly as is

done with the other regimes. The random selection process can be implemented in various ways:

for example, tournament selection chooses a random subset of candidates and of them selects the

best9 and repeats this procedure µEA times, while roulette wheel selection assigns each candidate a

subinterval of the unit interval [0,1] in proportion to their share of the cumulative population fitness∑
γ∈Γ Φ(γ) (such that all the intervals are disjoint) and then samples µEA random numbers from

the unit interval and selects the candidates with the intervals within which the random numbers

fell. Measures can be taken to avoid repeated sampling. There are certain equalities between these

methods, as well as design choices such as the number of candidates chosen for the tournaments or

whether the interval sizes should grow nonlinearly in roulette wheel selection with the relative share

of the fitness, such as using the squares of the fitnesses Φ2(γ) as a proportion of the cumulative

sum of squares of fitnesses
∑
γ∈Γ Φ2(γ) for the sizes of the intervals, or if population-performance-

dependent baseline is subtracted, such as the minimum fitness score [13].

The Recombination Operator

The recombination operator takes ρEA parents and combines them to create one or several new

candidate solutions. In ES, only one new candidate is created per recombination, while in GAs

8The search space, after all, does not strictly need to be connected and passing regions of infeasible solutions

might be a prerequisite. Penalties allow the EA to explore the infeasible regions while ideally not stagnating there.

9Notice that one only needs to determine which candidate had the best score, not what that score was.
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which usually set ρEA = 2, two candidates would then be created. Usually mutation will then be

applied to the new solutions, but one might also apply mutation to the parents before recombina-

tion, as with Differential Evolution (DE) [98]. Typically the recombination operator takes one of

two forms: dominant, or intermediate [99].

In dominant recombination, for each component or gene of the genotypes the value of one of the

parents is randomly selected for each child that is being produced. If there are n values - or alleles -

for this gene amongst the ρEA ≥ n parents, then the dominant allele is most probably selected. In

this way recombination preserves the shared components (which, due to the parents being selected

based on fitness, are expected to correlate with the fitness) while randomising the remaining

components. In the case of ρEA = 2 when 2 new candidates are created, dominant recombination

can be implemented by crossover where the alleles are the parents are shared amongst children.

Intermediate combination is an alternative used when the alleles are continuously valued, as

is typical for ESs: a (potentially weighted) average of the parents is taken as a new candidate,

to which mutation is then applied. The difference between the average of the parents, which

are amongst the µEA best candidates, and of the population itself is expected to correlate with

the gradient of the fitness function, while the spread of the parents orthogonal to the gradient is

expected to be averaged away. That is, on average

[∇Φ(〈γ〉Γ)]
>
[
Φ(〈γ〉Γ:µEA

)− Φ(〈γ〉Γ)
]
> 0

where Γ : µEA are the µEA best candidates in Γ. In this way recombination can drive steps in the

direction of the gradient of the fitness function (assuming here that Φ is to be maximised; if Φ is

to be minimised, the argument is reversed).

In ES literature, an algorithm would be described as a (µEA/ρEA, λEA)−ES or a (µEA/ρEA+

λEA)−ES, where in the special case of ρEA = 1 the ρEA is usually omitted. A (µEA/ρEA, λEA)−

ES is one where, at each generation λEA > µEA new candidates are produced, of which the new

µEA parents are selected. A (µEA/ρEA + λEA) − ES produces λEA > 1 new candidates and the

best µEA of the total µEA + λEA candidates survive. This latter “+” form implements what is

known as elitism: the best candidates so far remain in the population. While elitism may have

certain advantages by reducing the chance of the population average decreasing, it also makes it

more difficult for the population to move away from an elite candidate (especially if they are in a

local optimum); as such, although the relative performances of the two types depends on the task

at hand, (µEA/ρEA, λEA) is recommended for unbounded search spaces [99]. In order to maintain

an estimate of the best candidates reached, it is common instead to keep a collection of the best

individuals observed throughout the span of the EA, known as a hall of fame.
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The Mutation Operator

It is the mutation operator more than anything else that distinguishes the types of EAs [97]. In

GAs, most of the variation is designed to come from the recombination operator, while for EP and

ESs the mutation operator contributes most of the variability. ESs are further distinguished by

evolving simultaneously the genotypes and the parameters for the mutation operator. For brevity

I will only discuss mutations over real-valued vectors γ ∈ Rn.

In determining the mutation operator, one might start by considering a few properties that it

should satisfy, namely (following [99]):

1. reachability: that any genotype can be reached in a finite number of mutation steps from

any other genotype. This is a requisite for proving global convergence.

2. unbiasedness: that the mutation should introduce randomness - or information - into the

system as maximally as possible but without bias. Naturally this leads to sampling changes

to the alleles from a maximum entropy distribution such as N (0, σγ,l) where σγ,l describes the

size of the mutation applied to the l-th allele. We can denote all these parameters together

by a vector σγ .

3. scalability: that the mutation operator itself can adapt to the landscape.

If the recombination of the parents is written as γrecom, and the offspring after mutation as γoffsp,

then we have that

E[γoffsp|γrecom] = γrecom =
∑

γ∈Γ:µEA

w(Φ(γ)) γ

where w(Φ(γ)) is a potential reweighting of the average dependent on the fitness of the individual

parents.

The scalability property means that the parameter vectors σγ should themselves be able to

adapt to the landscape, also in an unbiased fashion. For better or for worse, the σγ,l’s are usually

lognormally distributed with mutations coming multiplicatively from N (0, τEA) where τEA is a

hyperparameter. This means that we recover this martingale property only for the logarithms of

the mutation parameters:

E[log σγoffsp |σγrecom ] = log σγrecom

The adaptation of the mutation parameters allows one to adjust the level-set ellipsoids for

sampling vectors of mutations in an axis-parallel manner to locally fit the landscape. Going a step

further, CMA-ES computes a population-wide covariance-matrix estimate Σg to adapt rotations

to the fitness landscape as well.

What is the benefit of this self-adaptation of mutation parameters? This can illustratively
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be seen with a simple example: consider the spherical fitness function Φ(γ) = ||γ − r||2 to be

minimised. The optimum is γ = r. As the size or euclidean norm of the mutation vectors

decreases, the probability that the direction of the mutation vector is towards r increases towards

0.5, but the rate at which the population moves towards r decreases towards 0. Conversely, as the

size of the mutation vectors increases, the rate at which the population moves towards r increases

but only insofar as the mutation is in the correct direction, which decreases in probability to 0.

Thus, at the two extremes, the rate at which the population moves towards the optimum drops

to zero. Furthermore, as the population moves closer to r, the mutation sizes need to decrease so

as not to overshoot the target. Somewhere in the middle of the extremes is a landscape specific

optimum for σγ for each γ, or Σg for the population, determined by the current location of the

population in the landscape.

Benefits of Evolutionary Algorithms

The observation that the globally best candidate will be found for a discrete representation of the

genotype γ, or that one will come ε-close to a global optimum for continuous representations of

γ, depends on the mutation strength remaining sufficiently high that no part of the search space

becomes unreachable [12, 97, 13]. Indeed, if the fitness function being optimised for is deterministic

i.e. Φ(γ) is a scalar, then sufficient criteria to guarantee convergence to a global optimum are [12]:

1. The probability that there is no optimal candidate in the population Γk+1 conditioned on

there being an optimal candidate in population Γk is 0. This is satisfied by all elitism

strategies, or (µEA/ρEA + λEA)− ES algorithms.

2. If there is no optimal candidate in a population Γk, then, loosely speaking, there must be

a sufficient probability that Γk+n contains an optimal solution for some n ∈ N. Sufficiently

strong mutation strength satisfies this condition.

In brief, the set of populations containing optimal solutions must be an accessible and attracting

set.

However the global optimisation property offers minimal comfort if one is not able to determine

whether a solution ε-close to the optimum has been achieved [13]. Practically, the primary benefits

of EAs lie elsewhere: firstly, they are massively parallelisable and thus able to utilise multicore

processors and high performance clusters efficiently; secondly, as discussed above, they can find

solutions to optimisation problems which may be analytically intractable and may not even have

differentiable fitness functions.
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2.4.2 The Covariance Matrix Adaptation Evolution Strategy

The CMA-ES algorithm is described as the de facto standard in continuous domain evolutionary

optimisation [21]. It is an ES of the (µEA/µEA, λEA) type whereby a population-wide covariance

matrix estimate is maintained and updated at each generation. The details of this operation lend

little to the discussion here, but can be found in Algorithm 5 in [21], as well as in [100] with a

thorough discussion.

In broad terms, at each generation g a new population of λEA > µEA genotypes are sampled

from N (〈γ〉Γg−1:µEA
,Σg−1). The covariance matrix Σg−1 is then updated using the fitnesses of the

new candidates as well as the low-pass filtered history of all prior updates (see Figure 2.10). This

latter step is justified as follows [100]: on average, mutations without improvement should cancel

each other out, yielding short cumulative paths. However, if the cumulative path is long then there

is a trend in the successful mutations suggesting a gradient to be followed. Thus the average path

length over prior mutations can be compared with the expected path length to determine if it was

shorter or longer than average. Conceptually in this way the covariance matrix can adjust to fit

valleys in the fitness landscape (see Figure 2.10).

Figure 2.10: CMA-ES progress across several generations. The covariance of the mutation dis-
tribution Σg adapts in the direction of the gradient of the fitness function. Genotypes from each
generation are shown as black dots, while the covariance of the mutation distribution is shown in
orange. The fitness function is the spherical fitness function, whose contours are shown in white.
Image obtained from en.wikipedia.org/wiki/CMA-ES.

There has been a recent resurgence of interest in CMA-ES following its application in com-

bination with proximal policy optimisation in [101] to successfully solve RL tasks. In short, the
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idea from CMA-ES of updating the covariance matrix and then updating the mean was applied to

update the policy covariance and then policy mean at each generation. Prior to this, in 2003 in

[102] Igel found that on the simple pole-balancing task, using CMA-ES to fit the weights of a neural

network with a standard architecture outperformed most other contemporaneous neuroevolution

methods. Later in [103] a slightly different algorithm, Natural Evolution Strategies (NES) which

adapts the distribution parameters using the natural gradient [104], was found to perform well on

a suite of RL tasks when used to fit the weights of neural networks.

2.4.3 Neuroevolution

One of the limitations of using CMA-ES in particular, or ES in general, to determine the parameters

of a neural network (be it artificial or biologically inspired) is that these methods do not determine

the topology of the network. The discipline of using EAs to design neural networks is known

as neuroevolution and it is fraught with difficulties [14, 105] (despite the successes mentioned in

the previous section). The first challenge arises from trying to perform crossover with networks

of different topologies: one needs to find a representation of the networks such that crossover

operations can be performed without bias. The second challenge arises from the complexity of

the search space: once the evolved candidates begin to perform well, it becomes remarkably easy

for mutations to worsen performance. Unlike the spherical fitness function Φ(γ) = ||γ − r||2

mentioned in 2.4.1 where the probability of an improvement can increase to 0.5, it would seem

that most potential mutations to the topology of the network will typically worsen its performance

on complex tasks.

Remarkable success in evolving network topologies came with NeuroEvolution of Augmenting

Topoligies (NEAT) [106], leading to several successful avenues of research [107, 108, 109, 31] and

culminating in the idea of an Evolved Plastic Artificial Neural Network (EPANN) [110]. These

techniques are strongly oriented towards solving tasks rather than investigating biological models.

Nonetheless, due to the success of NEAT in evolving topologies it deserves mention.

In an attempt to determine whether NEAT introduced genetic drift - or rather, to determine

if it would be a feasible candidate mechanism to evolve the topology of the Wang model - I ran

a small test: I used it with a constant fitness function. The evolved networks were found to

have Poisson-like distributions of degrees for the nodes, evident of being of the Erdős–Rényi type

[111, 112] but not consistent with biology [113, 114, 60, 115]. Rather than attempting to offset

this genetic drift, I opted to maintain the simpler fully connected topology of the Wang model.
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2.5 Optimality

Here I wish to address whether - and how - one should use a normative or optimisation-oriented

approach to interrogate biology. Such an approach has, after all, been criticised for being too

simplified [10]. When biological data does not match optimal performance with respect to some

fitness function, typically the researcher would adapt their fitness function to better capture the

data. However, this runs the risk of overfitting: how does one determine whether the fitness function

is incorrect or if failure to match the fitness function is due to stochasticity in the evolutionary

process? One might be able to do this by comparing the observed distribution of data to that

predicted by a normative model, but to do so one needs to obtain a distribution from the normative

model in the first place.

I will start with a rather spurious argument that lays the conceptual groundwork for more

sound examples below.

Imagine a k-dimensional continuous-valued collection of biological traits, represented by χ.10

The individual components of χ might correspond to heights, fur colour, even something more

abstract such as parameters of the reaction-diffusion dynamics that might give rise to fur pattern-

ing, or even the layout of cells in an animal body. Now imagine that these parameters adapt to

minimise some fitness function Φ,11 but undergo regular noise in this process which can be param-

eterised with a strength D, and that the changes to χ that arise over time are sufficiently small

that we can model this as diffusive noise. This noise can be independent of the fitness function, so

that the noise arises from biological processes while the fitness function is determined by a more

abstract external environment. Finally, imagine that the environment changes in such a way that

Φ changes on a wholly slower timescale to that of χ such that we can consider a separation of

timescales. Then, if the fitness function is integrable Φ ∈ L1(Rk) and we assume that the drift χ

has a potential proportional to Φ we arrive at the dynamics

dχ

dt
= −a∇Φ(χ) +

√
2Dη(t)

where η is a white noise process and a is a proportionality constant, or

dχ = −a∇Φ(χ)dt+
√

2DdWt

where W is a k-dimensional Wiener process.

