Interactive Question Answering

Generalisation in Text-based Environments

Edan Toledo
University of Cape Town
Cape Town, South Africa

TLDEDAO001@myuct.ac.za

ABSTRACT

Artificial intelligence has long aspired to create systems that can per-
form real-world activities and converse with humans using natural
language. In the pursuit of this goal, Interactive Question Answering
was proposed. Specifically for language comprehension, IQA within
text-based environments is seen as a viable direction to train and
evaluate these systems. This paper aims to investigate the effec-
tiveness of a more human-like policy-based reinforcement learning
approach and an environment dynamics model to promote generali-
sation in textual environments. We evaluate the policy-based agent
performance and the use of an environment dynamics model on the
QAit (Question Answering with interactive text) benchmark. The
results produced indicate that policy-based reinforcement learning
has significantly better generalisation capabilities than the value-
based QAit baselines and that an environment dynamics model can
be used to regularise and promote generalisation when access to
multiple training environments is not possible.

CCS CONCEPTS

» Reinforcement Learning — REINFORCE; Generalisation; .
Natural Language Processing — Encoding Semantics; Ques-
tion Answering.

KEYWORDS

Question Answering Systems, Interactive Question Answering, Nat-
ural Language Processing, Reinforcement Learning, Text-based Games

1 INTRODUCTION

Throughout recent years, question answering (QA) systems have
become increasingly helpful by providing users with the ability to
find answers to questions posed in natural (or partially natural) lan-
guage. These systems are used in a variety of ways [11] as the need
to query large amounts of information becomes more prevalent.
Despite advances in recent years, current QA systems often fail to
generalise to unseen and out of domain information, thus limiting
their use to data abundant fields. While attempts have been made to
better generalisation capabilities [18, 28, 43], results have not seen
significant improvement. Beyond the lack of generalisation, these
systems are also restricted to declarative knowledge, thereby limit-
ing their utility. These shortcomings have motivated research into
Interactive Question Answering (IQA) as a viable solution. IQA refers
to the task of answering questions about dynamic environments
through the means of interaction. This involves creating a system to
gather and interpret data, much like humans do. IQA exhibits much
larger challenges than traditional QA due to an increase in system
requirements.
IQA comprises of the following 4 main challenges:

e The system needs the ability to navigate through different
environments.

o It needs to have sufficient comprehension ability to under-
stand the environment and its dynamics.

o It must have the ability to interact with the environment and
its objects intelligently.

e The system needs the ability to execute a series of actions
conditioned on the question asked.

IQA focuses on learning the procedural knowledge of navigation
and interaction in order to discover the information required to
answer a given question, i.e. the declarative knowledge. Ultimately,
the system must use and interpret the discovered knowledge to give
the correct answer. Procedural knowledge comprises the sequences
of actions required to perform some task. This greatly contrasts
traditional methods, which almost exclusively focus on declarative
knowledge. Traditional methods are mostly supervised learning
tasks whereby existing Machine Reading Comprehension (MRC)
datasets seemingly encourage models to simply learn shallow phrase
and word matching between questions and knowledge sources. This
is likely due to large amounts of textual overlap between questions
and their answers. Trischler et al. [33] show how traditional models
can easily exploit this overlap for significant performance, falsely
leading to the belief that these models have true comprehension
ability. Due to this, applications of these systems are limited to
problems involving static, fully observed, and information sufficient
documents. This is very unlike the necessary information-seeking
behaviour that is required in answering a variety of natural questions
[20].

General domain language comprehending systems has been a
goal of artificial intelligence for a large part of its history [9]. The
IQA task seeks to aid in the creation of these systems. The use
of general domain QA systems would greatly benefit all domains
consisting of low resources and insufficient quality training data.
Beyond the benefit of applying IQA systems to static data in different
domains lies the possibility of application in gathering procedural
knowledge, which traditional systems are not capable of doing.

With such context in mind, Yuan et al. [41] proposed the Question
Answering with interactive text (QAit) task, an IQA challenge using
text-based environments. Classic text games, such as Zork, are often
used in the attempt to create language comprehending agents [1, 8].
QAit utilises Microsoft TextWorld [12], a text-based game frame-
work, to generate text game-like environments on the fly, providing
ample opportunity for language learning. Agents interact with these
text-game environments via natural language text commands in
order to navigate through the world and gather the information
required to answer a given question. QAit demonstrates the per-
formance of popular value-based reinforcement learning methods
showcasing the difficulty of the challenge. We hypothesise that a
more human-like stochastic approach will not only learn faster but
perform better in the QAit task.

To this end, we explore the effectiveness of policy-based methods
within textual environments and the use of a predictive environ-
ment dynamics model in the creation of generalisable and language
comprehending agents. Prior work has shown policy-based meth-
ods to have significantly better generalisation capabilities than their
value-based counterparts [3, 5]. Additionally, the use of a predic-
tive environment dynamics model as proposed by Pathak et al. [24]
has been seen to further aid generalisation. Originally used to pro-
vide intrinsic motivation for agents with the goal of efficient explo-
ration, Yao et al. [40] adapted this approach for text-based games
to regularise the textual encoding and capture language semantics
showing an improvement in single-game performance. The QAit
baseline methods seek to learn and approximate the Q-function
of the environment, which can be extremely challenging to learn
in environments with large state and action spaces such as text
environments. The above thus motivates the investigation of the
proposed alternative methodologies.

We will compare a policy-based method, trained using the RE-
INFORCE with baseline algorithm [39], and the use of a predictive
environment dynamics model against QAit’s baseline methods on
the given QAit test set. For comparability, we make use of QAit’s
environment generation for training data. Three critical research
problems are identified: Firstly, are policy-based methods more suit-
able for text-based environments due to a seemingly more human-
like manner of decision making, i.e. non-deterministic. Secondly, do
policy-based methods generalise better in text-based environments.
Lastly, does using a predictive environment dynamics model as a
regularisation technique improve text-based environment generali-
sation.

To address these research problems, we experimentally investi-
gate the following research questions:

(1) How much impact does the policy-based method have on train-
ing and testing accuracy?

(2) How much faster/slower is the policy-based method’s training
process?

(3) How much data does the policy-based method require to reach
the same level of performance seen in baselines?

(4) Does the environment dynamics model improve the baseline
model’s performances?

(5) Does the environment dynamics model along with the policy-
based method increase performance further?

To answer each of these questions, we analyse the following
comparisons between the policy-based/regularised agent and QAit
baselines:

(1) Evaluation accuracy and sufficient information performance.

(2) Number of training episodes until convergence.

(3) Difference in training performance per 1000 episodes.

(4) Evaluation of accuracy and sufficient information perfor-
mance of a DQN agent with an environment dynamics model.

(5) Evaluation of accuracy and sufficient information perfor-
mance of a policy-based agent with an environment dynamics
model.

The rest of the paper is structured as follows: Section 2 discusses
the prerequisite knowledge for discussed concepts. This consists
of what environments are, reinforcement learning core concepts
and short explanations of the methods used as baselines. Section 3
discusses related work in text-based reinforcement learning, IQA

and the use of environment dynamics models. Section 4 proceeds to
explain the design and implementation of the agent architectures
created and used. Section 5 discusses the experimental methodol-
ogy used in evaluating new agent architectures. In section 6, all
experiment results are presented and analysed. Lastly, section 7
summarises all key conclusions.

2 BACKGROUND

The following subsections are relevant and necessary concepts to
understand for this paper. For sections 2.3 and 2.4, we refer to the
learning rate as a.

2.1 Environments

Environments refer to the "world" an agent is situated in. Many
different types of environments exist [4] for different tasks. The
environment constructs and generates the simulated experience for
reinforcement learning (RL) agents to learn how to perform tasks.

2.1.1 TextWorld. TextWorld [12] is a sandbox environment that
allows users to play text games interactively. It also provides gen-
erative capabilities to construct specific text-based games for dif-
ferent domains. Its generative processes allow users to fine-tune
the difficulty, range, and language of created games. Additionally,
TextWorld is used to research generalisation and transfer learning by
constructing sets of different but related games. TextWorld has been
used extensively in research involving text-based environments
[2, 8, 15, 22, 41, 42] and is used in the QAit task. An example of a
text environment created using TextWorld is CoinCollector [8]. This
environment consists of a series of interconnected rooms with the
single goal of finding and collecting coins. This environment aims
to assess the exploratory nature of an agent.