10I am avoiding the use of γ to not confuse the actual biological traits with any notion of a genotype. χ can be

understood as short for “characteristic”.
11The same argument can be made for maximising a fitness function, save that the fitness function becomes the

negative potential of the drift of the traits.
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The corresponding Fokker-Planck equation is then

∂p

∂t
= a∇ · (∇Φp) +D∆p

where ∆ is the Laplace operator, and since Φ ∈ L1(Rk) it follows from Fokker-Planck theory [116]

that the equilibrium distribution pSS can be characterised by the Boltzmann distribution

pSS(χ) =
1

Z
exp(−aΦ(χ)/D)

where Z =
∫
Rk exp(−Φ(χ)/D)dχ is the normalising constant. From this we also get

∇ log pSS(χ) ∝ −∇Φ(χ) (2.42)

This distribution, pSS , gives us a normative estimate of the true biological distribution, and

importantly it has modes at the local minima of Φ. There are two ways in which we can use

this. First, if we estimate χest = argminχΦ(χ) we can assume that a non-negligible portion of the

probability mass lies in a region around χest and that the logarithm of the probability decreases at

a rate proportional to the negative of the fitness function’s gradient in that direction. Thus from

estimating the fitness function we can perform inference about the biology, an idea taken from

[10] which I call the optimality principle and will discuss below. Secondly, we have the idea of the

optimality prior [11]: imagine we are fitting a biological model M dependent on parameters θM

to describe some dynamic continuous biological phenomenon which addresses a fitness function

Φ as before. Now the same reasoning can be applied to the model’s parameters to find a prior

distribution of the “true” parameters. This prior can in turn be combined with the likelihood of

the data to determine a posterior distribution or used as a regulariser to determine a maximum a

posteriori estimate of parameters.

Brought together, the value of using normative approaches to fit biological models may lie in

determining an estimate of the distribution of parameters of the model and an estimate of the

distribution of fitnesses.

2.5.1 The Optimality Principle

In [10] it is shown that if Φ is the wiring cost and χ is the placement of neurons in the Caenorhab-

ditis elegans (C. elegans) then the optimality principle yields a good estimate of the wiring cost

distribution. In Escherichia coli (E. coli), if Φ is biomass production the principle accounts for

deviations of metabolic fluxes from that which maximises biomass production. Moreover, they

find that deviations from optimality are larger in dimensions that have less impact on the fitness,

as suggested by equation (2.42). Finally, they provide a Bayesian approach to better estimating

the fitness function from the data. This in principle allows the researcher to determine which
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optimisation criterion is providing the evolutionary drive.

It should be noted that they arrive at the distribution differently to the Fokker-Planck approach

above, by finding that the probability mass function over discrete states follows

P(χ) = f(Φ(χ)) (2.43)

for some increasing function f . They consider a noisy fitness function Φnoisy(χ) = Φ(χ) + noise

and consider that the probability that the system is in state P(χi) is equal to the probability that

the noisy fitness for χi was greater than for all other states, i.e.

P(χi) = P(Φnoisy(χi) > Φnoisy(χj)∀j 6= i)

From the assumption that the noise is independent of the fitness, it follows that there is some

increasing f such that Equation (2.43) holds. Importantly, this equation does not require contin-

uous variables. However, one still needs to characterise the distribution of the noise for the noisy

fitness function Φnoisy to explicitly determine the distribution from the fitness function.

2.5.2 The Optimality Prior

Optimisation priors are maximum-entropy priors determined from the optimisation criterion Φ

[11]. When fitting models to data, theorists often extend the maximum-likelihood approach with

the use of uninformed regularisers, which yields a maximum a posteriori estimate and can reduce

overfitting. However, if one knows what the modelled system is aiming to achieve, one can use that

information to construct a more informative prior with which to regularise the model. Formally,

the parameters θ̂M for a model M may be chosen with regularisation as

θ̂M = argmaxθM logP(data|M, θM ) + logP(θM |M)︸ ︷︷ ︸
regulariser

while using the optimality prior one replaces the uninformed regulariser with one informed by the

fitness function:

θ̂M = argmaxθM logP(data|M, θM ) + logP(θM |Φ,M, β)

where P(θM |Φ,M, β) is a distribution with parameter β - called the “optimisation parameter” -

which influences its entropy. In particular, they consider the Boltzmann distribution

P(θM |Φ,M, a) =
1

Z
exp(−βΦ(θM ))

which we see, by choosing β = a/D, is the steady-state distribution pSS of the Fokker-Planck

dynamics discussed above. To perform Bayesian inference, one can then sample θ̂M from the
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resultant distribution rather than choosing a maximiser.

2.6 Conclusion

In this chapter we have covered a range of different topics providing background for the chapters

to follow. All of the plasticity rules can be unified into a single family of rules paramterised by

continuous variables. In an normative approach, this family of rules can be explored by an EA

which attempts to find optimal parameters for the Wang model to learn to solve the RDM task.

This is discussed next in the Chapter 3.
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Chapter 3

Methods

One branch of neuroscience that can help

bridge findings from the microscopic to

the whole-brain level is computational

neuroscience.

The Brain Facts Book, [117]

In this section I define rate-based version of the Wang model to be used in simulating the

decision making process on the RDM task and to attempt decision making on an XOR task. The

XOR task is included to assess the expressivity of the model. For the RDM task, the Wang model

is extended with a plasticity rule, parameterised by continuously-valued parameters, which change

the synaptic strengths of the model in response to the activity of the populations of neurons and

in response to reward obtained from the performance on the task.

I use the EA CMA-ES as an optimisation procedure to find separately parameters for the

plasticity rule, and weights for the network in the absence of any synaptic plasticity, so as to

allow the network to solve the RDM task. For the XOR task, I only evolve the synaptic weights.

Performance on the task at hand thus describes a fitness function, or fitness landscape, over the

weights and over the plasticity rule parameters.

Because of the many interactions of the parameters, CMA-ES was chosen due to its ability to

adapt to the fitness landscape and capture locally the effect of these interactions of the parameters.

Moreover, the optimal parameters for the plasticity rule are likely of very different scales, where

some are scaled by the cube of the firing rates and others are constant; CMA-ES is able to adjust

the scales of the mutation operation to accommodate this mismatch in scale. The search space is,

for most of the parameters, unbounded and as such a (µEA/ρEA, λEA) strategy is recommended,

and the CMA-ES algorithm falls within this class.
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Due to the need of the EA to run many successive simulations, these simulations need to be

made as fast as possible. Moreover, reducing the dimensionality of the search space for the EA (in

our case, reducing the number of parameters for the plasticity rule while maintaining its generality)

can reduce the running time of the EA as well as allow the procedure to find a unique optimal

solution rather than a (pseudo)-random point on an optimal surface. To this end a rate-based

version of the Wang model will be used, along with the rate-based plasticity rule which one arrives

at through averaging. The full derivation of the rate-based Wang model can be found in the

Appendix Section A.2.

In what follows, first the complete framework is presented in Section 3.1. The translation of

the RDM task to a rate-based framework is adopted from [94] and described in Section 3.2, while

the XOR task is described next in Section 3.3. Afterwards, in Section 3.4, I will discuss how the

plasticity framework can be extended to include all of the biologically feasible modifications that

were discussed in Section 2.2 while at the same time reducing the number of parameters needed

to do so by grouping monomial coefficients, followed by how this can include the three-factor

formalism of Section 2.2.5 and finally consider the bounds on some of these parameters. The

CMA-ES does not inherently accommodate bounds; to circumvent this, genomes are sampled from

an unbounded space and bounded at evaluation time. Next I will discuss how the implementation

was further accelerated and rendered more stable in Section 3.5 using function approximations and

other changes. Finally, implementation details are given in Section 3.6. The final parameters for

the Wang model can be found in Table A.1, and the parameters for the plasticity rules and their

evolution can be found in Table A.2.

3.1 The Complete Framework

The model used to perform computations is a recurrent neural circuit model with three recurrent

excitatory populations (for the RDM task) or five or more recurrent excitatory populations (for

the XOR task) and one inhibitory population, as well as external excitatory populations providing

sufficient input to maintain a low firing nearly-zero firing rate, as shown schematically in Figure

3.1. In the RDM task, two of the excitatory populations are selective for the two directions of

the coherent subset of moving dots, and the saccade direction selection is determined by the firing

rates of these populations. In the XOR task, two of the excitatory populations receive the input

and another two are used to determine the output. In both cases the final excitatory population

and the inhibitory population maintain competitive dynamics between the populations.

From each excitatory population onto every population, including recurrently onto themselves,

are collections of synapses with shared synaptic strengths. These represent the average synaptic

strength between neurons within the two populations, as are obtained by the averaging discussed

below. These average synaptic strengths may undergo plasticity described by a parameterised
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plasticity rule which depends on the firing rates of the two populations of the neurons, as well as

the current value of the average synaptic strengths and a low-pass filtered history of the firing rate

of the neurons on the postsynaptic side.

Two distinct optimisation procedures will be run for the RDM task, both using CMA-ES. The

first is to determine the optimal baseline performance of the model on the task for various coherence

values. In this procedure, the plasticity rule implements no change and the synaptic strengths are

directly evolved. The second optimisation procedure is over the parameters of the plasticity rule,

and aims to determine a plasticity rule which, across successive trials of the RDM task, can drive

the network to optimal performance.

The full experimental framework is shown in Figure 3.2, including the libraries used in Python

for their implementation.

Figure 3.1: The reduction of the spiking model to a rate-based model. Grey nodes show individual
dynamic variables: in the spiking model (left), these variables correspond to fractions of open
ion channels and membrane potentials; in the rate model (right), these variables correspond to
population firing rates and average fraction of open ion channels. In the spiking model, individual
Poisson inputs are simulated while in the rate model average Poisson inputs are simulated. Lines
with arrowheads indicate excitatory connections, and lines with circles indicate inhibitory connec-
tions. Two-headed arrows are used to show bidirectional connections for clarity. Bundles of arrows
show diffuse all-to-all connections. Conceptual groupings are shown with dashed lines. In both
cases there are three excitatory populations and one inhibitory population, all receiving external
Poisson inputs. The populations shown correspond to the model used on the RDM task, while the
XOR task used more excitatory populations. Image created using miro.com

3.2 The RDM Task

The individual RDM task trials were modelled after the implementation in [94] for their reduced

model. There will be multiple successive trials, each using the weights and time-averaged firing

rates θ from the end of the previous trial as the initial conditions for the next simulation. When

evolving the plasticity rules, there will be 100 successive trials. When evolving the synaptic weights

directly 10 successive trials were used.
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Figure 3.2: The complete framework. Ellipses show distinct theoretical components, while thin
arrows between them show interactions between the components and thick arrows show reductions
and approximations. The dotted thin arrow shows interactions only present when evolving weights,
and the dashed thin arrows show interactions only present when evolving plasticity parameters.
Rectilinear boxes show software which was used in simulating each component. All spiking model
simulations were implemented using Brian2. The rate-based plasticity rules and Wang model were
sped up using Numba’s Just-In-Time compilation, which interacted with the RDM task which was
implemented in NumPy. This was all called from the CMA-ES algorithm implemented in DEAP
and parallelised with Dask. Image created using miro.com

The task took the following form: the simulation was run for 200ms before any stimulus was

presented, then the stimulus was presented for a another 200ms, at the end of which the final

firing rate was read out as the decision variable. All of these times are in principle variable.

The population with the highest firing rate corresponded to the choice made. The stimulus was

provided as an increase in firing rate of the external inputs to two of the selective populations

corresponding to the two options for the saccade. The increase in the external firing rate was by

a fraction 0.05 × (1 ± c) where c is the coherence of the RDM task, and the ± reflects whether

the population is receptive to activity in the same direction or the reverse. When the decision was

made, reward was immediately given, at an amount of R(0) = 1/τreward and decayed exponentially

with the time-constant τreward = 1ms i.e.

dR

dt
= − R

τreward
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Afterwards, the simulation was continued (without stimulus) for another 400ms, which also

ensured that the integrated total reward
∫
R(t)dt reached 1. This meant that the maximum

possible score, or sum of integrated rewards, matched the number of successive trials.

To offset noise, the fitness of a genome was determined by the average of several restarts of

these successive trials; 10 restarts were used, as initial attempts to use fewer showed little capacity

to evolve solutions with non-negative fitness due in part to trial-to-trial variability (cf. Figure 4.2).

These restarts would reset the initial conditions to their original values.

As a consequence of the rate-reduction, and in particular the linearisation of the Jahr-Stevens

formula around the average membrane potential, division-by-zero errors may occur if the input to

a population of neurons is too strong, resulting in NaNs.1 If a trial resulted in producing a NaN,

all reward on that trial was disregarded and the candidate genotype received a penalty of 0.5 for

that trial and all remaining successive trials (since usually this resulted in NaN synaptic strengths

and θ, rendering the initial conditions of successive trials invalid).

3.3 The XOR Task

In order to test the expressivity of the Wang model, I also considered an implementation of the

XOR task. In this case, p ≥ 4 selective excitatory populations were used, alongside one non-

selective excitatory population and one inhibitory population. The first two selective populations

were provided with a stimulus as in the RDM task, however the stimulus could be strong or weak

for either or both populations corresponding to the four possible XOR inputs: (1,1), (1,0), (0,1)

and (0,0). The firing rates of the final two selective populations were interpreted as the estimated

XOR output for the stimuli: if the second to last population had a higher firing rate than the final

population, then the model predicted XOR of 1; otherwise, a XOR of 0 was predicted.

A range of values between 4 and 8 for the parameter p were tried. The rewards and other

features of the trial were identical to that of the RDM task.

3.4 Extending the Plasticity Framework

As mentioned in Section 2.2 and discussed in [22, 23, 63], averaging over spike trains yields rules

of the form given in (2.22) and (2.23). Because of the asymmetry in the denominator of the higher

order term in (2.23), as well as the inverse dependence on firing rates, the rational functions in

(2.23) are much less tractable to including higher-order terms and grouping coefficients (as I will

1Removing this limitation is discussed in Section 5.2, but due to time constraints was not achieved here.
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do below) than the simpler polynomials in (2.22). We can start by rewriting equation (2.22) as

〈
dwij
dt

〉
= θpF

X,Y
νjνi +G

X,Y,Y
νjν

2
i

where the exponent of θ has been replaced with p ≥ 1 and the products of the Volterra kernel coef-

ficients and decay times into single terms with overlines for clarity: that is, F
X,Y

= FX,Y τF,X,Y,0

and G
X,Y,Y

= GX,Y,Y τG,X,Y,Y,0τG,X,Y,Y,1. Setting p ≥ 1 satisfies the requirement of BCM theory

of a superlinear dependence on θ.

Now we can expand the plasticity rule to include lower and higher order Volterra kernels (all

of the exponential decay type of (2.14), (2.15) and (2.21)) and arrive at

〈
dwij
dt

〉
= θpF

X
νj + θpF

X,Y
νjνi + θpF

X,X,Y
ν2
j νi + θpF

X,X
ν2
j

+G
Y
νi +G

Y,Y
ν2
i +G

X,Y
νjνi +G

X,Y,Y
νjν

2
i + . . .

Grouping the monomial coefficients and dropping the F ,G notation in favour of a more concise

ξ notation gives us

〈
dwij
dt

〉
=

∑
ab∈{01,02,10,20,11,12,21}

(
ξ
ab

0 + ξ
ab

1 θ
p
)
νaj ν

b
i (3.1)

where I have truncated the expansion at third degree multivariate monomials and second degree

univariate monomoials, as higher-order correlations between the pre- and postsynaptic rates seem

unlikely to be important in learning to solve the RDM task. Here the superscripts of the variables

ξ describe the monomial coefficients which they gather i.e. ξ
01

0 = G
Y

and ξ
11

0 = G
X,Y

+ F
X,Y

and so forth. The presence of terms such as ξ
12

1 θ
p =

[
G
X,Y,Y

+ F
X,Y,Y

]
θp admits interactions

between the postsynaptic kernel coefficients G and the postsynaptic low-pass filtered firing rate θ

which had been absent until now.

These 14 coefficients and the power p, as well as the time constant τθ, begin to show the benefit

of using an automated optimisation procedure over an iterative manual fitting procedure. As

the number of parameters and their interactions grows, a manual fitting procedure would become

increasingly difficult and tedious.

To arrive at a fair reduction of the STDP rules discussed in [16] and Section 2.2.3, we also need

to include weight-dependence. Since the weight dependence is conditioned on whether the effect

is potentiating or depressing, while the EA will allow for both positive and negative ξ values, we

need to introduce the functions

ξabk (wij) =

(wmax − wij)µ ξ
ab

k if ξ
ab

k ≥ 0

wµij ξ
ab

k otherwise
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This includes the extra parameter µ ∈ [0, 1] over which to optimise. This allows the inclusion

of the weight dependence of equation (2.24) while also allowing presynaptic activity to lead to

potentiation and postsynaptic activity to lead to depression (as is sometimes observed [16]).

Next we consider weight decay. As discussed in Section 2.2.4, weight decay is a core component

of some learning rules, such as Oja’s rule. Occasionally STDP rules will add a constant term to

capture such weight decay, effectively extending (2.10) to

dwij
dt

= X(t)F(X,Y ; θ, wij) + Y (t)G(X,Y ;wij) + C(θ, wij) (3.2)

where the dependencies on the postsynaptic firing trace θ as well as on w have been included.

To allow for multiplicative decay with dependence on the postsynaptic firing rate as discussed in

Section 2.2.4, we can choose C of the form

C(θ, wij) = ξ00θpdecaywij

The mean rate of change of the synaptic weights is thus

〈
dwij
dt

〉
= ξ00θpdecay 〈wij〉+

∑
ab∈{01,02,10,20,11,12,21}

(
ξab0 (〈wij〉) + ξab1 (〈wij〉)θp

)
νaj ν

b
i (3.3)

Notice that with pdecay = 2 and θ
τθ→0−−−→ νi we obtain the weight decay of Oja’s rule, namely

ξ00ν2
i wij with ξ00 < 0, while in general varying pdecay allows for a range of multiplicative (biolog-

ically feasible) weight decay rules.

Currently we have 19 free parameters, but I will introduce 2 more.

3.4.1 Including the Three-Factor Formalism

The next step is to consider the three-factor formalism. As we saw in Section 2.2.5, if we include

dependence on a reward signal we can solve reinforcement learning tasks and approximate the

dependence of plasticity on a neuromodulatory signal which encodes the reward. Starting from

(2.31), if we make the assumption that the reward signal R is conditionally independent of the

neural activity (conditioned on the action selected) and hence conditionally independent of learning

rule H, we can average over the eligibility trace eij in (2.31) separately from reward and we arrive

at the equations

τe

〈
deij
dt

〉
= −〈eij〉+H2(νj , νi; θ, 〈wij〉)〈

dwij
dt

〉
= 〈eij〉 R

(3.4)

68



where I have omitted “conditioned on action selection” notation and included the rates νj/i in H2

in place of the spike trains.

However, unsupervised learning happens in the absence of reward signal. This may be thought

of as the network fitting the data distribution in absence of reward; a highly separable representa-

tion of the data often allows for faster learning when the reward or supervisory signal does arrive.

To allow for such unsupervised learning, I introduce the parameter β ∈ [0, 1] and use the dynamics

τe

〈
deij
dt

〉
= −〈eij〉+H2(νj , νi; θ, 〈wij〉),〈

dwij
dt

〉
= 〈eij〉 R (1− β) + βH2(νj , νi; θ, 〈wij〉)

(3.5)

where H2 matches the right-hand side of (3.3):

H2(νj , νi; θ, 〈wij〉) = ξ00θpdecay 〈wij〉+
∑

ab∈{01,02,10,20,11,12,21}

(
ξab0 (〈wij〉) + ξab1 (〈wij〉)θp

)
νaj ν

b
i

For full generality, the two instances of H2 might depend on different parameters but because

this would nearly double our search space for the optimisation procedure, I have opted to use the

same parameters for both instances. This adds τe and β to the other 19 parameters for the EA.

3.4.2 Constraints on Parameters

Some of the parameters for the learning rule are bounded: the time constants τe, τθ need to be

strictly positive, while to allow for BCM-like effects p should be greater than 1. µ and β should

be between 0 and 1. Yet the EA CMA-ES has no internal notion of bounds i.e. it performs an

unbounded search in the parameter space. To avoid infeasible parameters, I selected genotypes (or

candidate individuals) from within R21 and constrained the values corresponding to these learning

parameters by passing the genome through the softmax function (for those bounded below) and

sigmoid function (for µ, β ∈ [0, 1]). Thus, the search space was R21 but only feasible learning rule

candidates were selected.

When evolving the weights directly, a scaled version of the softmax function was used to keep

the resultant weights in the interval (0, wmax).

For reference, the collection of evolved parameters can be found in the Appendix Table A.2.
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3.5 Accelerating Dynamics

The derivation of the mean-field model for a conductance-based spiking neural network, and the

consequent firing rate model, found in [36] has a computational limitation: at each timestep of the

simulation, one needs to self-consistently compute the firing rate update, the “effective” parameters

(such as the effective membrane time constant), and the average membrane potential, all of which

depend on one other. In my initial attempts to implement this, I arrived at a simulation several

times slower than the spiking model. To speed it up, I drew inspiration from [94]: Firstly, I replaced

the conductance-based model with a current-based approximation by replacing the driving forces

of the internal connections with fixed values. This yields a mean-field model where the “effective”

parameters are once again constant. Secondly, because quadrature integration of the inverse first-

passage time formula (A.18) proved to be slow, I fitted an approximate firing rate curve of the

same form as discussed in [94] and [118], but with the distinction that I include dependence on the

noise strength. This has the marginal benefit that the resulting simulations are more numerically

stable. Finally, unlike in [19] where they use only the asymptotic values of the synaptic gating

variables, and [36] where it is suggested to treat only the average NMDA-gating variable 〈sNMDA〉

as dynamic (due to its slower timescale), I treat all synaptic gating variables as dynamic. This

benefitted from truncating the formula for the asymptotic fraction of open NMDAR channels ψ.

The resulting model differs from the first model mentioned in [94] by including noise strength

dependence in the firing rate curve, by including the Jahr-Stevens formula linearised around the

estimated average membrane potential, and finally by using the truncated ψ rather than the value

for regular firing.

3.5.1 Current-Based Approximation

To convert the conductance-based model to a current-based model, I replaced Vi(t) the driving

forces for the synaptic inputs Vi(t) − VE/I with a constant Vdrive i.e. the driving force became

Vdrive−VE for the AMPA-mediated excitatory inputs, Vdrive−V effE (〈Vi〉) for the NMDA-mediated

excitatory inputs and Vdrive − VI for the GABA-mediated inhibitory inputs. Several arbitrary

values were tried for Vdrive, increasingly from around the true average membrane potential of the

non-selective excitatory cells near −55mV, and ultimately a value of Vdrive = −47.5mV was chosen

as increasing Vdrive brought the mean and standard deviation of the resultant membrane potential

distribution of the current based model closer to that of the conductance based model (see Figure

3.3). However, as Vdrive increased too much, the current-based model lost some qualitative features

of the original model. Particularly, the steady states of elevated activity seemed to disappear.
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3.5.2 Approximate Firing Rate Curve

Following [94, 118], I approximated the firing rate of the inhibitory population with a curve

φ̂(I) :=
−cII − II

1− exp
[
−gI (−cII − II

)
]
≈ φ(I), (3.6)

where I is the synaptic current flowing out of the cell as given in (2.37), and cI , II , gI are param-

eters. The discrepancy with the equation given in [94] arises from them using current flowing into

the cell. Optimal values of cI , II and gI were found using scipy’s fmin function and minimising

the mean-squared-error between the true firing rate curve and the resultant approximation. See

Figure 3.4.

Because the external Poisson inputs to the excitatory populations can change (as a consequence

of providing an input signal), and consequently so too does the membrane potential noise, I fitted

a family of functions for the excitatory firing rates dependent on membrane potential noise σV .

That is,

φ̂(I, σV ) :=
−c(σV )I − I(σV )

1− exp
[
−g(σV ) (−c(σV )I − I(σV ))

] ≈ φ(I, σV ), (3.7)

where c, I, g are given by polynomial expansions

c(s) =

4∑
k=0

ac,k s
k

I(s) =

4∑
k=0

aI,k s
k

g(s) =

4∑
k=0

ag,k s
k

(3.8)

The degree of the polynomials was arbitrarily limited to 4. Polynomials were used for ease

of computation, avoiding expensive numerical operations that might be present in more typical

basis functions. Fitting the polynomials was done by sampling various synaptic noise strengths σ

and using scipy’s fmin function to compute optimal (with respect to mean-squared-error) values

of c, I, and g for the various values of σ. See Figure 3.6 for the fitted polynomials. The fit is not

perfect (as can be seen in Figure 3.5) but this likely arises from the complexity of the curve the

polynomials are fitting.

Due to numerical imprecision when computing true firing rates above a point using quadrature

integration (notice the kink in the curve in 3.4), as well as due to the fact that approximate curve

might not capture the full complexity of the true curve, all curve fitting was done in the range of

firing rates from 0.1Hz to 200Hz. Most firing rates reside within these bounds. Finally, as a final

precaution, the approximated firing rate curves were set to return 1/τrefrac if the approximate

curve would yield a higher rate.
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Numerical Stability

The true firing rate formula, or the inverse first-passage time formula, contains an integral where

the integrand contains the error-function:

φ(I, σ) =

[
τrefrac + τm

√
π

∫ (Vthr−VSS)/σ

(Vreset−VSS)/σ

exp(x2)(1 + erf(x))dx

]−1

, (3.9)

where VSS = VL− I/gm [38, 94, 36, 19]. I used the alteration to this formula from [19], namely re-

placing the upper bound of the integral with (Vthr − VSS) (1+0.5τAMPA/τm)+1.03
√
τAMPA/τm−

0.5τAMPA/τm which results from the noise having a timescale of τAMPA (notice as τAMPA → 0

we recover the original bound).

This double integral results in numerical imprecision and occasionally yields NaNs (Not-a-

Numbers, resultant from numerical error in the computation). A comparison of the resultant

firing rates after 400 milliseconds of simulation time without input, as can be seen in Figure 3.7b,

shows that the approximate fitted functions have the added benefit of being more numerically stable

but not perfect. The remaining instabilities often arise from the Jahr-Stevens linearisation and

in particular the computation of the effective NMDAR reversal potential (given in the Appendix

equation (A.7)).

3.5.3 Truncating ψ

In [19] and [36], ψ(ν) gives the asymptotic fraction of open NMDAR ion channels under steady

presynaptic firing at a rate of ν. Explicitly, the function is

ψ(ν) =
ντNMDA

1 + ντNMDA

(
1 +

1

1 + ντNMDA

∞∑
n=1

(−ατNMDA,rise)
nTn(ν)

(n+ 1)!

)
, (3.10)

which in turn depends on the terms

Tn(ν) =

n∑
m=0

(−1)m
(
n

m

)
τNMDA,rise(1 + ντNMDA)

τNMDA,rise(1 + ντNMDA) +mτNMDA,decay

To compute ψ, one needs to truncate the infinite series in (3.10) to some finite n. I chose n = 5,

as it shows strong convergence at this value (see Figure 3.8).

3.5.4 Other Changes

For the excitatory populations, I also increased the baseline noise from external inputs towards

2mV by linear interpolation i.e.
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σV,used = σV,original(1− λ) + λ 2mV

where σ2
V,original = g2

AMPA,ext(Vdrive−VE)2CextτAMPA/(g
2
mτm) was the original noise. I found this

to yield more stable activity, particularly with λ = 0.8, and it may be justified by the observation

that the noise was underestimated by disregarding the NMDA-driven and recurrent-AMPA-driven

noise effects (see the Appendix A.2 and [19, 36]). However, I performed no further analysis of this.

The noise for the inhibitory interneuron population was left unchanged.

3.6 Implementation

Algorithm 1 shows pseudocode for the full implementation implementation. In principle, paral-

lelisation can be performed over either the evaluations of the genomes (as done in this project) or

over the multiple restarts.

The spiking neural network models were written using the Brian2 simulator for the python

programming language [119], while the EA was implemented using the default CMA-ES imple-

mentation in the python library DEAP [120] and with the default parameters2 with the exception

of increasing the number of offspring λEA per generation to 16, as alluded to in [21] for noisy

spherical functions. The code was parallelised using Dask, and massive speed improvements were

achieved using Numba’s just-in-time compilation.

All simulations used the Euler-Maruyama method. For the firing rate simulations, the timestep

size was 0.25ms while the spiking model simulations used Brian2’s default setting of 0.1ms.

The code is available at github.com/DeanTM/masters-scripts.