2.2 Policies and Value Functions

Agents use policies to decide their actions at every time step t. A
policy x is defined as a mapping of environment states S to the
probabilities of selecting each possible action a € A [30]. If an agent
is following a policy 7 at time step ¢, the policy function n(als) is
the probability of performing the specific action A; = a given the
agent is in state S; = s.

Popular reinforcement learning algorithms such as Q learning
or REINFORCE with baseline, in the process of finding the optimal
policy (the policy that yields the highest cumulative reward), esti-
mate the value function. The value function is a function of states
or state-action pairs that estimate the value (expected cumulative
reward to be received going forwards) of being in a specific state.
Since the cumulative reward is dependant on future actions in fu-
ture states, the value function is defined with respect to the policy
the agent is following. The expected cumulative reward G; can be
defined as follows:

T
Gy = Z Yk—t—le
k=t+1

where T is the terminal time step and y is the discount factor (the
weight of importance given to future rewards). This means formally
the value function for any given policy is defined as:

Vi(s) = E[Gt|S; =s], foralls € S

2.3 Value-Based Methods

Value-based methods are methods in which the agent tries to learn
the value function of the environment it is situated in. The value
function is extremely beneficial as it gives the agent information on
what states it should be in. The agent can use the value function for
action selection simply by acting greedily and choosing the action
that will take it to the state with the highest value. This is called
the greedy policy and is commonly how control is implemented in
value-based methods (not including the possibility of exploration)
[30]. Practically, most value-based methods try to learn the value
of action-state pairs i.e Q values. The reason for this is that if the
agent does not know the model/environment dynamics, it doesn’t
know which action will take it to the desired state, so the solution
is to create a function that gives an estimate for the total expected
cumulative reward if an agent takes a specific action in a specific
state. The following are a few of the most popular value-based
methods.

2.3.1 Q-Learning. Q-learning [38] is a proposed method for agents
to learn the optimal state-action value function directly instead of
repeatedly performing policy evaluation and iteration. It is seen
as a more sample efficient method of learning as it can reuse past
experience. An example of the Q-learning update using one-step
TD-learning is as follows:

O(S:,At) += a(Ry + ymax Q(St+1, Ar+1) — Q(S1, Ar))

Although Watkins et al. [38] have shown the convergence properties
illustrating that Q-learning can be used effectively to solve Markov
Decision Processes (MDPs), practically, these value-based methods
suffer from poor convergence.

2.3.2 DQN. When modelled into MDPs, most modern problems
have extremely large state spaces (potentially continuous state
space). This is compounded when trying to learn the action-state
pair value estimates as the number of states is multiplied by the
number of actions. This high dimensionality makes traditional Q-
learning for larger problems computationally infeasible. To solve
for this, function approximation has been proposed. With modern
advancements in deep learning, one type of function approximation
used heavily in reinforcement learning are neural networks. DQNs
(Deep Q Networks) [7] have been shown, with a few additions such
as experience replay memory [21] and target networks, to solve
large dimensional MDPs, such as Atari games, effectively. However,
there are limitations to this approach. It was shown that non-linear
function approximation, such as neural networks, can cause the
Q-network to diverge [34]. DQN’s also tend to overestimate the
actual Q-value, which can eventually lead to sub-optimal policies
[32]. Even though convergence is not theoretically guaranteed when
using neural network function approximation and overestimation
occurs, practically, we see successful results in applying the DQN
algorithm to certain problems [7].

2.3.3 DDQN. DDQN (Double DQN) [35] is the proposed algorithm
to solve the overestimation problem in DQNs. DDQN shows signifi-
cant results in increasing stability and reliability of learning, reduc-
ing DQNs overoptimism as well as how this reduction in overopti-
mism allows the discovery of better policies [35].

2.3.4 Rainbow DQN. Rainbow DQN [19] is an extension to the
original DQN algorithm that combines several improvements found
over the years into a single agent. Rainbow DQN uses: DDQON to
reduce the overestimation bias, Prioritised Experience Replay [25]
to speed up learning, dueling networks [37], multi-step learning
[29] for faster learning with suitably tuned hyper-parameters, Dis-
tributional reinforcement learning [10] instead of expected return,
and noisy nets [14] for exploration. This extension shows improved
performance in comparison to other methods.

2.4 Policy-Based Methods

Policy-based methods are methods in which the agent tries to learn
the policy function, i.e 7(s|0) for s € S, directly. Any function can
be used as long as it’s differentiable. This can be advantageous
as it can learn stochastic policies, whereas value-based methods
are deterministic. It can also be used to learn continuous or high
dimensional action spaces effectively and has better convergence
properties. Policy gradient methods search for a local maximum in
J(0) by gradient ascent 8 «— 6 + aVyJ(0).

2.4.1 REINFORCE. REINFORCE [39] is a Monte Carlo method that

updates the policy function’s parameters directly using the policy

gradient with respect to the objective function J(8) = E[ZtT:O Ry |ﬂ9] .
Sutton et al. [31] show that the gradient of the objective func-

tion to maximise expected total cumulative reward is VyJ(0) =

ZtT;OI Vg log m9(A¢|S¢)G;. This allows us to relatively easily calcu-

late the gradient and update the policy’s parameters directly using

the REINFORCE update:

Ors1 = O + o+ Gy x Vg log g (A¢|St)

where « is the learning rate parameter. As per the shortcomings of
Monte Carlo methods, REINFORCE suffers from high variance with
a noisy gradient estimate and no clear credit assignment to positive
or negative actions throughout the episode [30]. An easy way to
improve REINFORCE is to reduce the variance of the empirical
returns G; by subtracting a baseline function b(s) in the policy
gradient. The baseline is regarded as a proxy for the true expected
return. A popular option for the baseline function is the state value
function V(S;). The new value after subtracting the baseline from
G; is defined as the advantage factor Adv;(S;) = Gy — V(S;). This
changes the REINFORCE update to:

Or+1 = 0p + o + Adoy (s) * Vg log mg (Ar|Se)

This requires the REINFORCE agent to learn the value function
alongside the policy and can introduce a bias as the cost of lowering
variance. The value function is jointly learned by minimising the
MSE loss:

T-1
MSE = " (Gt = V(S1))*
t=0

REINFORCE with baseline is similar to another policy-based method,
the advantage actor-critic. The difference between the two is that
the actor-critic makes use of Ry +V (S;4+1) instead of the Monte Carlo
return G;. This allows it to bootstrap experience but increases bias
as a result.

3 RELATED WORK

3.1 Text-based Interactive Environments

The QAit (Question Answering with interactive text) [41] task pro-
poses a novel text-based question answering problem whereby an
agent must interact with a partially observable text-based envi-
ronment to gather the declarative knowledge required to answer
questions. QAit poses said questions about the location, existence
and attributes of objects distributed throughout the environment.
QAit produced and evaluated a set of baseline models on a created
test-set of unseen environments and questions. This test-set is in-
tended to be used as a benchmark for future research to evaluate
an agents ability to comprehend language and generalise its action
policy. The specifics of QAit are elaborated in section 4.1.

Another textual environment proposed is World of Bits [26].
World of Bits created a unique platform to teach agents to accom-
plish tasks via interaction with the internet. This is similar to QAit
in that agents are situated in textual environments, but World of Bits
does not generally require agents to gather information for their
task, and the goal of an agent is to simply accomplish their task
rather than using the information learned to answer a question.

3.2 Visual Interactive Question Answering

Interactive question answering is a new field of research without
an extensive literature collection. Of the existing research - there is
a large focus on visual question answering [13, 16]. Visual question
answering focuses on teaching agents to interact in environments
with visual inputs and answer questions based on these observations.
These visual question answering environments mainly support sim-
ple navigation and camera movement actions that limit the agent’s
interaction with its surroundings. Visual question answering also
poses the problem of interpreting different data modalities, which
can make the creation of high performing agents very difficult as
well as environment-specific. The works of Gordon et al. [16] and
Das et al. [13] show poor performance increases above baselines,
indicating the difficulty of this task. Both works use hierarchical re-
inforcement learning to learn all the different sub-policies required
to answer questions in interactive environments.