2The parameters and their values can be found at deap.readthedocs.io/en/devel/api/algo.html#module-

deap.cma.
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Algorithm 1: Psuedocode for the full implementation

Result: hof, evolution trajectory
cma params ← initialise CMA() ;
hof ← new Hall of Fame(N best);
evolution trajectory ← new list();
for g ← 1 to N generations do

Γg ← get population(cma params);
for γ ∈ Γg do

// Genotypes γ may contain weight parameters or plasticity parameters

total reward ← 0;
for i← 1 to N restarts do

weights, θ ← get initial values(γ);
network ← initialise network(weights, θ);
for j ← 1 to N trials do

// run RDM trial performs the Euler-Maruyama simulation

reward trace, weights, θ, NaN bool ← run RDM trial(network, γ);
if NaN bool then

// Penalise numerical error

total reward ← total reward - penalty;
break;

else
total reward ← total reward + integrate(reward trace);
// Further successive trials start from the final state of

prior trials

network ← initialise network(weights, θ);

end

end

end
// Compute average reward

total reward ← total reward / N restarts;
// Assign fitness to genome

γ ←total reward;

end
cma params ← update CMA params(Γg);
// Hall of Fame tracks N best best performing candidates

hof.update(Γg);
evolution trajectory.append(cma params);

end
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Figure 3.3: Comparison of membrane potential distributions and firing rates for two values of Vdrive
with the original conductance-based model. The left column shows histograms of the membrane
potentials of the non-selective excitatory neurons (the largest population) restricted to above -
70mV (or VI) as the current-based model can escape this bound. The right column shows firing
rates of three populations over the course of 400ms. At 200ms a Poisson input was provided to
the selective population. Other selective populations are not shown. Code for the simulation was
written using Brian2 and adapted from the Brian2 documentation at brian2.readthedocs.io [119].
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Figure 3.4: Firing rate curve approximation φ̂(I) plotted as a function of −I (i.e. of current
entering the cell).

Figure 3.5: Firing rate curve approximations of the family φ̂(I, σV ) plotted as a function of −I
(i.e. of current entering the cell). The curves computed with the inverse first-passage time formula
are shown in grey.

Figure 3.6: Polynomials were fitted for the functions in (3.7) by varying the noise and finding
parameters which reduced the mean-squared-error between the resultant function and the true
firing rate curve.
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(a) Stability with Siegert formula (3.9). (b) Stability with approximate formulae (3.6),(3.7).

Figure 3.7: Final firing rates as a function of inter- and intra-population synaptic strengths w−
and w+, respectively. Without changing stimulus, the simulation was initialised and allowed to
run for 400ms of simulation time. The maximal firing rate of any population was then recorded.
Each pixel corresponds to a distinct simulation. The white pixels arise from instances where the
final firing rate was NaN. The white dotted-dashed curve reflects the values used in [19], while
the black box shows a projection of the region of feasible weights for the EA if we allow for the
parameters used in [19] i.e. setting wmax ≥ 2.1. The decrease in computation time is reflected in
the fact that Figure 3.7b was several times faster (roughly 50x faster) to compute despite having
4 times as many simulations. It can be seen that using the approximate firing rate functions helps
avoid numerical error, but is not sufficient to guarantee absence of errors. For more information,
refer to the Discussion Chapter 5.

Figure 3.8: ψ, the function yielding the asymptotic fraction of open NMDAR channels, is described
as an infinite series. However, this series rapidly converges. On the left are various plots for different
values of n, showing that all the curves are close. On the right is the maximum deviation from
curve for ψ truncated at n = 100 summands.
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Chapter 4

Results

ἐκ Χάεος δ᾿ ῎Ερεβός τε μέλαινά τε Νὺξ

ἐγένοντο: Νυκτὸς δ᾿ αὖτ᾿ Αἰθήρ τε καὶ

῾Ημέρη ἐξεγένοντο

From Chaos came forth Erebus and black

Night; but of Night were born Aether and

Day

Hesiod, Theogyny, line 24,

translation by Rev. J. Banks,

found at Perseus

The optimal learning rule for a stationary environment is to start with the optimal configuration

and proceed to change nothing. Therefore that evolving initial synaptic weights and the plasticity

rule parameters together should fail to lend any useful insights about the plasticity rule; the optimal

weights will be found and the optimal rule will do nothing.

To estimate the optimal average performance for each task coherence, I evolved the synaptic

weights directly using the same fitness functions but only using 10 successive trials due to limited

computational resources, and because the weights did not change between successive trials.

Due to the fact that the cost of a penalty due to encountering numerical error, as well as the

probability of such error occurring, grows with the number of successive trials, it follows that this

change results in a slightly different fitness function - however, one that admits higher scores by

having less penalisation. As such, it can still be used as an upper bound on the achievable scores

with 100 successive trials by multiplying the score by 10.

In what follows, I discuss evolving the weights directly, then evolving the learning rule, and

finally address the question of whether the same learning rule was evolved for each coherence value.
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This was not the case.

4.1 Evolving The Weights

The CMA-ES EA was used in an attempt to evolve weighs both on the RDM task and on the XOR

task. For the RDM task this was to determine optimal potential performance of the rate-based

model, while for the XOR task this was to test the expressivity of the rate-based model.

4.1.1 The RDM Task

Figure 4.1: Attempts to solve for the optimal synaptic weights were run with different initial
conditions and parameters. A range of initial synaptic strengths with recurrent synaptic strength
w+ ∈ [1, 2.1] and interpopulation excitatory strengths w− = 1 − f(w+ − 1)/(1 − f) were used,
alongside varying initial noise strengths for initial isotropic Gaussian mutations Σ0 in the range
of 0.01 and 1, and varying maximal numbers of generations in the range of 40 to 200. This figure
shows the trajectories of the evolution for each coherence value which achieved the maximum
population average minus one population standard deviation. The maximal possible score of 10
(as 10 successive trials were used) is shown by the dashed line. One fifth of a standard deviation
is shaded around the population trajectories for consistency with Figure 4.2.

When evolving the weights, the aim was to determine the optimal possible weights against

which to compare the plasticity rules. Thus various restarts were used, sampling initial weights

from the curve w− = 1−f(w+−1)/(1−f) with w+ between 1 and 2.1, where f = 0.1 is the fraction

of excitatory neurons in each selective subpopulation (all parameters are included in the Appendix

Section A.3). Various levels of noise were used as well, alongside various maximal numbers of

generations. Some evolutionary trajectories converged after under 40 generations (such as for
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coherence of 0.25) while others took over 100 generations (such as for coherence 0.30), reflecting

the stochasticity of evolutionary algorithms. What is shown in Figure 4.1 as well as in 4.3 are only

the trajectories which achieved the maximum population average minus one standard deviation

for each coherence i.e. the trajectories which maximised:

max
g

[
〈Φ(γ)〉Γg −

√〈
Φ(γ)− 〈Φ(γ)〉2Γg

〉
Γg

]

where Φ is the average performance over 10 successive trials averaged over 10 repeats.

Because optimal possible performance of 10 was achieved for lower coherence values, weights

were not evolved for the higher coherence values.

4.1.2 The XOR Task

The CMA-ES algorithm was unable to successfully solve the task, and optimal performance re-

mained near zero for all values of p and all strengths of stimuli. This was taken as an indication

that the model could only solve simpler problems, and no further investigations of performance or

evolution on the XOR task were made.

4.2 Evolving the Learning Rules

The first thing one might notice here is that the weights evolved more slowly compared to the

learning rules, in terms of number of generations. This is likely an artefact both of the different

space from which the genomes were sampled, with different scales, and of potentially reduced noise

due to averaging effects from the increased number of sequential trials when evolving the learning

rule.

4.2.1 Were The Same Rules Evolved?

The learning rules were all evolved to fit a slightly different version of the same task. One might

ask, is the learning rule the same in each case? Comparing the parameters of the learning rule

in isolation would mean very little here: the evolutionary algorithm determined the learning rule

conditioned on the stimulus and neural activity. Two distinct learning rules may differ - even radi-

cally - on some given inputs, but if those inputs arise with negligible probability on the underlying

task then their difference will not be reflected in the fitness of the evolutionary algorithm.

As such, to determine whether two learning rules are different we need to determine how

they behave on the same task. This is limited because as Figure 4.3 shows the performance

for different coherence levels differs greatly and so we cannot pick one representative coherence
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Figure 4.2: Average fitness scores per generation of the CMA-ES algorithm. For clarity the shaded
regions show one-fifth of a standard deviation determined by the individuals of that generation.
Above a coherence level of around 25% the model is able to achieve near perfect performance
despite the numerical instabilities. See also Figure 4.3.

level. Nonetheless, should we pick one, it makes sense to pick the one which may yield the most

information. To this end, we can choose the coherence level which maximised the empirical entropy

Hemp of the best candidate’s performance.1 If we denote each candidate genome by γc where c is

the coherence of the task, and the fitness distribution of candidate γc on its task with this coherence

as fdist(γc, c), then we take

ctest = argmaxcHemp(fdist(γc, c))

The entropy is approximated from the histograms of the samples used in creating Figure 4.3

with 20 bins within the range of -100 and 100 (the minimum and maximum possible scores). These

entropies can be seen in Figure 4.4 and as can be seen, the lowest tested coherence of 0.03 yielded

the learning rule with the highest entropy. Continuing with our scheme, we use ctest = 0.03.

Having chosen the coherence level ctest, we can evaluate all the candidates (one evolved for

each coherence) on the task with coherence ctest to obtain distributions of their performances

fdist(γc, ctest). This gives us a means to compare the distributions of performances on tasks as a

proxy for comparing the learning rules themselves.

But how do we compare them? We could empirically compute pairwise Kullback-Leibler di-

vergences, but this would yield scores difficult to determine. Instead we can use a non-parametric

1This is in fact the strategy which motivates the use of normal distributions in evolution strategies, as one wishes

to maximise the information gained with each new offspring [99].
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Figure 4.3: Maximal performance for each coherence level. The grey line shows the average
population performance for the generation which highest average minus one standard deviation
score for evolving the plasticity rules. The orange line shows the same, but for evolving the weights
directly, with fitness and standard deviation scaled up. Dots represent independent performances
of the best overall learning rule candidate, without averaging over multiple trials. The fact that
perfect performance is achieved repeatedly for the higher coherence values suggests that the task
can be solved without any plasticity at all, given the initial conditions of the network.

two-sample test such as the Kolmogorov-Smirnov test. In order to reduce the number of tests

and avoid artefacts of multiple testing, we can use one-versus-rest two-sample tests. To this end

we need to use a Bonferroni or Holm-Bonferroni correction. Nonetheless, not all comparisons are

created equal, as the performance for learning rules fitted to tasks with coherence scores closer to

ctest may be more similar than those fitted to tasks which are more dissimilar. The next question

we need to consider is if any learning rule is different, or which learning rules are different i.e. do

we want to correct for family-wise error rate, or for individual comparisons? The choice here is

important, but a choice made prior to the evaluation. It would be statistically unsound to perform

both tests with the same data where, in our case, the data includes the fitted parameters.

One can suspect that the case of the higher coherence tests, the task is trivially simple enough

that very little learning is required. If this is the case, then the corresponding learning rules

conceptually arose from little more than a random walk on a fairly flat landscape and are likely to

diverge in their behaviour from the others. In order to know how such task difficulty, or coherence

c, might translate to deviations in performance distributions fdist(γc, ctest) it will be helpful to

consider each test individually and not focus on diminishing the family-wise error rate. Hence, the

Bonferroni correction is used.2

2A small point should be made here. The Bonferroni correction assumes that the tests are independent. In

this case they are not, as we are comparing different samples to overlapping control samples. As such, a test such
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Figure 4.4: Entropy estimates of fdist(γc, c), the performance distributions of the best learning
rule candidates, as a function of coherence c.

As we can see in Figure 4.5, each distribution fdist(γc, ctest) can be seen as distinct: we can

reject the null hypothesis for any of the selected learning rules that the samples of its fitness

distribution on the RDM task with coherence ctest = 0.03 arose from the same distribution as the

distribution formed by the aggregate of the remaining rules’ data. One needs to be careful here:

one outlier sample in this test could allow us to reject all the null-hypotheses. But the point is

made, that at least one learning rule is sufficiently different that the aggregate behaviour can be

distinguished from any individual rule.

as Dunnett’s test should be used. However, due to the possibility of encountering numerical errors and receiving

a penalty, the distributions of performance might best be written as a mixture distribution over the performance

when numerical errors are not met (weighted by the probability of no numerical error) and the performance when

numerical errors are met (weighted by the probability of an error in one of the sequential trials). This mixture

distribution would not satisfy the normality assumption for a parametric Dunnett’s test. Thus the Bonferroni

correction seems to be a fair compromise.
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Figure 4.5: p-Values of the Kolmogorov-Smirnov significance tests. As can be seen, the null
hypothesis that the fitness scores are generated by the same underlying learning rules can be
rejected in every case. What we observe is that each evolved learning rule is different.
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Chapter 5

Discussion

So much universe, and so little time.

Sir Terry Pratchett

There remain many more avenues to explore, extensions which can be made to the Wang model,

different RL tasks to try and different optimisation procedures to use. In this section I hope to

address the questions and limitations of the procedure implemented here, and propose further steps

which might be taken.

In summary, we started with a spiking recurrent neural circuit decision making model, a family

of STDP plasticity rules extended to allow for reward-driven plasticity, a RL perceptual decision-

making task and an understanding that normative or optimisation-guided approaches may lead to

insight in biology.

However, for computational expediency we reduced the spiking model to a rate-based model,

and the STDP framework to a rate-based framework. Any results arising from this reduction can

only be accurate insofar as the reduction is a faithful representation of the original model. This

leaves open questions about the original model, as well as the original model’s relationship with

biology, all of which I aim to address here.

5.1 Was The Reduction Necessary?

Early in this project I initially hoped to evolve STDP rules directly with a biophysically inspired

SNN. Such a model might be able to perform p-ary decision making tasks by adjusting the pa-

rameter p, or continuous decision making tasks by implementing a bump attractor on a ring, as

has been used in [79, 80, 81]. The pure computational load dashed these hopes. When evolving
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an individual learning rule over 40 generations, using 100 sequential trials with 10 restarts and a

population of 16 candidates, without encountering any numerical errors this amounts to 640000 in-

dividual simulations. The SNN simulation, when incorporating interaction with the environment,

took about 30 minutes per simulation. Even distributed optimally over 16 cores this would take

over 2 years on the hardware available to me. And this back-of-the-envelope calculations fails to

include that the STDP rules had more free parameters, amounting to a higher-dimensional search

space for the EA and thus potentially requiring a larger population and more generations before

convergence. While my SNN was by no means optimised1 the scale of the problem is still apparent.