3.3 Environment Dynamics in Text-Games

An agent understanding environment dynamics in text-based envi-
ronments can be seen as having semantic comprehension. Yao et al.
[40] show that most current reinforcement learning agents are not
making use of language semantics in their learned representations.
They further show that by eliminating semantics and using a fixed
random non-semantic representation, agents can surprisingly mem-
orise high score policies. Lastly, they investigate the use of an inverse
environment dynamics model (inspired by the Intrinsic Curiosity
Module [24]) whereby the agent receives two consecutive states
as input and tries to predict the action that caused this transition.
This inverse dynamics model is then used to regularise and promote
semantic encoding into the learned state representation. Yao et al.
investigate the learned semantic encoding by applying the repre-
sentation to an entirely new environment and simply fine-tuning
the agent’s policy. There is a significant increase in performance
compared to other models’ learned representation indicating that a
degree of language semantics is captured.

Table 1: Example of an agent interacting with an environ-
ment to gather knowledge and answer a question. [41]

You find yourself in a backyard. You make out a patio
Game | table. You see a patio chair. It’s stylish. In a corner you
can see a BBQ. There’s an open screen door leading south.

Quest ‘ Is ghargh edible?

Agent ‘ >Qapla’

Game ‘ That’s not a verb I recognize.

Agent ‘ >eat ghargh

Game ‘ You can’t see any such thing.

Agent ‘ >go south

You've just entered a kitchen. You can see an open

fridge here. It is empty! You see a closed oven. Look over there,
it’s a counter. On the counter you can see a diced potato,

a red ghargh and a knife. There’s an open door is leading north.

Game

Agent \ >eat ghargh

Game ‘ You need to take the red ghargh first.

Agent | >take red ghargh

Game ‘ You take the red ghargh from the counter.

Agent ‘ >eat ghargh

Game ‘ You eat the red ghargh. Not bad.

Agent ‘ >wait

Agent ‘ >answer: yes

4 DESIGN AND IMPLEMENTATION

4.1 Overview of QAit

4.1.1 Environment & Difficulty. We make use of QAit’s modification
and implementation of TextWorld to create text environments and
associated questions dynamically. This is used to construct training
sets consisting of a limited number of different environments. QAit
aims to test an agent’s language comprehension abilities using tasks
that require an understanding of locality, existence, and attributes.
All environments are generated by sampling from the world setting
distribution (see Table 2), where environment configurations are
distinguished into fixed map and random map categories. The fixed
map category sees to the creation of environments consistently
containing 6 unique rooms. In contrast, random map games draw
from a uniform distribution to decide on the number of rooms to
create.

Table 2: Environment Generation - Fixed map worlds al-
ways have 6 rooms, whereas random map worlds sample uni-
formly to have between 2 to 12 rooms

Fixed Map Random Map
Locations, N, 6 Ny ~ Uniform(2,12)
Entities, N, Ne ~ Uniform(3 - Ny, 6 - Ny)

Questions based on each environment are created on the fly as
an agent plays a game, but the number of different worlds is set as
an experimental parameter. In the original QAit paper, all agents are
trained on datasets consisting of 1, 2, 10, 100, 500 created environ-
ments as well as an unlimited setting where different environments

are created for each question, thereby theoretically not allowing
an agent to see the same environment question pair twice. In this
setting, more than 1040 different games can be created, indicating
that an agent is unlikely to see the same environment again.

4.1.2 Question Types. There are three types of questions that the
agent attempts to answer based on these generated worlds.

e Location: location type questions ask the whereabouts of
objects situated within the world. An example of such a ques-
tion is "Where is the can of soda?", where a suitable answer
would be "fridge". The agent has to answer with the most
relevant container of an object. This means that if an object is
present within a container such as a fridge, the agent cannot
report back the room the object is in, e.g. kitchen.
Existence: existence type questions ask about the presence
of objects situated within the world. An example of such
a question is "is there a raw egg in the world?" where the
answer would simply be yes or no.

Attribute: attribute type questions, the most difficult of all
three question types, ask about whether or not an object has
a certain associated attribute. An example of such a question
is "is apple edible", where the answer is also yes or no. This
involves an agent executing a complicated series of steps
to evaluate object attributes, e.g. the agent has to find the
apple, pick it up, try to eat it and observe the outcome to
answer. The QAit baselines arguably do not improve upon
random baselines in this category, indicating the difficulty
of this question type. Objects within the attribute question
setting are given arbitrary and randomly made-up words to
discourage agent memorisation of values, such as an apple
always being edible (see Table 1).

4.1.3 Interaction. Since language generation can become intractable
within a reinforcement learning setting, all text commands are
triplets of the form action, modifier, object (e.g., open metallic gate).
When there is no ambiguity present such as two different keys in a
room, the environment understands commands without modifiers,
e.g. pick key will result in picking up the "copper key" provided
it is the only key in the room. At each game step, there are three
lexicons that divide the vocabulary into actions, modifiers and ob-
jects. This reduces the size of the action space for each word in the
command triplet compared to a sequential, freeform setting. The
wait command indicates the agent wants to stop interaction and
answer the question. An episode of experience terminates when the
wait command is issued or upon reaching a maximum number of
steps. For our experiments, we use a maximum of 50 steps. After
environment interaction, the agent proceeds to answer the question.
Table 3 gives an indication of the action space and observation space
sampled over 10,000 games.

Table 3: Statistics of the QAit dataset. Numbers are averaged
over 10,000 randomly sampled games. [41]

Fixed Map | Random Map
Actions / Game 17 17
Modifiers / Game 18.5 17.7
Objects / Game 26.7 27.5
Obs. Tokens 93.1 89.7

1\1[t
Shared Linear Layer
Q (Action) Q (Modifier) Q (Object)

l l l

Modifier with
Highest Q value

Action with
Highest Q value

Object with
Highest Q value

Figure 1: Overview of QA-DQN Network Architecture

4.1.4 Rewards. The QAit environments have a shaped reward func-
tion to aid in learning. There are two types of rewards:

Exploration Rewards: An agent is rewarded each time it enters
a previously unseen state where a state, in this case, is defined as a
new physical location and/or new inventory status. This is done to
promote exploration. Yuan et al. [8] show the benefit of using this
exploration by counting method in text games.

Sufficient Information Rewards: For each question type, the
reward function is heuristically crafted. A sufficient information
reward is given at the end of an episode depending on the agent’s
actions throughout. These rewards are explained in section 5.1.2.

4.1.5 Evaluation. The QAit test set provides 500 held out games
for both map types and all three question types. This testing set
is used to benchmark the generalisation abilities of agents on all
experiment configurations. This allows for models to be assessed in
a reproducible manner and is analogous to supervised learning test
sets.

4.1.6 Baseline Reinforcement Learning Agents. QAit provides five
baselines - these are human, random, and three popular value-based
reinforcement learning methods. The human baseline consists of
results achieved by 21 human participants. The random baseline
performs no interaction with the environment and simply samples
answers from the potential answer pool. This is yes or no for exis-
tence type questions and all possible object names for location type
questions. The reinforcement learning baselines are DQN, DDOQN
and Rainbow (see section 2.3 and figure 1). Each agent uses the
same general training loop (see algorithm 1) with slightly altered
parameters.

4.2 Agent Model

The following is an explanation of the architecture used by the agent
(see Figure 2).