However, it is also the case that the family of learning rules is too inclusive. As is shown in

Chapter 3, the many parameters are redundant and even so, different learning rules were found

to solve the task at different coherence levels. Thus a prudent first step would be to incorporate

biological considerations to further reduce the search space. This may come from limiting the range

of the time constants (eligibility traces for dopamine-driven learning appear to be on the order of

1 second [3], while the time constants of the Volterra kernels are likely determined by underlying

synaptic mechanisms such as the NMDA activity), or setting some of the Volterra kernels such as

FX,X,Y2 to zero so as to disallow, for example, pre-pre-post interactions, as these are not needed

for a good fit to data [23].

If an attempt is made to decouple Hebbian or unsupervised and reward-driven plasticity, then

speedups may also come from separating unsupervised and reward-driven trials where the unsu-

pervised trials can be simulated significantly faster as no action readout is necessary. This may

capture learning on a task where the presence of a reward signal may not occur at all with some

probability.

All in all, it is possible that with further work the EA may be implemented on the SNN directly.

5.2 Rectifying the Model

Several features of the network model, the task and the plasticity rules may be eligible for optimi-

sation of tweaking. These features are discussed here.

5.2.1 The Network Model

Initially I attempted to implement a conductance-based mean-field model as discussed in the

Appendix Section A.2. However, due to the self-consistent calculation of the effective parameters

with the average membrane potential and firing rate, this lead to a much slower simulation than

1The root cause of the slow simulations seemed to be my use of Brian2’s network_operation function to determine

action selection and reward signal, which would not be necessary on an unsupervised task
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the original spiking model.2 This does not imply that the implementation is necessarily slow;

models such as in [122] and [123] suggest that fast conductance-based mean-field simulations are

very feasible.

The simple act of changing the model to a conductance-based model implies a need for the

fitted firing rate functions φ̂ to depend on the effective membrane time constant, which in turn

increases the number of variables in the polynomial fit. This may be doable and is unlikely to

provide any significant slowdown of the simulations.

However, as the nonlinearity and bistability of the model depends on the dynamics of sNMDA

and at the population level its average 〈sNMDA〉, it is not clear that a conductance-based model

would yield qualitatively different results. The use of a conductance-based model should instead

be justified by the data that the model is attempting to fit.

A few parameters were chosen without any explicit optimisation or fitting procedure, namely

λ and the arbitrary noise level 2mV, Vdrive, and the strength of the input noise σnoise = 0.007nA.

The degree of the polynomials in fitting the terms for the excitatory rate function approximation

φ̂(I, σ) was also arbitrarily chosen. In future, the following changes might allow the rate-based

model to more faithfully capture the SNN:

1. Using an optimisation procedure to choose Vdrive so as to minimise a weighted average of the

Kullback-Leibler divergence between the conductance-based and current-based membrane

potential distributions and the mean-squared error of the deviations of the firing rates in the

spiking models. Due to avoiding effects of stochasticity, this procedure should use the same

Poisson inputs for both the conductance-based and current-based simulations

2. The noise in the rate-based model might be better chosen to have the effective current noise

strength σeffC (〈V 〉) or σeffC (Vdrive) of equation (A.9)

3. Considering various degrees of polynomials and comparing the mean-squared error between

the “true” firing rate φ and the approximation φ̂. As the parameters of the polynomial are

chosen to minimise this loss, one would expect the loss to be monotonically decreasing in

degree of the polynomials. Because minimising mean-squared error is formally equivalent

to maximising likelihood with Gaussian noise, one could then use the Akaike Information

Criterion (AIC) to determine the degree of the polynomials [124].

An investigation as to why the excitatory noise, but not the inhibitory noise, needed to be amplified

towards 2mV might also prove insightful.

2I suspect I made a mistake with my implementation attempts, but due to the slow simulation time this made

debugging difficult. Had I the presence of mind at the time, I would have initially implemented the current-based

solution and moved it to a conductance-based model by adapting a parameter as done in [121] but at the population

level. I would advise this approach for future prospects the reader may have.
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Alternatively, to consider a more numerically stable model, it might be better to drop the volt-

age dependence for the NMDAR ion channels. The Jahr-Stevens linearisation around the average

membrane potential 〈V 〉 yields the description of the effective NMDA reversal potential V effE (〈V 〉)

and effective NMDA conductance geffNMDA(〈V 〉) in equations (A.7) and (A.6). However, in the ex-

pression of geffNMDA(〈V 〉) we have the term 1
J2(〈V 〉) where for 〈V 〉 ≈ −27mV we have J2(〈V 〉) = 0.

This division-by-zero leads to numerical errors and indeed while the average membrane potential

〈V 〉 as calculated by (A.15) can reach such high values, in the SNN no membrane potential can

exceed Vthres = −50mV (for reference, see Figure A.3). Rectifying 〈V 〉 to remain below -50mV or

disregarding the Jahr-Stevens formula entirely and relying only on the nonlinearity of 〈sNMDA〉

might yield more stable code. This has yet to be explored, but the recurrent neural circuit model

requires at least some nonlinearity for the stability of increased population activity.

Interestingly one might also find improvements if they use an EA to determine the network dy-

namics directly. In [125] the question of using an evolutionary algorithm to determine a differential

equation was investigated. They used DE to determine coefficients for a polynomial approximation

to differential equations and determined that the absolute error was equal (when zero) or less than

that of the Runge-Kutta Nystrom method, and that it required less CPU time to integrate the

dynamics.

5.2.2 The RDM Task

The RDM task itself is also very simple. Recurrent neural circuit models have been included

in foraging tasks [24] and can easily be extended to many-option decision making tasks such as

k-armed bandits [82]. These tasks can be designed so that the environment changes on multiple

timescales, which may lead to undermatching in the learned behaviour [85]. Moreover, if the

environment changes, there may be no unique solution for the weights which maximises reward

and as such the synaptic weights and the plasticity rule may be determined in concert. However,

due to time constraints I only succeeded in fitting plasticity rules and independently synaptic

weights for the RDM task. Nonetheless, this constitutes a proof of concept.

After determining that a different plasticity rule was fitted for at least some of the coherence

values, one might ask why I did not determine a single plasticity rule for all of the coherence

values? The question then becomes, how do we fairly evaluate the fitness of a plasticity rule with

multiple coherence values? There are a few ways one could go about this, but many of them are

in some way dubious.

If each coherence value is tested evenly, then the plasticity rule would be biased towards solving

the solvable problems. We can imagine a process whereby one third of the trials used a coherence

of 0.01 while another third used 0.99 and the last third used 0.15. Since the scores with the lowest

coherence are unlikely to improve much with plasticity, while the scores with the highest coherence
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are likely to be good without plasticity, the plasticity rule would focus on improving on trials

with the last coherence value. Whether this is appropriate behaviour or not for a plasticity rule

is unclear. If we wish to try a weighted average of the scores on trials with differing coherence

values, the weightings would need to be determined. If we used the harmonic mean over scores

with various coherence values, then the inclusion of a single unsolvable task would in the limit

reduce the harmonic mean to zero thus rendering the fitness function constant.

If the differing coherence values are presented in a fixed sequence, then the plasticity rules may

evolve to optimise for the sequence every bit as much as they did, in this implementation, evolve

to be optimised for individual coherence values. Alternatively, if the differing coherence values are

sampled randomly then an extra source of noise is added to the evolutionary algorithm which is

difficult to mitigate: how do we decouple which individual performed best from which individual,

by chance, was given the easiest trials? The best learning rules, after all, might be the ones which

perform best on the trials of intermediate difficulty.

One solution might be to consider a boosting scheme such as used in boosting of weak learn-

ing algorithms [126]. One could iteratively reweight the individual coherence trials on successive

restarts of the full CMA-ES in accordance with prior performance. However, at best this would

be immensely time-consuming.

All in all, I believe the lesson here is that the fitness function needs to be carefully considered.

5.2.3 The Plasticity

Two different versions of synaptic traces were used and implemented in two separate ways, simul-

taneously. This should not have been done, but the mistake only became apparent at the later

stages of writing this thesis.

On the one hand, the convolutions with exponential decay Volterra kernels such as FX,Y (s) =

FX,Y exp
(

−1
τF,X,Y,0

)
in (2.14) (omitting the later dependence on θ and w for clarity) can be imple-

mented online with “synaptic tags” zF,X,Y,0 following the dynamics [16]

τF,X,Y,0
dzF,X,Y,0(t)

dt
= −zF,X,Y,0(t) + FX,Y Y (t) (5.1)

The average value of such a tag is 〈zF,X,Y,0(t)〉T =
〈∫
FX,Y (s)Y (t− s)ds

〉
T

= τF,X,Y,0F
X,Y 〈Y 〉T

where 〈Y 〉T is determined over a time T > τF,X,Y,0, and hence I used the reduction

〈∫
FX,Y (s)Y (t− s)ds

〉
T

= τF,X,Y,0F
X,Y νi (5.2)

as in [22]. Usually τF,X,Y,0 would be of the order of tens to hundreds of milliseconds (such as

in [22]). If νi is changing on a timescale faster than τF,X,Y,0 then this approximation becomes
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inaccurate.

However, the fractions of open synaptic channels 〈sAMPA〉 and 〈sGABA〉 follow the same dynam-

ics, but on timescales of 2ms and 10ms respectively, yet are not implemented as
〈
sAMPA/GABA

〉
=

νjτAMPA/GABA. As a first step to resolving this discrepancy, one might use this implementation,

but the absence of synaptic traces, or tags, for the plasticity rules needs to be given further thought.

We also need to consider that the firing rate itself seems to change on a timescale of τr = 2ms, at

least when implementing a step current.

Firstly, if one were to interpret the phenomenological features, it is likely that the tags corre-

spond to some trace of NMDAR activity as the effects of neuromodulated activity was determined

to depend on the NMDARs [3, 127]. Hence it might be feasible to consider learning rules which

use exactly the fraction of open NMDAR channels sNMDA (or their average 〈sNMDA〉 for the rate-

based model) as their synaptic tags. I avoided that here as I explicitly wished to avoid presuming

a substrate for the phenomenological rules.

Ignoring any biological interpretation of the phenomenology, we still need to interrogate the

implications of the approximation (5.2). Without loss of generality, I will discuss only the kernel

FX,Y with decay time τF,X,Y,0 and the postsynaptic population rate νi, but the same considerations

apply to the remaining kernels and the presynaptic population rate νj . Using the approximation

allows us to reduce the number of free parameters for the evolutionary algorithm as discussed

in Section 3.4, as implementing individual synaptic tags would require one tag for every decay

time (such as τF,X,Y,0 and τG,X,Y,0 which are brought together into one parameter ξ
11

0 ). But this

comes at the cost of assuming that the instantaneous firing rates νi are good approximations of the

average firing rates over the prior time T > τF,X,Y,0, that is, roughly the time which the synaptic

tag zF,X,Y,0 would take to converge.

As a first attempt to justify this one might appeal to ergodicity, but conceptually even though

the full system may be ergodic, due to the attractors the time it takes for the activity to escape

the basins of attraction by chance effects alone is large. This is further exacerbated by the fact

that the noise driving the fluctuations in firing rate is coloured Ornstein-Uhlenbeck noise, so that

large fluctuations become exceedingly rare. The system may be ergodic in the sense that we can

interchange trial-averages (as thus population averages, assuming independence of the neurons

and synapses) with long time averages, but that time needs to be at least comparable to the time

required to escape the basins of attraction which is longer than an individual trial in most cases.

On the other hand, when the activity is near an attracting point the activity is fairly constant.

Thus, one might argue that it is only during the transient that the firing rate varies and it is only

during this brief time that the approximation is incorrect. However, this argument has two flaws.

Firstly, the attracting states of elevated activity do not exist for the full range of synaptic weights

[94] and thus the transient activity may be the only meaningful change in activity that occurs
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during a trial. Secondly, it is during this transient that the decision is made, as the final choice is

strongly determined by the trajectory towards one of the attracting states. Thus it is exactly the

dynamics of this transient which needs to be adapted with the plasticity rule.

In the end, I have been unable to reconcile these differences in the synaptic traces. This remains

important yet intriguing future work.

5.3 Further Directions and Generalisations

Here I will discuss some changes one might make to extend upon this work, or generalise it to more

complex and biophysically realistic models.

5.3.1 Further Steps

These results might lend themselves to further immediate investigation; however time constraints

prevented such investigation. The CMA-ES, through its covariance matrix, yields a Gaussian

distribution of predictions for high fitness candidates; it would be interesting to determine whether

the gradient of this distribution correlates with the average gradients of the fitness function in

the vicinity of the optimal found candidates, as might be expected [100] and is suggested by the

optimality principle (replacing natural evolution with the EA).

Although different learning rules are found for different coherence values, two more immediate

questions can be asked from these results:

1. Do learning rules found for the same coherence on different runs of the EA behave similarly?

Particularly if the parameters found are themselves different. This would tell us whether

different parameters yield the same learning rule and, hence, suggest whether the learning

rule has redundant parameters.

2. Are there regions of the search space wherein the trends of different runs of the EA agree

across coherence values? While the final resultant learning rules disagree - both in terms

of parameters and resultant behaviour - it may be that some learning rule parameters are

better than others across all tested coherence values and this may be reflected in the drift of

the populations of runs of the EA.

The next step one might do is to return to the STDP rule and test it. While it was not

computationally feasible to evolve the STDP directly, our goal is still to understand plasticity in a

spiking model. However, for each rate-based plasticity rule there exists a family of A-A STDP rules

which, under Poissonian independence assumptions, are equivalent. An important next step would
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be to determine if the different rules in the same family yield equivalent performance, possibly

by again using a Kolmogorov-Smirnov two-sample test. If not, this would expose an error in

our reduction assumptions which could encourage further research into more realistic rate-based

approximations.