4.2.1 QA-DQN Encoder and Question Answerer. Due to the focus
of this paper being on an investigation into an alternative to the
value-based methods used, the agent still makes use of the RL base-
line’s architecture for textual encoding and question answering. The
transformer-based [36] text encoder makes use of an embedding
layer, two stacks of transformer blocks, one for encoding and the
other for aggregation, and a final attention layer. The embedding

Algorithm 1: Training Loop

for episode e in training episodes do
ge < question about environment;
o0y « starting observation;
while agent has not said ’wait’ or max number of steps T
has not been reached do
M; «—Encode (01, qe);
ar — m(My);
0t+1, 't <—environment step (a;);
save experience (0¢, ge, at, I't, 0t+1);
if update frequency reached then
update agent interaction model();
update agent question answerer model();
end

end
predicted, «— Answer Question (M7);
answere « correct answer;
if agent ended up in correct state then
‘ save experience (Mr, ge, answere, predicted,);
end

end

iS¢ . go door <|> -= corridor = - you are in a corridor . a normal kind of place . let s

i see what's in here . oh, great . here 's a conventional oven . that oven contains ared |
i key. there is an open iron gate leading east . there is an open iron door leading

i south . you need an exit without a door ? you should try going west . there is a

! yellow onion on the floor . <|> hello

! Qe ; where is the copper key?

QA-DQN Encoder

Predicted Action A¢ : go north
If Ay is "wait or episode

T terminates:
Inverse Model M QA-DQN Question Answerer
Policy
At - go west Pred{ct‘ed Answer :
| livingroom
‘ Environment

)

St+1 © g0 west <[> -= livingroom = - i am sorry to announce that you are now in the

livingroom . okay , just remember what you 're here to do , and everything will go
great. you can make out a black oven . now why would someone leave that there ? |
what a letdown ! the oven is empty ! there is an open glass door leading south .

there is an exit to the east . there is a copper key on the floor. <[> hello

}

QA-DQN Encoder

qe : where is the copper key?

M+]

Figure 2: Overview of our Agent Architecture

layer consists of word-level and character-level embeddings that
are aggregated together to produce a vector representation for each
token in the text. Word-level embeddings are initialised by the 300-
dimensional fastText [23] trained on Common Crawl and kept fixed
throughout training. A series of convolutional, linear and highway

When the agent stops gathering information.

M;

Prabability distribution |
— — i

over possible answers !

Question Answerer

Encoder Aggregator
Previous command C;_;
hot
Current Observation O
Feedback from action fl_d M[
—
h,
Question q 9

Figure 3: Overview of QA-DQN Encoder Architecture [41]

network [6] layers are used to aggregate the word and character
embeddings. These aggregated embeddings are then input into the
transformer blocks. The final output of the transformer blocks is an
encoded sequence that is used as input for the agent’s policy and
baseline functions as well as the question answerer. The question
answerer appends an additional stack of aggregation transformer
blocks to compute the answer from the given state representation,
i.e. the output of the encoder. Further details of implementation can
be found in the Yuan et al. QAit paper [41]. At each game step, the
current game observation and question are processed and merged
together to produce the final state representation that is used by
the agent. This gives the agent context of the question at each time
step so the agent cannot forget the goal. Figure 3 shows a high-level
overview of the architecture.

4.2.2 REINFORCE with Baseline. The policy-based method aims to
adapt the existing QAit architecture to improve performance and
learning efficiency. The new agent makes use of the existing text
encoding architecture, outlined in section 4.2.1, to learn a policy
directly as well as the state-value function of the environment. The
agent consists of four main components: the QA-DQN encoder, the
policy function, the value function and the QA-DQN question an-
swerer. The policy is a parameterised neural network responsible
for all interactive decisions. This means it needs to receive an ob-
servation from the environment and output the text command it
deems best to do in that situation in order to maximise reward, i.e.
answer the question. The policy consists of a shared linear layer
and three separate output layers. The shared linear layer takes the
max pooled output of the text encoder M; and outputs a fixed-size
representation. Each consecutive output layer is conditioned on the
previous output along with the shared linear layer (See Figure 4).
We did this in an attempt to create more legible commands since
consecutive words should be aware of their priors. Each output layer
represents the policy for each word in the command triplet (Action,
Modifier, Object). Each output gives a probability distribution over
the vocab to represent the probabilities with which a word should
be selected. Each word in the command triplet is then sampled from
the outputted probability distributions to form the command at each
game step. This more closely emulates how a human would speak
compared to value-based methods, which act greedily and are deter-
ministic. The baseline aims to approximate the state-value function
to aid in the training of the policy. The baseline network also makes

Shared Linear Layer

Baseline V(s) n(s,action)

R

n(s,modifier) T
A

mi(s,0bject)

Probability
Distribution over
potential action words.

Probability
Distribution over
potential modifier

words

Probability
Distribution over
potential object
words

|

(Sampled Object)

Expected value of
cumulative reward onward
i.e state value

(Sampled Action) (Sampled Modifier)

Figure 4: Overview of Policy and Baseline Architecture

use of the policy’s shared linear layer as input to produce the state
value V(s). This is done to regularise the shared linear layer to a
common representation to ideally aid the policy and value function
in generalisation [27]. The REINFORCE with baseline algorithm is
what is used to update model weights. REINFORCE uses Monte-
Carlo episodic sample returns Gy (refer to 2.2) to update the baseline
and calculate the advantage factor with which to update the policy.
Beyond the classic REINFORCE with baseline implementation, each
policy’s entropy (for each word in the command triplet) is used in
the loss function. This is to incentivise more stochastic policies to be
learnt whilst maximising reward. This is done in order to promote
exploration and generalisation. This slightly altered REINFORCE
update is shown in algorithm 2. As discussed in section 2.4.1, the
loss functions used for the policy and baseline are:

T
1
Lo = T ;Advt * log m(ay)

T
_ 1 2
Le= o ;(Adm

4.3 Learned Environment Dynamics

The learned encoder representations of textual state observations
are only optimised for the policy and baseline loss functions. This
can lead to severely overfitted and specific representations that are
not useful for any environments beyond the training games. This
learned representation can be completely absent of any language
semantics, which is seen as important for an agent’s ability to ap-
ply its knowledge to new environments. In text games, a semantic
rich representation is proposed as a way to increase generalisation

Algorithm 2: REINFORCE Update
// Note : w(A;) = Probability of action A at time-step ¢
for time step t in episode trajectory (St, At, Ry) do

Gt —Xp_, Res

Adv; Gy =V (S);

act, mod, obj = Ag;

La, = (n(act) + n(mod) + n(obj)) * Adovy;

Le, = (Adop)?;

Le, = Entropy(n(act)) + Entropy(n(mod)) +
Entropy(n(obj));

end

L=331 (Lo, +Le, —px Le));
Calculate Gradients;

Perform one step of gradient descent;

performance as well as prevent overfitting. Yao et al. [40] show
that an inverse dynamics model can be used to regularise Q values,
promote encoding of action-relevant observations, and provide a
form of intrinsic motivation for exploration. A further evaluation of
the transfer learning capabilities of semantic rich representations
show benefits for generalisation. In this paper, the environment
dynamics model is used to improve generalisation capability and
illustrate its effectiveness as a regularisation technique. Inspired by
Pathak et al. [24], the environment dynamics model consists of a
forward and inverse dynamics model. The forward dynamics model
takes in a state representation and an action to predict the next
state representation. This attempts to model an agent’s predictive
understanding of the world. The model consists of two linear layers
and makes use of MSE loss. The inverse dynamics model uses two
consecutive state representations and attempts to predict the action
that caused the state transition (see Figure 5). This attempts to model
an understanding of world dynamics. Since each command can be
seen as a triplet of (Action, Modifier, Object), the inverse model has
three separate neural decoders that attempt to predict each word
in the triplet. Each decoder uses cross-entropy loss upon which are
summed Linperse = Z?zl L;. The losses of the forward and inverse
models are joined with a weighted addition and added to the joint
policy-baseline loss:

L=MLag+ L)+ (1= P)* Lingerse + P * Lforward

Upon initial experimentation, we proceed only to make use of the
inverse model and loss, as seen in Yao et al. [40], to regularise the
transformers state representation. Differing from Yao et al., we do
not make use of the inverse loss as an intrinsic reward as it seemed to
inhibit training strongly. We hypothesise that this occurs by creating
too much noise in the reward function due to different environments
containing slightly altered dynamics, ultimately preventing the loss
from decreasing sufficiently. Furthermore, we do believe that there
is a benefit to the use of the forward model, but this requires further
experimentation.

5 EXPERIMENT METHODOLOGY

5.1 Evaluation Metrics

The following are the evaluation metrics used in order to evaluate
different aspects of performance.