In a similar vein, it would be interesting to see to what extent the EA overfitted the rate-

based model by comparing the evolution of its performance with the performance of equivalent

STDP rules. One could imagine that the STDP rule improves in performance to a point, and then

decreases in a manner reminiscent of the bias-variance trade-off.

We can also compare the learning rule in light of optimal behaviour. In [18] the optimal

parameters are determined for maximising reward rate for decision making tasks of various difficulty

in the free response paradigm. These parameters yield distributions of RTs and accuracies which

can be compared to those generated by the model before and after learning on a similar task. We

can ask, “Does an evolved plasticity rule adapt the RT distribution and accuracy towards that of

the optimal behaviour?” Since the optimal solution is given by a linear DD model [18], we could

also ask of the evolved weights, “Do the dynamics of the model with the fitted weights appear

linear as in the optimal DD model?”

To find an optimal STDP rule - possibly on a more complex task which depends on specific

spike times - one may ultimately determine it directly with an EA. Good initial conditions for the

EA would speed up this process, and these initial conditions may be determined by the rate-based

method used here. Whether or not the final rate-based rule provides good initial conditions for

evolving an STDP rule remains to be tested.

Finally, one might ask why the average performance across different coherence levels was not

considered. This is because such averaging would require a prior assumption of the distribution

across coherence levels, but I am unaware of any normative or descriptive a priori justification for

any particular distribution, including the uniform distribution.3 Without the means to compute the

weights for this weighted average, no weighted average was computed. That said, the best learning

rule should in some sense be the best across multiple coherence levels. A natural extension to

this work would then be to consider the dependence of the learning on different distributions over

coherence levels, perhaps sampled from a beta distribution with varying parameters (of which the

uniform distribution is a special case).

5.3.2 Including More Precise Biophysical Dynamics

The AdEx model of [42, 43] may better capture the subthreshold membrane potential traces

following a prescribed fitting procedure and thus would allow for a voltage-dependent plasticity

3Indeed each simulation can be seen as an average with respect to the Dirac distribution centered at the corre-

sponding coherence level.
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rule such as the Clopath model [53, 52] (see [128] for a comparison of model fits).

The dynamics at the synapse can also be enriched. Under the classical STDP rule, the ability to

form Hebbian assemblies is strongly tied to the axonal and dendritic delays [64]. If an axonal delay

of τa and a dendritic delay of τd are included, then two neurons can both “perceive” themselves as

being the first to fire an AP if they fire within ta − td of each other, which allows pre-before-post

LTP to occur in both directions. The model might be extended to include shared or randomly

distributed synaptic delays.

Individual synapses can also be facilitating or depressing [41, 16]. Facilitating synapses ini-

tially produce successively increasing PSCs when the presynaptic neuron repeatedly fires within a

short time, before saturating or depressing, while depressing synapses produce decreasing PSCs.

Including these dynamics can produce a range of effects, from short-term sustained activity with

recurrent facilitating synapses, while depressing synapses can reduce the chance of the postsynaptic

neuron firing whenever the presynaptic neuron fires. If the PSPs drive the plasticity rule such as

with the Clopath model, depressing synapses might also regulate plasticity.

Plasticity can also interact with the dynamic synapses in another way. We can separate the

synaptic strength into pre- and postsynaptic variables, such as release probability per site Ppre,

number of release sites Npre, and the charge deposited per release of neurotransmitter quantal

qpost. Doing so allows us to unify STP models such as the Abbott model [41, 16], which models

the dynamics of Ppre on a short time scale, with location dependent long-term synaptic plasticity

models which model LTP and LTD as distributing across the pre- and postsynaptic variables

depending on the current state of the variables [45, 46, 47]. This can yield benefits on certain

tasks, such as reducing the time it takes for a network to relearn a task after being trained to

perform another task [45], or help to maintain a balance of excitation and inhibition or provide a

fit to more experimental data [47]. Due to these benefits, we should be able to investigate these

rules with an optimality-first normative approach.

Another class of plasticity rules may be included as well. Inhibitory plasticity, or plasticity of

the inhibitory synapses, is much less studied but seems to perform a different role of maintaining

E/I balance and keeping the network in an asynchronous firing regime [48]. The dynamics for the

inhibitory plasticity are most likely different to those of the excitatory synapses. In this thesis I

have only included plasticity of excitatory synapses, but one might simultaneously search for an

inhibitory plasticity rule as in [25]. At the time of writing this, I am not aware of any attempt

made to combine inhibitory plasticity rules such as Inhibitory STDP (iSTDP) with a recurrent

neural circuit model, but it does pose the problem that the maintained increased activity of the

selective populations may have their activity downregulated by the adapting inhibitory inputs, as

indeed this is what happened when I initially attempted to combine iSTDP with the Wang model.

Having implemented one of these changes at the level of the SNN, it raises the question of
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whether mean-field theory can still be used to find a faithful population-level model. The mean-

field theory of conductance-based neurons has recently been extended to include dynamic synapses

[123]. This impressive work builds upon the AdEx model and captures elevated sustained activity.

Alternatively, using quasirenewal theory [122] derive a model which captures the mesoscopic

effects of a neural population, such as oscillations in response to a step current (see Figure 5.1).

The model used here, on the other hand, will only show transients of a steady increase or decrease

to the new asymptotic firing rate in response to application or removal (respectively) of a step

current input. Although built for current-based synapses, the model of [122] can be adapted to

use conductance-based currents and dynamic synapses.

Figure 5.1: The transient population activity (denoted here by A) of a population of LIF neurons
in response to a step current at 100ms. The dotted line shows the dynamics of a rate-based model
as considered here. Recent work, such as [122], can capture the oscillations in a rate-based model.
Image taken from [38], at neuronaldynamics.epfl.ch/online/Ch15.html.

From a different angle, rather than using a mean-field model one might consider evolving the

Fokker-Planck dynamics (for the membrane potential distribution) directly. In [129] it is explained

that this can be done rather efficiently by considering the eigenbasis of the Fokker-Planck operator.

Importantly, most modes will decay rapidly, requiring only a few of the eigenfunctions to be

considered. The firing rate is then obtained by the flux of the membrane potential across the

threshold. It is speculative, but knowledge of the membrane potential distributions may allow one

to consider higher order moments of the synaptic plasticity dynamics.

5.3.3 Easier to Fit Models

One of the motivations for the procedure implemented in this thesis would be to derive a prior

distribution for parameters of a model so as to implement an optimality-driven regularisation model

fit. If one wants to fit the model and the learning rule simultaneously to data, this is only helpful

if the model itself can be easily and well fit to the data, and so it may be prudent to choose such

a model.

The previous subsection discussed ways to make the model more accurately fit biological data,

and in particular the AdEx model can be fitted with a prescribed procedure. In the less biophysical
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direction, the linear SRM with escape noise can be fitted to data by determining the convolutional

kernels, while the Linear-Nonlinear Poisson (LNP) model is a simple example of a Generalised

Linear Model and as such maximum likelihood estimation with this model is a convex optimisation

procedure [38]: any local optima that arise will be a consequence of the optimality prior.

Ultimately one needs to determine the appropriate model type on a case-by-case basis. However,

only the Wang model was considered here.

5.3.4 Extending The Topology

The topology of the network - both at the population level, and at the individual neuron level

- is crude. At the population level, there is only one inhibitory population. Head-direction cells

implement a so-called “bump attractors” on a ring: the neurons encoding the direction the head is

facing can be represented as sitting on the ring, with the direction the head is currently facing being

represented as local increased activity on the ring. This can be used to implement a continuous

action-selection approach [79, 80, 81], but relies on an architecture of local activation and non-

uniform decreasing distal inhibition [67, 38] which cannot be implemented with one inhibitory

population. Adding multiple inhibitory populations might allow one to implement this.

Moreover, the inability of the CMA-ES algorithm to find solutions to the XOR task suggests

that this architecture can only solve linearly separable problems Allowing for more inhibitory

populations may extend the range of solvable problems.

At the individual neuron level, the all-to-all connectivity is simply unrealistic. Common alter-

ations to this is to connect each potential synapse with a fixed small random probability pconn or

by choosing a fixed number of inputs kconn to each of the N postsynaptic neurons and selecting

the kconn inputs uniformly at random. In either case, these synapses would be selected indepen-

dently of the synaptic weights so that (for a fixed postsynaptic potential Vi) the expected input

is proportional to
∑N
j=0 〈wij〉 pconn 〈Sj(t)〉 ≈ pconnN 〈wij〉 ν in the former case or k 〈wij〉 ν in the

latter case, yielding effective the same mean-field reduction [38]. These methods have the added

benefits that the neurons are even more uncorrelated, as they have non-overlapping presynaptic

populations. However, the former connectivity scheme lead to Erdős–Rényi networks while the

latter still leads to Poisson-distributed out-degrees [111, 112] with fixed in-degree kconn, neither of

which is biologically accurate [113, 114, 60, 115].

Indeed, the topology of the network seems to play an important role in determining frequency

of synchronous activity [130].

Instead one might consider evolving the exact network topology alongside the learning rule,

using a mechanism such as is used with the NEAT algorithm (see Section 2.4.3), or with a rule

which does not impose genetic drift. However, this has two problems. Firstly it may make the
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learning rule formally redundant: weight agnostic neural networks are artificial neural networks

which can solve problems solely due to their architecture with little dependence on the actual

weights [131], and while these networks are artificial it is conceivable that a similar phenomenon

may arise in spiking networks. From a biological perspective, the human genome is estimated to

have around 2×104 genes [132], yet the total number of synapses in the adult human neocortex may

be in the order of 1014, supporting the idea that the actual synapses arise from some generative

process dependent on environment or randomness.

Thus, to capture a more realistic network topology, one could choose a parameterised generative

model for the network such as in [133], although the generative model should depend on the synapse

type yet maintain biologically observed properties such as small-world and scale-free effects [134].

Alternatively, if degree distribution is all one wishes to match, given a viable degree sequence it

is possible to generate a corresponding network [111]. One could thus parameterise the degree

sequence alone. In either case, these parameters might be evolved alongside the learning rules to

allow for a “distributionally robust” evolved learning rule solution which does not overfit the exact

network. In either case, one might still be able to determine a mean-field reduction dependent on

the particular degree distributions.

The plasticity rule has another limitation which allows for further generalisation: The upper

bound on synaptic strengths wmax (and, by extension, the weight-dependent upper bound on LTP

increments being proportional to (wmax − wij)µ, as adapted from [16]) disallows the heavy-tails

of synaptic strengths which are experimentally observed. Indeed, while synaptic weights may be

unimodal, they appear to be lognormal in distribution [60]. This lognormal distribution when

coupled with sparse synapses allows for internally generated noise and stochastic resonance which

may benefit associative memory and thus may be testable from an optimality-first approach.

Building on the observations of [65] (and discussed in [16]), that LTD decrements depend

linearly on the current synaptic strength while LTP increments depend only weakly on the current

synaptic strength, one might propose two exponents to capture these varying dependencies: µltd

for LTD and µltp for LTP. To match the experimental data of [65], µltd might be set to 1. If so,

[60] show that allowing LTD to be strongly weight-dependent only when the weights are small, and

weakly weight-dependent for synaptic weights larger than a chosen threshold, yields a lognormal

distribution of synaptic weights.

5.4 Limitations

The approximation used in Section 2.2.5 that the three-factor learning rule dynamicsH3(M,pre,post;w(t))

can be approximated by g(M(t))H2(pre,post;w(t)) orR(t)H2(pre,post;w(t)) is crude, and presents

a strong limitation of the range of potential dynamics (both of the plasticity and of the network)
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that can be captured by the procedure in this thesis. Nonetheless, unlike potential changes dis-

cussed in Section 5.3, the limitations arising from this, which I will discuss here, cannot so easily

be overcome.

It may be true that given a vector of neuromodulator concentrations M , where individual com-

ponents may be represented by dopamine, norepinephrine, acetylcholine or any modulator which

may influence plasticity, the relevant projection of the neuromodulatory signal for a normative

theory is the reward R(t) = g(M(t)), one must nevertheless keep in mind that what is investigated

in such a normative approach is reward -driven plasticity and not neuromodulator-driven plasticity.

Even so, it is clear that there are memory effects with application of dopamine: for example, ap-

plying dopamine after the plasticity induction protocol can convert LTD to LTP [135]. Moreover,

distinct neuromodulators can act in concert to help guide plasticity towards solving RL tasks: an

increase in cholinergic activity is correlated with exploratory behaviour, and the acetylcholine can

encourage the same synapses to undergo LTD as those which later may instead undergo LTP if a

dopaminergic signal arrives [136].4

We might therefore better think of plasticity of these synapses as a state-dependent dynamical

system where the states may be “exploring”, “receiving reward”, and “other”, where the method

considered here crudely approximates this a continuum over two states characterised by a reward

signal R(t). On the other hand, it is difficult to construct a normative theory for the other states.

Determining what the plasticity dynamics optimally should be when the agent is exploring is

coupled to determining when the agent should optimally be exploring, a difficult problem related

to the exploration-exploitation trade-off [82].

We know that dopaminergic activity at least correlates with RPEs. In Section 2.2.5 I observed

that including M , even it is one-dimensional, in the Volterra series massively increases the dimen-

sionality of the search space. Nonetheless, the memory effects of dopamine on plasticity requires

that it is included in the Volterra series, yet to do so practically or in a computationally efficient

manner using EAs may prove to be a challenge.

It may also be that there are multiple eligibility traces with different timescales, or that the

individual eligibility traces are higher dimensional with different components evolving on different

timescales. In [27, 28], distinct eligibility traces are considered for LTP and LTD. These distinct

eligibility traces appear interact with neuromodulatory signals in distinct ways [27]. Furthermore,

such a separation of eligibility traces and the consequent competition between (driving potentiation

and depression, respectively) can allow for stable learning by implementing a stopping rule so that

learning terminates even when the reward is present. This further supports the approach of [26]

4This is conceptually similar to the optimism under uncertainty principle of RL whereby the state values or

state-action values are estimated more highly for unexplored states or pairs of states and actions so that once it is

explored under a stochastic policy such as an ε-greedy search, the probability of exploring it again decreases, while

visiting unexplored states is encouraged [82]; however, in this case the state to be explored is increased postsynaptic

activity, and the probability of it occurring again decreases under LTD.
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in implementing distinct traces.