M Mi+1

A =Gy
(Action; , Modifier¢ , Objectt)
Feature Network
(Optional)
M * Mg+ * M *

Inverse Network Forward Network

Predicted Actiong Predicted Modifiery Predicted Objecty Predicted Mg+1*

Figure 5: Overview of Environment-Dynamics Architecture
- M;* is the transformed representation - since this transfor-
mation is optional if not used M = M;

5.1.1 Accuracy. Accuracy refers to the proportion of correctly an-
swered questions and is deemed the most important metric since,
ultimately, the goal of IQA is to answer a question. Other metrics
used alongside accuracy to evaluate question-answering perfor-
mance are precision, recall and F1 score. However, these take lower
precedence due to the well-balanced answer distribution of the test
set and are not reported. The distribution of answers in the QAit
evaluation set is presented in the appendix (see Table 10, 11 and 12).

5.1.2 Sufficient Information. Sufficient information is a metric used
to evaluate the amount of information gathered by the agent and
whether or not the information was sufficient to answer the ques-
tion [41]. It is also used as part of the reward function (see section
4.1.4). This is a metric to evaluate the performance of the navigation
and interaction required to answer a given question. The sufficient
information score is calculated when the agent decides to stop the
interaction and answer the question. For each question type, the
sufficient information score is calculated as follows:

e Location: A score of 1 is given if, when the agent decides to
stop the interaction, the entity mentioned in the question is
present in the final observation. This indicates the agent has
witnessed the information it needs to answer the question
successfully. If the mentioned entity is not present in the final
observation then a score of 0 is given.

Existence: If the answer to the question is yes then a score of
1is given if the entity mentioned in the question is present in
the final observation. If the answer to the question is no, then
a score between 0 and 1 is given proportional to the amount
of exploration coverage of the environment the agent has
performed. Intuitively this can be seen as a confidence score
- if the agent witnesses the entity, it is 100% confident of its
existence; otherwise, until it explores the entire environment,
it is not 100% confident.

Attribute: Attribute questions have a set of heuristics defined
to verify each attribute and assign a score of sufficient infor-
mation. The set of heuristics can be seen in the appendix (see
Table 9). Each attribute has specific commands that need to
be executed for sufficient information to be gathered. This

also depends on the agent being in certain states for these
outcomes to be observed correctly, e.g. an agent needs to be
holding an object to try to eat the object.

5.1.3 Episodes Experienced. A measure for sample efficiency is the
number of training episodes required to achieve a certain level of
performance. Sample efficiency is crucial when computing resources
and time is limited. The number of episodes the agent has seen
dictates how much experience was available for an agent to make
use of and learn from.

5.2 Experiments

Three primary experiments were performed under four different
environment configurations. The primary experiments were:

e REINFORCE with Baseline

e REINFORCE with Baseline using Environment Dynamics
Model

e DON using Environment Dynamics Model

The environment configurations were:

e Random/Fixed Map with 1 game
e Random/Fixed Map with 500 games

Each experiment was trained on a single GPU and took approxi-
mately 3 - 8 days, depending on the question type and experiment.
For single-game experiments, policy-based agents were trained for
one hundred thousand episodes, and DQN with semantic regulari-
sation were trained for 200 000 episodes. This is because the policy-
based methods converge much earlier. For the 500 game experiments,
all agents were trained for 200 000 episodes.

6 RESULTS AND DISCUSSION

Table 4: Agent performance on fixed map zero-shot test
games when trained on 1 game and 500 games settings. Note
Att. and Exi. are binary questions with expected accuracy of
0.5.

Fixed
Model Loc. Exi. Att.
Random | 0027 | 0497 | 049
1game
DQON 0.122 (0.160) | 0.628 (0.124) | 0.500 (0.035)
DDQN 0.156 (0.178) | 0.624 (0.148) | 0.498 (0.033)
Rainbow 0.164 (0.178) | 0.616 (0.083) | 0.516 (0.039)
DON w/ Semantics 0.152 (0.158) | 0.624(0.122) | 0.490 (0.063)

Policy-based 0.168 (0.172) | 0.584 (0.217) | 0.514 (0.060)
Policy-based w/ Semantics | 0.182 (0.184) | 0.630 (0.228) | 0.494 (0.068)

500 games
DON 0.224 (0.244) | 0.674 (0.279) | 0.534(0.014)
DDON 0.218 (0.228) | 0.626 (0.213) | 0.508 (0.026)

Rainbow 0.190 (0.196) 0.656(0.207) 0.496 (0.029

(0.029)
Policy-based 0.948 (0.958) | 0.948 (0.892) | 0.466 (0.045)
Policy-based w/ Semantics | 0.748 (0.768) | 0.932(0.872) | 0.506 (0.044)

Table 5: Agent performance on random map zero-shot test
games when trained the 500 games setting. Note Att. and Exi.
are binary questions with expected accuracy of 0.5.

Random
Model ‘ Loc. ‘ Exi. ‘ Att.
Random | 0034 | 05 | 0499
500 games

DON 0.204 (0.216) | 0.678 (0.214) | 0.530 (0.017)
DDQN 0.222 (0.246) | 0.656 (0.188) | 0.486 (0.023)
Rainbow 0.172 (0.178) | 0.678 (0.191) | 0.494 (0.017)
Policy-based 0.534 (0.044)

0.570 (0.588) ‘ 0.836 (0.560)

Policy-based w/ Semantics | 0.440 (0.458) | 0.868 (0.672) | 0.514 (0.039)

6.1 Accuracy and Sufficient Information Results

6.1.1 Policy-based method. Table 4 and 5 give the QAit test set
results for all experiments as well as show the baseline models’
performance. Table 6 and 7 shown in the appendix give the full
results including training performance. It is clear that a policy-based
method outperforms value-based methods both in training and test-
ing performance. When training on one game, the policy-based
agent overfits more than the baselines by achieving 100% accuracy
on all three question types along with high sufficient information
scores - we hypothesise that this is due to the policy-based agent
making more efficient use of data, thereby in the same training pe-
riod overfitting to a greater extent. Despite this, we can see that the
testing performance of the policy-based method is still arguably bet-
ter than the baseline methods by showing similar question accuracy
performances but a significant increase in sufficient information
scores. This indicates the policy itself is performing better, with
respect to navigation and interaction, but the overfitted QA model
inhibits performance when trying to answer questions.

The 500 games experiment shows a better indication of the perfor-
mance increase compared to the baselines by achieving significantly
higher results. For location type questions in the fixed map set-
ting, the policy-based agent achieves an accuracy of 94.8% on the
test-set. This is a large improvement over QAit’s state-of-the-art
result of 22.4%. We see similar scale improvements in existence type
questions for the fixed map setting where the policy-based model
achieved an accuracy of 94.8%. This is compared to QAit’s 67.4%
accuracy. This comparison doesn’t capture the true performance
increase, which can be seen by looking at sufficient information
score where we see a dramatic improvement in navigation and in-
teraction. The policy-based method scores 0.892 compared to QAit’s
best score of 0.279. The results of the random map setting are also a
large improvement over the baselines, albeit not as stark as in fixed
maps - we believe this is because of the more difficult nature of ran-
dom map type games as well as having almost double the possible
answers (see Table 10). Interestingly, in the fixed map setting, the
results of the attribute type questions show worse QA accuracy but
greater sufficient information score. As one can see for all attribute
type questions, neither the policy-based model nor the baselines
achieve results much higher than the random baseline in terms of
QA accuracy. By looking at the sufficient information score, we can

see that neither model truly ends up in the states they should be in
therefore these results are most likely due to chance.

We see that a policy-based method is more capable of learning in
a text-based environment indicated by its ability to completely learn
the single-game training data. The 500 games results shows that
the stochastic nature of the policy-based method affords it enough
flexibility to learn more generalised policies that can be learned to
jointly perform in numerous training environments. Lastly, the 500
games results also show that the learnt policy does not learn specific
environmental information but environment agnostic behaviour.