Finally, as explored in [76] and reviewed in [73], it may be important that the reward signal has

zero-mean. This amounts to replacing R(t) with R(t)− 〈R(t)〉 or in the case of allowing multiple

states in the environment (or solving multiple simultaneous rewarding task) R(t) − 〈R(t)|state〉

where 〈R(t)〉 or 〈R(t)|state〉 may be low-pass filtered traces of prior rewards or determined by a

critic model, as in [79] and [81]. Some running average or critic needs to be implemented alongside

the model to allow for these changes.

Finally, going back to the idea of state-dependent plasticity dynamics, we might ask, “Would

it not be optimal if the network dynamics are state-dependent too?” Indeed, the origin of the

Wang model was in [19], an investigation into how dopamine’s effects on NMDA activity can

bring about persistent elevated activity. Dopamine can affect NMDAR-modulated PSPs [19], or

directly influence neurotransmitter release [137]. Thus neuromodulators can alter the activity at

the synapse independently of plasticity. At the very least, the synaptic gating variables srec(t)

should be given neuromodulator dependence:

dsrec(t)

dt
= frec(M(t), srec(t), Sj(t))

for some dynamics frec.
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Chapter 6

Conclusion

conticuit tandem, factoque hic fine quievit

silent at last, he ceased, and took repose

Vergil, Aenead, book III line 716

Theodore C. Williams translation,

found at Perseus

It is difficult to complete a project such as this one that feels so ripe for further investigation.

Nonetheless, it must be done.

Despite decades of research, a full comprehension of synaptic plasticity eludes us. This has

been exacerbated by the observations that, in increasingly complex ways, neuromodulation can

change the course of plasticity, including via retroactive gating [135, 136, 3, 5]. Moreover, even one

of the most studied neuromodulatory effects - dopamine release by VTA neurons - is not limited to

signaling an RPE but may also signal novelty and more [138, 3]. Attempting to disentangle these

plasticity phenomena one experiment at a time may prove a daunting task. Adopting a theory-

first approach whereby potential roles and effects of neuromodulatory signals, and trajectories of

synaptic strengths, are predicted and tested may be more expedient.

Synaptic plasticity and decision making are important areas of study particularly for under-

standing maladaptive behaviour and psychiatric disorders such as addiction, autism and depression

[139, 140]. On the one hand, addiction and some of its behavioural consequences might arise from

a hijacked reward prediction system [6, 141, 140]. On the other hand, LTP and LTD in the

VTA and nucleus accumbens are implicated in addiction [142]. Altered decision making is impli-

cated in depression, addiction and autism (this latter particularly in the context of social games)

[139]. Synaptic plasticity may also explain ordinary phenomena, such as exploration and match-

ing behaviour [138, 83, 84]. Such explanations, however, would require bridging the gap between

(changes in) the biophysical inner workings of the brain and (changes in) the observed macroscopic

99

www.perseus.tufts.edu


behaviours and choices of the organism.

Primarily I have endeavoured to provide a means to explore biologically feasible plasticity

rules using the optimisation procedure CMA-ES. The learning rules considered were of the STDP

type but implemented in a rate-based framework; for the task at hand, this provides little loss

of generality as the evaluation procedure depended explicitly on the firing rate at a fixed time

and required no sequential temporal dynamics. However, even for tasks where the spike timing

would be relevant, this method may yield an initial estimate of a corresponding plasticity rule

as it captures the average dynamics of such a rule. From the rate-based rule one can return to

the spiking rule with exponential kernels, albeit with a certain redundancy of parameters: in a

sense the decay times of the exponential determine the timespan over which the rate-based rule

approximates the spiking rule, thus fixing a time constant and choosing the other parameters

accordingly should allow one to arrive at a fitted STDP rule. This leaves open the question of

whether such a procedure would work, or if there is some gross misstep in logic of using a reduced

model in making inference about a more finely-grained model, or even if the parameters in the

spiking model are in some sense unidentifiable. Unfortunately, I did not have time to explore this

thread of identifiability analysis.

I have also attempted to address the issue of whether such a normative exploration provides

value, and it does in two ways. First, this guides further research, helping us to filter out the

infeasible from the feasible and providing guidance for further experiments. Secondly, the results

can be incorporated in a Bayesian framework to provide information in their own right: we can ask

questions such as, “From what distribution would a biologically accurate version of [some model]

sample its parameters?” under the assumption that biology and evolution are driven by dynamics

with a potential at least locally proportional to performance on the task at hand. Learning and

synaptic plasticity exist for survival and mostly, if not only, for the act of improving at tasks; thus

inheriting the performance measure from a reinforcement learning framework is only natural.

Finally, and possibly most importantly, I have attempted to bring together various streams of

research often studied in isolation. Decision making literature discusses the decision making process

with abstract decision variables and parameters which may change over time. The Wang model

unites that process with a model of neural activity, although other attractor models with more

(realistic) features - short-term synaptic dynamics, more realistic network topology, variability of

synaptic delays and distributions of synaptic strengths, among others - would work too. The key

product of this union is that we can interrogate the biophysical in light of the psychological. But

decision making is inherently tied to learning, especially on repeated tasks where performance

improves as in the domain of RL, and so the next step is to incorporate biologically feasible models

of potentially reward-driven plasticity. Altogether, this work combines a biophysical neural network

model, chosen for its compatibility with decision making experiments, with synaptic plasticity and

an optimisation driven approach to determine a priori what synaptic dynamics in the presence of
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reward should look like. With the framework outlined here, one can collect evidence of a decision

making process and, in a maximum a posteriori sense and using a global optimisation procedure of

one’s own choice, determine the plasticity rule parameters which give rise to the observed learning

process. Thankfully, there is much still to explore here.
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Appendix A

Appendix

A.1 Description of Wang Model

In this section I will outline the Wang model of 2.3.3.

Figure A.1: The original Wang model, implemented with p selective populations. In the rate-based
model, each population rate becomes a single dynamic variable. In the SNN, each population
consists of many individual spiking neurons and the population rate is determined by averaging
over the spike times of the neurons within the population. Image taken and adapted from [19].

A.1.1 Neurons and Synapses

The Wang model is a conductance-based LIF SNN where the fraction of open synaptic channels

at a synapse are modeled as dynamic variables as discussed in 2.1.
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A.1.2 Network Topology

As a point-neuron model, the synapse between any two neurons stands in place of the multitude

of true (possibly discretely strengthened) synapses. Initially the synaptic strengths are fixed at a

constant for each pair of populations.

The network topology is all-to-all. Nonetheless, there is also structure in the synaptic strengths.

Three synaptic strengths were used in the original model, w+, w−, 1. w+ and w− were varied

in concert so as to maintain a fixed mean total synaptic input to all the cells. These values

were distributed as follows: the full excitatory population of cells were divided into p selective

populations plus a remaining non-selective population, where the selective populations all consisted

of a fraction f of the total number of excitatory neurons. The synapses between the cells within

the same selective population had a stength of w+, while between excitatory groups (be it selective

or non-selective) the strength was w−. Between all other neurons, the strength was 1. I adopt this

same initial distribution of strengths as initial conditions, but the plasticity will not be restricted

to maintain the relationships between the weights. When evolving learning rules, I start the system

in a state where w+ = w− = 1.

A.1.3 External Poisson Noise

The dynamics of spiking networks can be characterised by falling into various “regimes” or classes of

behaviour. One such division is the fluctuation- versus mean-driven regime [38]. The characteristic

feature of the fluctuation-driven regime is that the strength of the current into/out of the cell is

such that the steady-state membrane potential in (2.1) falls below the threshold Vthr, and hence

the membrane potential only crosses the threshold when driven to by its fluctuations. In the mean-

driven regime, this steady-state membrane potential falls above the threshold, repeatedly driving

the neuron to cross it despite its fluctuations. See Figure 2.6 for an comparison. Indeed, in the

absence of noise, in the mean-driven regime the neurons synchronise [68].

In the fluctuation-driven regime, the ISI distribution approaches and can be approximated by

an exponential distribution. Hence this is how background noise is modelled, by Poisson processes:

each neuron receives sufficient external glutamatergic Poisson input to maintain a low firing rate

activity, although these external synapses do not have an NMDA component.

Synapses from these external Poisson inputs will be assumed to have constant strength of 1.

Moreover, because they do not have an NMDA component, the AMPAR conductance for these

inputs is scaled up to gAMPA,ext.

The values of all these discussed parameters are given in Table A.1.
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A.2 Rate Reduction of Wang Model

Here I start with the Wang Model described in A.1 and summarised in equations (2.35) to (2.41).

The reduction to a rate-based model follows a mean-field approach [19, 36]. The goal is to arrive

at a (p+ 2)-population rate-based model, maintaining the nonlinearities and synaptic dynamics as

much as possible

It will help to have the full spiking neural network model at hand for reference:

Cm
dVi(t)

dt
= −gm(Vi(t)− VL)

− (Vi(t)− VE)

p∑
k=0

gAMPA

∑
j∈Pk

wijsj,AMPA(t)

+gNMDA(Vi(t))
∑
j∈Pk

wijsj,NMDA(t)


− (Vi(t)− VI)gGABA

∑
j∈PI

wijsj,GABA(t)

− (Vi(t)− VE)gAMPA,ext

∑
j∈Pext

sj,AMPA(t)

(A.1)

We will focus on a neuron i in the focal population k.

The first step is to consider the synaptic weights wij . Starting with the assumption that the

neurons within the same population receive statistically identical inputs, they can be treated as

independent samples from independent trials. Moreover, assuming that the weights from popu-

lation k′ to our focal population k are identically distributed means that the dynamics of each

weight can be treated as an independent sample. Moreover, assuming these dynamics are slow

relative to the timescale of the firing rates, such that wij and the synaptic gating variables sj

(driven by presynaptic activity) are independent, we can in expectation decouple the products:

〈wijsj,rec〉 = 〈wij〉 〈sj,rec〉. In brief, using

〈wij〉j∈Pk′ =
1

Ck′

∑
j∈Pk′

wij

we can define

〈w〉k,k′ =
1

Ck

∑
i∈Pk

〈wij〉j∈Pk′ (A.2)

In the case of the original Wang Model, these weights were fixed constants, but here we allow

for variability.

Next we consider the sums of gating variables
∑
j sj,rec(t). We rewrite these as their mean
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processes 〈srec〉 and their total deviations from the mean ∆Srec(t), that is

∑
j∈Pk′

sj,AMPA(t) = Ck′ 〈sAMPA〉k′ + ∆SAMPA,k′(t)

∑
j∈Pext

sj,AMPA,ext(t) = Cext 〈sAMPA,ext〉+ ∆SAMPA,ext(t)

∑
j∈PI

sj,GABA(t) = Ck′ 〈sGABA〉+ ∆SGABA(t)

∑
j∈Pk′

sj,NMDA(t) = Ck′ 〈sNMDA〉k′ + ∆SNMDA,k′(t)

(A.3)

The dynamics of average gating variables 〈srec〉 will be considered later. Of the noise terms,

it will help to have one timescale for the synapses so that we may use the inverse mean-passage-

time formula for the firing rates [36]. In the Wang Model, the dominant conductance with the

shortest timescale, and thus the main source of noise, arises from the external Poisson inputs.

Due to the slower timescales of the NMDA and and GABA dynamics, we can treat the variables

∆SNMDA,k′(t) and ∆SGABA(t) as effectively zero; Since the conductance of the external AMPA

inputs is much higher, we also neglect variables SAMPA,k′(t) [19].

Next we approximate the deviations of the summed external gating variables ∆SAMPA,ext(t)

as an Gaussian process which has zero mean and correlation function

〈∆SAMPA,ext(t)∆SAMPA,ext(t
′)〉 = CextνextτAMPA exp

(
− |t− t

′|
τAMPA

)
(A.4)

Putting this together, we have

Cm
dVi(t)

dt
= −gm(Vi(t)− VL)

− (Vi(t)− VE)

p∑
k′=0

〈w〉k,k′ [gAMPACk′ 〈sAMPA〉k′

+gNMDA(Vi(t))Ck′ 〈sNMDA〉k′ ]

− (Vi(t)− VI) 〈w〉k,I gGABACI 〈sGABA〉

− (Vi(t)− VE)gAMPA,extCext 〈sAMPA,ext〉

− (��
�*
〈V 〉

Vi(t)− VE)gAMPA,ext∆SAMPA,ext(t)

(A.5)

where I have replaced the driving force of the noise term in the final line with its average, so that

the full noise component can be handled neatly.

Next we turn to the nonlinear conductance and driving force for the NMDAR ion channels.

We have

(Vi(t)− VE)gNMDA(Vi(t)) =
(Vi(t)− VE)

1 + γ exp(−βVi(t))
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We can linearise this expression around the same average membrane potential used for the noise

term 〈V 〉, yielding

(V (t)− VE)

1 + γJS exp(−βJSV (t)
≈ 〈V 〉 − VE

J(〈V 〉)
+ (V (t)− 〈V 〉)

(
1

J(〈V 〉)
+ β

(〈V 〉 − VE)(J(〈V 〉)− 1)

J(〈V 〉)2

)
︸ ︷︷ ︸

=:J2(〈V 〉)

where J(〈V 〉) = 1 + γJS exp(−βJS 〈V 〉), J2(〈V 〉) is the term in the rightmost parentheses, and

terms at least quadratic in (Vi(t)−〈V 〉) are dropped. The linearisation is close for a feasible range

of membrane potentials (see Figure A.2).

From here we can define an effective conductance and an effective reversal potential for the

NMDARs [36]:

geffNMDA(〈V 〉) = gNMDAJ2(〈V 〉) (A.6)

V effE (〈V 〉) = 〈V 〉 − gNMDA

geffNMDA(〈V 〉)

(
〈V 〉 − VE
J(〈V 〉)

)
(A.7)

= 〈V 〉 − 1

J2(〈V 〉)

(
〈V 〉 − VE
J(〈V 〉)

)

Figure A.2: Jahr-Stevens Linearisation. On the left we see the linearisation of the Jahr-Stevens
formula for NMDA channel conductance, linearised around -55mV. The true membrane potential
values must remain beneath Vthr = −50mV and should not deviate far beneath Vreset = −55mV,
cf. Figure A.3. On the right is the shape of J2(V ), where it achieves zero near -27mV. This can

cause numerical errors when computing V effE (〈V 〉) using the formula in (A.7).