6.1.2 Environment Dynamics. Using the environment dynamics
model to promote semantic encoding and prevent overfitting ap-
pears to be successful in certain circumstances. As can be seen in
the single-game setting, the use of the environment dynamics model
helped the policy-based agent achieve the highest results on the
test-set (see Table 4) even though the training performance was the
same. This indicates the learned representation of state captures
more generally applicable knowledge that aids in zero-shot perfor-
mance. A small follow-up experiment was performed where the
weights of the text encoder were frozen for a semantically regu-
larised agent and a standard policy-based agent after being trained
on the single-game setting. The agents have only their policy and
baseline functions fine-tuned on new environments. The semantic
agent achieved much higher scores consistently from the start indi-
cating the semantic encoding does, in fact, improve generalisation,
at least when access to multiple training environments is not avail-
able. This result is supported by Yao et al’s findings on the transfer
learning capability of semantic regularisation [40]. As the number of
training games increases - the effect of the semantic regularisation
decreases and becomes less necessary. The results seen when apply-
ing the environment dynamics model on 500 training games does
not seem to increase performance and simply slows down learning.
We believe this to be due to an agent being required to learn some
form of semantics if it wishes to perform well on a large number
of different environments in its training set, thereby making the
regularisation unnecessary. When applying the semantic regularisa-
tion to the DQN model trained in the single-game setting, we see
improved results for location type questions, but worse results for
existence and attribute. This seems to suggest that the environment
dynamics model has a greater effect on the policy-based method or
that longer training times are required to see the benefit.

Since policy-based methods can greatly overfit in the single-game
setting, an environment dynamics model is seen to be a helpful regu-
larisation technique when access to multiple training environments
is not possible. Conversely, when access is possible, the environment
dynamics model inhibits learning and performance, thereby adding
no observable benefit.

6.2 Sample Efficiency Results

Using the training curves seen in figure 6 (as well as 7 and 9 - seen
in appendix) as examples of the general performance, we see that
the policy-based method performs better in training and testing and
achieves much higher performance using much less data than all
the baseline methods, indicating a higher sample efficiency in this
domain. After 30 000 episodes of training in the 500 games setting,
the REINFORCE agent achieves results on par with the baselines.
This is significant as the baselines were trained for over 200 000

Figure 6: Training accuracy curve of single-game setting. Lo-
cation and existence on the left and right respectively.

episodes - indicating that the REINFORCE agent has a greatly im-
proved sample efficiency. Furthermore, the gradient of improvement
is extremely steep. This is mirrored in the single-game setting where
the REINFORCE agent achieves the baselines’ results in less than 15
000 episodes (see Figure 6). This is a notable result since, in general,
off-policy methods, such as the QAit baselines, are more sample
efficient than on-policy methods, e.g. REINFORCE. Additionally, the
REINFORCE agent only updates weights once per episode, whereas
the baselines update their weights every 20 steps, which can poten-
tially be twice or three times an episode. This indicates that learning
a policy in the QAit environment is an easier task than approximat-
ing the Q-function. The use of the environment dynamics model
seems to lower sample efficiency for both the DQN and policy-based
methods. This is believed to be due to the extra difficulty of learning
game semantics thereby requiring more data points.

The improvement in sample efficiency indicates that policy-based
methods are more suited to text-based environments. This increase
also alleviates the computational resources required at scale, thereby
aiding the feasibility of future research since less training data is
needed.

6.3 Effect of Increasing Training Games

A trend seen in the original QAit paper [41] is seen here as well. As
the number of training games increases, so does the policy-based
agent’s ability to generalise to new unseen environments. The effect
of increasing training games seems to increase the policy-based
agents’ generalisation capability at a faster rate than the baseline
methods as seen by performance difference between the single-game
and 500 games settings.

6.4 Replicability

All experiments are completely and easily reproducible. The code
will be open-sourced and available on GitHub. Each experiment
makes use of a specific random seed. This seed is given in the avail-
able configuration file. The configuration file is set to reproduce
experiments apart from the necessary changes required for each
run, such as enabling the REINFORCE with Baseline algorithm.
All experiment models are also saved and available to load and
use. The models will be available on the GitHub repository. The
hyper-parameters used for the policy-based agent and environment
dynamics model are given in table 8 and the configuration file.

7 ETHICAL, PROFESSIONAL AND LEGAL
ISSUES

The QAit codebase and baselines provided by Yuan et al. [41] has
been made available using an MIT License, allowing for unrestricted

use. Since QAit is thus open-source, there are no foreseeable legal
issues. Due to the lack of human or animal subjects in conjunction
with having no privacy breaching experiments or data collection,
we see that there are no associated ethical concerns. In terms of
professional issues, project members will follow the Open Source
Software guidelines described by Grodzinsky et al. [17] and ensure
that the use of QAit will be done in such an appropriate professional
and ethical manner.

8 LIMITATIONS

A large limitation for this paper was computational resources and
available time for training models. Additionally, due to these com-
putational and temporal limitations, only a select few of the deemed
important game configurations were used in experiments. Lastly,
hyper-parameter tuning was only minimally performed meaning
the results shown could be sub-optimal.

9 CONCLUSION

This research presented the advantages of using a policy-based
method in textual environments, specifically the QAit task, as well
as the potential for a new regularisation technique to aid in textual
generalisation. More specifically, we investigated the differences
in training, sample efficiency and evaluation performances of the
REINFORCE with baseline algorithm compared to three popular
value-based reinforcement learning baselines: DQN, DDQN and
Rainbow. We further investigated the use of a semantic regulari-
sation technique to improve the baseline and policy methods per-
formance. The results produced strongly suggest that policy-based
reinforcement learning methods are not only more suited for textual
domains due to their training sample efficiency and performance,
but they also possess generalisation capabilities beyond their value-
based counterparts. Secondly, the results also show that the use of
an environment dynamics model for encoding semantics is a viable
regularisation technique when access to more than one training
game is not possible.

10 FUTURE WORK

Curiosity: A large problem with the traditional Intrinsic Curiosity
Module (ICM) [24] approach is that it was not designed for multiple
or procedural training environments. An issue that can occur is an
agent never learns the outcome of a state-action pair due to environ-
ments having different world structures, thereby always providing
intrinsic reward - this defeats the purpose of the ICM by not allowing
an agent to learn the dynamics of the world correctly. A new way of
providing intrinsic motivation in procedural environments would
provide great benefit to the IQA task in text-based environments as
rewards are sparse and exploration can be hard, as seen in attribute
type questions. Furthermore, the use of the forward dynamics model
in the process of semantic regularisation should be investigated.

Architecture: The current architecture used is very complex
and could potentially be replaced with a much simpler end-to-end
transformer based architecture. An investigation into removing
the complexity would be useful in identifying the most important
architectural aspects required for the IQA task. This would speed
up learning as well as require less computational resources.

11

ACKNOWLEDGEMENTS

A huge thank you to both Dr Buys and Dr Shock for their invaluable
help throughout this research project. Thank you as well to the UCT
HPC team for their support. Lastly, thank you to Dr Yuan and the
rest of the QAit team for their initial research as well as providing
us with their training logs.

REFERENCES

(1]

5

o
&

[9

=

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17

(18]

Prithviraj Ammanabrolu and Mark Riedl. 2019. Playing Text-Adventure Games
with Graph-Based Deep Reinforcement Learning. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1 (Long and Short Papers). As-
sociation for Computational Linguistics, Minneapolis, Minnesota, 3557-3565.
https://doi.org/10.18653/v1/N19-1358

Prithviraj Ammanabrolu and Mark Riedl. 2019. Playing Text-Adventure Games
with Graph-Based Deep Reinforcement Learning. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1 (Long and Short Papers). As-
sociation for Computational Linguistics, Minneapolis, Minnesota, 3557-3565.
https://doi.org/10.18653/v1/N19-1358

Charles Packer an. 2018. Assessing Generalization in Deep Reinforcement Learn-
ing. ArXiv preprint abs/1810.12282 (2018). https://arxiv.org/abs/1810.12282
Greg Brockman an. 2016. OpenAl Gym. ArXiv preprint abs/1606.01540 (2016).
https://arxiv.org/abs/1606.01540