We can achieve the Gaussian process for (〈V 〉−VE)gAMPA,ext∆SAMPA,ext(t) with an Ornstein-

Uhlenbeck process ∆Ik with dynamics

τAMPA
d∆Ik(t)

dt
= −∆Ik(t) + σeffC (〈V 〉)η(t), (A.8)
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where η(t) is a Gaussian white noise process with an (effective) diffusion coefficient given by

σeffC (〈V 〉) =
√
g2
AMPA,ext(〈V 〉 − VE)2Cext 〈sAMPA,ext〉 τAMPA

= σeffV (〈V 〉) Cm√
τeffm (〈V 〉)

,
(A.9)

where σeffV is used in the first-passage time formula (A.16) and τeffm is defined below.

Including this in (A.5), we can write the full Langevin dynamics as

Cm
dVi(t)

dt
= −gm(Vi(t)− VL)

− (Vi(t)− VE)

p∑
k′=0

〈w〉k,k′ gAMPACk′ 〈sAMPA〉k′

− (Vi(t)− V effE (〈V 〉))
p∑

k′=0

〈w〉k,k′ g
eff
NMDA(〈V 〉)Ck′ 〈sNMDA〉k′

− (Vi(t)− VI) 〈w〉k,I gGABACI 〈sGABA〉

− (Vi(t)− VE)gAMPA,extCext 〈sAMPA,ext〉

−∆Ik(t)

(A.10)

If we determine the effective time constant and effective leak conductance as

τeffm =
Cm

geffm

= τm
gm

geffm

(A.11)

geffm =gm +

p∑
k′=0

〈w〉k,k′ gAMPACk′ 〈sAMPA〉

+

p∑
k′=0

〈w〉k,k′ g
eff
NMDACk′ 〈sNMDA〉

+ 〈w〉k,I gGABACI 〈sGABA〉

+ gAMPA,extCext 〈sAMPA,ext〉

(A.12)

then we can determine the steady-state membrane potential (that is, the membrane potential that

would be achieved in the absence of neuron i spiking) as

VSS =
gm

geffm

VL +

p∑
k′=0

〈w〉k,k′
gAMPA

geffm

Ck′ 〈sAMPA〉VE

+

p∑
k′=0

〈w〉k,k′
geffNMDA

geffm

Ck′ 〈sNMDA〉V effE

+ 〈w〉k,I
gGABA

geffm

CI 〈sGABA〉VI

+
gAMPA,ext

geffm

Cext 〈sAMPA,ext〉VE

(A.13)
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and hence rewrite the membrane potential Langevin dynamics (A.10) as

τeffm

dVi(t)

dt
= −(Vi(t)− VSS) +

∆Ik(t)

geffm

τAMPA
d∆Ik(t)

dt
= −∆Ik(t) + σeffC η(t)

(A.14)

where (A.8) is repeated for reference and dependence on 〈V 〉 is suppressed.

The average membrane potential can be computed using the following formula [36]:

〈V 〉 = VSS − (Vthr − Vreset)ντeffm (〈V 〉)− (VSS − Vreset)ντrefrac (A.15)

which also depends on the effective membrane time constant τeffm (〈V 〉) (see Figure A.3).

Figure A.3: Comparison of average membrane potential formula with true distribution. A spiking
simulation was run with a increased Poisson input to selective population 1 at time 200ms. The
analytic formula for the average membrane potential (A.15) is compared to the true average with
standard deviations. Shortly after the initialisation of the simulation, the formula gives a good
approximation. However, after a change in input (200-225ms, right hand plot) the formula becomes
inaccurate: here the true membrane potential of any neuron cannot rise above Vthr = −50mV.
Notice that the average membrane potential estimate verges on the zero value of J2(〈V 〉), cf. Figure
A.2

Now that we have the Langevin dynamics (A.14) we can use the result built on Fokker-Planck

theory which gives us the first-passage time formula [19, 36, 38] also known as the Siegert formula

[143]:

τrefrac + τeffm

√
π

∫ (Vthr−VSS)/σeffV

(Vreset−VSS)/σeffV

exp(x2)(1 + erf(x))dx (A.16)

This formula gives us the expected time until next firing of a neuron, and is exact when the

noise is a Gaussian white noise process, but in our case the noise has autocorrelations decaying

with τAMPA. To use this formula, we need to adapt the bounds of the integral [36]. To do this I
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follow [19] and change the upper bound of the integral to

upperbound(VSS , σ
eff
V , τeffm ) :=

Vthr − VSS
σeffV

(
1 + 0.5

τAMPA

τeffm

)
+ 1.03

√
τAMPA

τeffm

− 0.5
τAMPA

τeffm

(A.17)

As the time of the noise decreases i.e. τAMPA → 0 we recover the original bound.

Inverting this formula gives us the rate at which neurons cross the firing threshold, or the firing

rate.

A.2.1 Current-Based Approximation

The formula (A.16) depends on τeffm , σeffV as well as the steady state membrane potential VSS .

These all depend on the average membrane potential 〈V 〉 which, through equation (A.15), de-

pends on the firing rate. Thus this formula needs to be computed self-consistently, which is time

consuming.

To avoid this, I make two approximations: I find a value Vdrive to replace Vi(t) in the driving

force terms (Vi(t) − VE/I), which yields a current-based model (see Section 3.5.1) and I replace

the use of the average membrane potential in the noise strength (A.9) with the same Vdrive, which

I shall denote σV . The noise can still change by modulating the rate of the external inputs, but

it will no longer change as a function of the population firing rates. For the conductance based

model, the effective parameters (aside from (A.6) and (A.7)) fall away.

For this model we have VSS = VL − I/geffm , so we can write the in terms of I and σV :

φ(I, σV ) :=

[
τrefrac + τm

√
π

∫ upperbound(VSS ,σV ,τm)

(Vreset−VSS)/σV

exp(x2)(1 + erf(x))dx

]−1

(A.18)

which gives us the value to which the population firing rate will converge given a fixed input I.

When the neurons are firing irregularly, and thus the true population membrane potential is spread

out, the population firing rate responds rapidly to a change in stimulus [38]. I will use this fact to

make the model dynamic.

A.2.2 Creating a Dynamic Model

The mean-field model from above allows us to estimate the stead-state activity, but what we seek

is a dynamic model. To this end, we treat the firing rates νk as well as the average fraction of open
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ion channels 〈srec〉 as dynamic variables.

A population of neurons firing asynchronously responds rapidly to a change in input [38]. As

such, I use a small time constant τr and assume that the rates for each population converge linearly

on their would-be steady-state rate:

τr
dν

dt
= −ν + φ(I, σV ) (A.19)

The synaptic gating variables follow similar dynamics, but use the appropriate time constant,

implementing a low-pass filter of the presynaptic firing rate:

τAMPA/GABA

d
〈
sAMPA/GABA

〉
dt

= −
〈
sAMPA/GABA

〉
+ ν (A.20)

The NMDA-mediated dynamics however are much slower and nonlinear. Their steady-state

value can be computed explicitly as a function of the presynaptic rate ν [19, 36]:

ψ(ν) =
ντNMDA

1 + ντNMDA

(
1 +

1

1 + ντNMDA

∞∑
n=1

(−ατNMDA,rise)
nTn(ν)

(n+ 1)!

)

which in turn depends on the terms

Tn(ν) =

n∑
m=0

(−1)m
(
n

m

)
τNMDA,rise(1 + ντNMDA)

τNMDA,rise(1 + ντNMDA) +mτNMDA,decay

where τNMDA = ατNMDA,riseτNMDA,decay

Due to the fast rise depending on the firing rate, by comparison with (2.8) we would expect

the dynamics of 〈sNMDA〉 to be of the form [19]:

d 〈sNMDA〉
dt

= −〈sNMDA〉
τNMDA

+ F (ν)(1− 〈sNMDA〉) (A.21)

where F captures the influence of the rise process xNMDA.

Indeed at the steady state we have that d〈sNMDA〉
dt = 0 and 〈sNMDA〉 = ψ(ν). This allows us

to solve for F as:

F (ν) =
ψ(ν)

τNMDA(1− ψ(ν))
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By defining τeffNMDA(ν) = τNMDA(1− ψ(ν)) we get the dynamics

τeffNMDA(ν)
d 〈sNMDA〉

dt
= −〈sNMDA〉+ ψ(ν) (A.22)

Put together, these describe the dynamic variables of our rate model without noise.

A.2.3 Adding Extra Noise

The mean-field rate model we have arrived at is deterministic, but perceptual decision making is

stochastic, as are the neural dynamics. To account for this, I follow [94] in artificially re-introducing

Ornstein-Uhlenbeck noise to the input current with zero mean and a strength of σnoise = 0.007nA

and time constant of τAMPA i.e.

τAMPA
d∆I

dt
= −∆I + σnoiseη

where η is a Gaussian white-noise process.

This serves an added benefit: reinforcement learning relies on randomness in determining action

choices. This randomness allows the learning individual to explore the space of possible choices

and not be stuck greedily performing the choice which initially seemed best.

A.3 Model Parameters

Parameters for the Wang model were taken mostly from [19], with the main exception of using

p = 2. They are also included in Table A.1.

A.4 Learning Rule Parameters

For plasticity simulations, the maximum synaptic strength wmax was set to 3.5 while synapses

from inhibitory neurons were kept fixed at 1. The reward signal decay rate τreward was set to 1ms.

The remaining parameters which were determined by the evolutionary algorithm CMA-ES can

be found in Table A.2 below. For reference, θ is the low-pass filtered postsynaptic firing rate,

while νj , νi are the pre- and postsynaptic firing rates, respectively, and 〈wij〉 = 〈w〉kk′ is the

relative strength of the synapse from neuron j in population k′ to neuron i in population k, with

a maximum value of wmax > 0.
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Parameter Description Value

NE total number of excitatory neurons 800
NI total number of inhibitory neurons 200
f fraction of excitatory neurons in each selective

population
0.1

p number of selective populations 2
w+ recurrent synaptic strength for selective popula-

tions (used when plasticity was absent)
2.1

w− interpopulation excitatory synaptic strength
(used when plasticity was absent)

1− f(w+ − 1)/(1− f)

Cext number of external Poisson neurons impinging on
each LIF neuron

800

νext baseline firing rate of external Poisson neurons 3 Hz
VL leak reversal potential -70mV
VL leak reversal potential -70mV
Vthr LIF firing threshold -50mV
Vreset LIF reset potential -55mV
VE reversal potential for excitatory inputs 0mV
VI reversal potential for inhibitory inputs -70mV
Vdrive approximate membrane potential used in current-

based driving force
-47.5mV

Cm,E membrane capacitance for excitatory neurons 0.5nF
Cm,I membrane capacitance for inhibitory neurons 0.2nF
gm,E leak conductance for excitatory neurons 25nS
gm,I leak conductance for inhibitory neurons 20nS
gAMPA,ext,E AMPA conductance for external-to-excitatory

synapses
2.08nS

gAMPA,ext,I AMPA conductance for external-to-inhibitory
synapses

1.62nS

gAMPA,E AMPA conductance for excitatory-to-excitatory
synapses

0.104 800
NE

nS

gAMPA,I AMPA conductance for excitatory-to-inhibitory
synapses

0.081 800
NE

nS

gNMDA,E NMDA conductance for excitatory-to-excitatory
synapses

0.327 800
NE

nS

gNMDA,I NMDA conductance for excitatory-to-inhibitory
synapses

0.258 800
NE

nS

gGABA,E GABA conductance for inhibitory-to-excitatory
synapses

1.25 200
NI

nS

gGABA,I GABA conductance for inhibitory-to-inhibitory
synapses

0.973 200
NI

nS

τrefrac,E refractory time for excitatory neurons 2ms
τrefrac,I refractory time for inhibitory neurons 1ms
τAMPA AMPA synapse time constant 2ms
τNMDA,rise NMDA synapse rise process time constant 2ms
τNMDA,decay NMDA synapse time constant 100ms
τNMDA NMDA dynamics time constant for rate model ατNMDA,riseτNMDA,decay

τGABA AMPA synapse time constant 10ms
α NMDA rise process coefficient 0.5kHz
γjS parameter for Jahr-Stevens formula 1/3.57
βjS parameter for Jahr-Stevens formula 0.062(mV)−1

τr time constant for rate dynamics 2ms
σnoise strength of Ornstein-Uhlenbeck current noise

reintroduced into the model
0.007nA

Table A.1: Parameters used in the simulations of the Wang Model.
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Parameter Description

ξ00 coefficient of the weight decay term

ξ
ab

0 coefficient of the monomial νaj ν
b
i which does not depend on θ determined

as the sum of the averaged Volterra kernels which are a-th order in the
presynaptic spike train, b-th order in the postsynaptic spike train, and which
do not depend on θ

ξ
ab

1 coefficient of the monomial νaj ν
b
i which is multiplied with θp determined

as the sum of the averaged Volterra kernels which are a-th order in the
presynaptic spike train, b-th order in the postsynaptic spike train, and which
do depend on θp

ξabk (〈wij〉) weight-dependent modified version of ξ
ab

k for k = 0, 1. Equal to ξ
ab

k (wmax−
〈wij〉)µ if ξ

ab

k > 0, otherwise ξ
ab

k 〈wij〉
µ

pdecay > 0 exponent of θ for multiplicative weight decay
p > 1 exponent of θ for superlinear dependence on θ required for BCM theory and

multiplied with ξ1
ab(〈wij〉)νaj νbi ∀ab ∈ {10, 01, 20, 02, 11, 21, 12}

µ ∈ [0, 1] exponent for wmax − 〈wij〉 or 〈wij〉 for weight-dependence in ξabk (〈wij〉)
β ∈ [0, 1] linear interpolation parameter for adapting the balance between reward-

driven (at β = 0) and unsupervised learning (at β = 1)
τe > 0 decay rate of the eligibility trace for the three-factor learning rule
τθ > 0 decay rate of the low-pass filtered postsynaptic firing rate θ

Table A.2: Learning rule parameters fitted by the evolutionary algorithm
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