Jesse Farebrother an. 2018. Generalization and Regularization in DQN. ArXiv
preprint abs/1810.00123 (2018). https://arxiv.org/abs/1810.00123
Rupesh Kumar Srivastava an. 2015. Highway Networks.
abs/1505.00387 (2015). https://arxiv.org/abs/1505.00387
Volodymyr Mnih an. 2013. Playing Atari with Deep Reinforcement Learning.
ArXiv preprint abs/1312.5602 (2013). https://arxiv.org/abs/1312.5602

Xingdi Yuan an. 2018. Counting to Explore and Generalize in Text-based Games.
ArXiv preprint abs/1806.11525 (2018). https://arxiv.org/abs/1806.11525

Yolanda Gil an. 2019. A 20-Year Community Roadmap for Artificial Intelligence
Research i. ArXiv preprint abs/1908.02624 (2019). https://arxiv.org/abs/1908.02624
Marc G. Bellemare, Will Dabney, and Rémi Munos. 2017. A Distributional Perspec-
tive on Reinforcement Learning. In Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017 (Pro-
ceedings of Machine Learning Research, Vol. 70), Doina Precup and Yee Whye Teh
(Eds.). PMLR, 449-458. http://proceedings.mlr.press/v70/bellemare17a.html
Abdelghani Bouziane, Djelloul Bouchiha, Noureddine Doumi, and Mimoun Malki.
2015. Question Answering Systems: Survey and Trends. Procedia Computer Science
73 (2015), 366-375. https://doi.org/10.1016/j.procs.2015.12.005 International
Conference on Advanced Wireless Information and Communication Technologies
(AWICT 2015).

Marc-Alexandre Coté, Akos Kadar, Xingdi Yuan, Ben Kybartas, Tavian Barnes,
Emery Fine, James Moore, Matthew Hausknecht, Layla El Asri, Mahmoud Adada,
et al. 2018. Textworld: A learning environment for text-based games. In Workshop
on Computer Games. Springer, 41-75.

Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee, Devi Parikh, and
Dhruv Batra. 2018. Embodied Question Answering. In 2018 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June
18-22, 2018. IEEE Computer Society, 1-10. https://doi.org/10.1109/CVPR.2018.
00008

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Matteo
Hessel, Ian Osband, Alex Graves, Volodymyr Mnih, Rémi Munos, Demis Hassabis,
Olivier Pietquin, Charles Blundell, and Shane Legg. 2018. Noisy Networks For
Exploration. In 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net. https://openreview.net/forum?id=rywHCPkAW

Jianfeng Gao, Michel Galley, and Lihong Li. 2018. Neural Approaches to Con-
versational AL In The 41st International ACM SIGIR Conference on Research &
Development in Information Retrieval, SIGIR 2018, Ann Arbor, MI, USA, July 08-12,
2018, Kevyn Collins-Thompson, Qiaozhu Mei, Brian D. Davison, Yiqun Liu, and
Emine Yilmaz (Eds.). ACM, 1371-1374. https://doi.org/10.1145/3209978.3210183
Daniel Gordon, Aniruddha Kembhavi, Mohammad Rastegari, Joseph Redmon,
Dieter Fox, and Ali Farhadi. 2018. IQA: Visual Question Answering in Interactive
Environments. In 2018 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018. IEEE Computer Society, 4089—
4098. https://doi.org/10.1109/CVPR.2018.00430

F. Grodzinsky, K. Miller, and M. J. Wolf. 2003. Ethical issues in open source
software. J. Inf. Commun. Ethics Soc. 1 (2003), 193-205.

Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy Liang, Xifeng Yan, and Yu
Su. 2021. Beyond LLD.: Three Levels of Generalization for Question Answering on
Knowledge Bases. Association for Computing Machinery, New York, NY, USA,
3477-3488. https://doi.org/10.1145/3442381.3449992

ArXiv preprint

(19]

[20

[21

[22

[23

[24

[25

I
o

[27

(28]

[29

[30

[31

@
S

(34]

(35]

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David
Silver. 2018. Rainbow: Combining Improvements in Deep Reinforcement Learning.
In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and
the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-
18), New Orleans, Louisiana, USA, February 2-7, 2018, Sheila A. Mcllraith and
Kilian Q. Weinberger (Eds.). AAAI Press, 3215-3222. https://www.aaai.org/ocs/
index.php/AAAT/AAAI18/paper/view/17204

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur
Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee,
Kristina Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M.
Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natural Questions: A
Benchmark for Question Answering Research. Transactions of the Association for
Computational Linguistics 7 (2019), 452-466. https://doi.org/10.1162/tacl_a_00276
Long-Ji Lin. 1992. Self-improving reactive agents based on reinforcement learning,
planning and teaching. Machine Learning 8, 3-4 (1992), 293-321. https://doi.org/
10.1007/b£00992699

Andrea Madotto, Mahdi Namazifar, Joost Huizinga, Piero Molino, Adrien Ecoffet,
Huaixiu Zheng, Alexandros Papangelis, Dian Yu, Chandra Khatri, and Gokhan Tiir.
2020. Exploration Based Language Learning for Text-Based Games. In Proceedings
of the Twenty-Ninth International Joint Conference on Artificial Intelligence, [JCAI
2020, Christian Bessiere (Ed.). ijcai.org, 1488-1494. https://doi.org/10.24963/ijcai.
2020/207

Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, and Ar-
mand Joulin. 2018. Advances in Pre-Training Distributed Word Representations.
In Proceedings of the Eleventh International Conference on Language Resources
and Evaluation (LREC 2018). European Language Resources Association (ELRA),
Miyazaki, Japan. https://aclanthology.org/L18-1008

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. 2017.
Curiosity-driven Exploration by Self-supervised Prediction. In Proceedings of
the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017 (Proceedings of Machine Learning Research, Vol. 70),
Doina Precup and Yee Whye Teh (Eds.). PMLR, 2778-2787. http://proceedings.
mlr.press/v70/pathak17a.html

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. 2016. Prioritized
Experience Replay. In 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings,
Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1511.05952

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang.
2017. World of Bits: An Open-Domain Platform for Web-Based Agents. In Pro-
ceedings of the 34th International Conference on Machine Learning, ICML 2017,
Sydney, NSW, Australia, 6-11 August 2017 (Proceedings of Machine Learning Re-
search, Vol. 70), Doina Precup and Yee Whye Teh (Eds.). PMLR, 3135-3144.
http://proceedings.mlr.press/v70/shil7a.html

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche,
Thore Graepel, and Demis Hassabis. 2017. Mastering the game of Go without
human knowledge. Nature 550 (Oct. 2017), 354-. http://dx.doi.org/10.1038/
nature24270

Dan Su, Yan Xu, Genta Indra Winata, Peng Xu, Hyeondey Kim, Zihan Liu, and
Pascale Fung. 2019. Generalizing Question Answering System with Pre-trained
Language Model Fine-tuning. In Proceedings of the 2nd Workshop on Machine
Reading for Question Answering. Association for Computational Linguistics, Hong
Kong, China, 203-211. https://doi.org/10.18653/v1/D19-5827

Richard S. Sutton. 1988. Learning to predict by the methods of temporal differences.
Machine Learning 3, 1 (1988), 9-44. https://doi.org/10.1007/bf00115009

Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An introduc-
tion. MIT press.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. 2000.
Policy Gradient Methods for Reinforcement Learning with Function Approxima-
tion. In Advances in Neural Information Processing Systems, S. Solla, T. Leen, and
K. Miiller (Eds.), Vol. 12. MIT Press. https://proceedings.neurips.cc/paper/1999/
file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf

Sebastian Thrun and Anton Schwartz. 1993. Issues in Using Function Approxi-
mation for Reinforcement Learning. In In Proceedings of the Fourth Connectionist
Models Summer School. Erlbaum.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris, Alessandro Sordoni,
Philip Bachman, and Kaheer Suleman. 2017. NewsQA: A Machine Comprehension
Dataset. In Proceedings of the 2nd Workshop on Representation Learning for NLP.
Association for Computational Linguistics, Vancouver, Canada, 191-200. https:
//doi.org/10.18653/v1/W17-2623

John N. Tsitsiklis and Benjamin Van Roy. 1997. An analysis of temporal-difference
learning with function approximation. Technical Report. IEEE Transactions on
Automatic Control.

Hado van Hasselt, Arthur Guez, and David Silver. 2016. Deep Reinforcement
Learning with Double Q-Learning. In Proceedings of the Thirtieth AAAI Confer-
ence on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA, Dale

https://doi.org/10.18653/v1/N19-1358
https://doi.org/10.18653/v1/N19-1358
https://arxiv.org/abs/1810.12282
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1810.00123
https://arxiv.org/abs/1505.00387
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1806.11525
https://arxiv.org/abs/1908.02624
http://proceedings.mlr.press/v70/bellemare17a.html
https://doi.org/10.1016/j.procs.2015.12.005
https://doi.org/10.1109/CVPR.2018.00008
https://doi.org/10.1109/CVPR.2018.00008
https://openreview.net/forum?id=rywHCPkAW
https://doi.org/10.1145/3209978.3210183
https://doi.org/10.1109/CVPR.2018.00430
https://doi.org/10.1145/3442381.3449992
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17204
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17204
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1007/bf00992699
https://doi.org/10.1007/bf00992699
https://doi.org/10.24963/ijcai.2020/207
https://doi.org/10.24963/ijcai.2020/207
https://aclanthology.org/L18-1008
http://proceedings.mlr.press/v70/pathak17a.html
http://proceedings.mlr.press/v70/pathak17a.html
http://arxiv.org/abs/1511.05952
http://proceedings.mlr.press/v70/shi17a.html
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1038/nature24270
https://doi.org/10.18653/v1/D19-5827
https://doi.org/10.1007/bf00115009
https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://doi.org/10.18653/v1/W17-2623
https://doi.org/10.18653/v1/W17-2623

[36

[37

[38

[39

[40

[41

[42

]

]
]

]

]

Schuurmans and Michael P. Wellman (Eds.). AAAI Press, 2094-2100.
//www.aaai.org/ocs/index.php/ AAAI/AAAI16/paper/view/12389

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you Need. In
Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus,
S. V. N. Vishwanathan, and Roman Garnett (Eds.). 5998-6008. https://proceedings.
neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa- Abstract.html
Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and
Nando de Freitas. 2016. Dueling Network Architectures for Deep Reinforcement
Learning. In Proceedings of the 33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24, 2016 (J/MLR Workshop and Confer-
ence Proceedings, Vol. 48), Maria-Florina Balcan and Kilian Q. Weinberger (Eds.).
JMLR.org, 1995-2003. http://proceedings.mlr.press/v48/wangf16.html
Christopher J. C. H. Watkins and Peter Dayan. 1992. Q-learning. Machine Learning
8, 3-4 (1992), 279-292. https://doi.org/10.1007/bf00992698

Ronald J. Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine Learning 8, 3-4 (1992), 229-256.
https://doi.org/10.1007/bf00992696

Shunyu Yao, Karthik Narasimhan, and Matthew Hausknecht. 2021. Reading
and Acting while Blindfolded: The Need for Semantics in Text Game Agents. In
Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. Association for
Computational Linguistics, Online, 3097-3102. https://doi.org/10.18653/v1/2021.
naacl-main.247

Xingdi Yuan, Marc-Alexandre C6té, Jie Fu, Zhouhan Lin, Chris Pal, Yoshua Bengio,
and Adam Trischler. 2019. Interactive Language Learning by Question Answering.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). Association for Computational Linguistics, Hong Kong, China,
2796-2813. https://doi.org/10.18653/v1/D19-1280

Xingdi Yuan, Jie Fu, Marc-Alexandre Coté, Yi Tay, Chris Pal, and Adam Trischler.
2020. Interactive Machine Comprehension with Information Seeking Agents.
In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguistics, Online, 2325-2338. https:

http:

//doi.org/10.18653/v1/2020.acl-main.211

Wenfei Zhang, Zhixin Suo, Ming Gao, Hongzhi Lu, Guogin Lun, and Xuhua Zhang.
2021. Research on Enhancing Generalization Ability of Question Answering
System by Retelling Technology. In 2021 IEEE 2nd International Conference on Big
Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE). 982-985.
https://doi.org/10.1109/ICBAIE52039.2021.9390073

[43

A FULL RESULTS

Table 6 and 7 show training and testing performances of all models.

B HYPER-PARAMETERS

The hyper-parameters used in experiments are shown in table 8.

C HEURISTICS FOR ATTRIBUTE QUESTIONS

The heuristics used to derive sufficient information scores are given
in table 9. Each attribute shows the command, starting state and
score given a passing or failing outcome.

D QAIT TEST SET ANSWER DISTRIBUTION

The QAit test set’s answer distribution is shown in tables 10, 11, and
12.

E TRAINING CURVES

Accuracy and sufficient information training curves for fixed and
random 500 games experiments and single game experiments are
shown in figure 7,8, 9, and 10.

http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://proceedings.mlr.press/v48/wangf16.html
https://doi.org/10.1007/bf00992698
https://doi.org/10.1007/bf00992696
https://doi.org/10.18653/v1/2021.naacl-main.247
https://doi.org/10.18653/v1/2021.naacl-main.247
https://doi.org/10.18653/v1/D19-1280
https://doi.org/10.18653/v1/2020.acl-main.211
https://doi.org/10.18653/v1/2020.acl-main.211
https://doi.org/10.1109/ICBAIE52039.2021.9390073

Table 6: Results of Fixed Map Experiments - Accuracy is shown in black - Sufficient Information is shown in blue (refer to

section 5.1)

Fixed
Location Existence Attribute
Model . . .
Train Test Train Test Train Test
Random - 0.027 - 0.497 - 0.496
1 game
DON 0.972 (0.972) | 0.122 (0.160) | 1.000 (0.881) | 0.628 (0.124) | 1.000 (0.049) | 0.500 (0.035)
DDQN 0.960 (0.960) | 0.156 (0.178) | 1.000 (0.647) | 0.624 (0.148) | 1.000 (0.023) | 0.498 (0.033)
Rainbow 0.562 (0.562) | 0.164 (0.178) | 1.000 (0.187) | 0.616 (0.083) | 1.000 (0.049) | 0.516 (0.039)
DQN w/ Semantics 0.962 (0.962) | 0.152(0.158) | 1.000 (0.876) | 0.624 (0.122) | 0.998 (0.203) | 0.490 (0.063)
Policy-based 1.000 (1.000) | 0.168 (0.172) | 1.000 (0.933) | 0.584 (0.217) | 1.000 (0.216) | 0.514 (0.060)
Policy-based w/ Semantics | 1.000 (1.000) | 0.182 (0.184) | 1.000 (0.932) | 0.630 (0.228) | 0.948 (0.197) | 0.494 (0.068)
500 games
DON 0.430 (0.430) | 0.224 (0.244) | 0.742 (0.136) | 0.674 (0.279) | 0.700 (0.015) | 0.534 (0.014)
DDON 0.406 (0.406) | 0.218 (0.228) | 0.734 (0.173) | 0.626 (0.213) | 0.714 (0.021) | 0.508 (0.026)
Rainbow 0.358 (0.358) | 0.190 (0.196) | 0.768 (0.187) | 0.656 (0.207) | 0.736 (0.032) | 0.496 (0.029)
Policy-based 0.990 (0.990) | 0.948 (0.958) | 0.964 (0.916) | 0.948 (0.892) | 0.748 (0.048) | 0.466 (0.045)
Policy-based w/ Semantics | 0.886 (0.888) | 0.748 (0.768) | 0.958 (0.917) | 0.932(0.872) | 0.580 (0.043) | 0.506 (0.044)

Table 7: Results of Random Map Experiments - Accuracy is shown in black - Sufficient Information is shown in blue (refer to

section 5.1)

Random
Location Existence Attribute
Model . . .
Train Test Train Test Train Test
Random - 0.034 - 0.5 - 0.499
500 games

DON 0.430 (0.430) | 0.204 (0.216) | 0.752(0.162) | 0.678 (0.214) | 0.678 (0.019) | 0.530 (0.017)
DDON 0.458 (0.458) | 0.222(0.246) | 0.754 (0.158) | 0.656 (0.188) | 0.716 (0.024) | 0.486 (0.023)
Rainbow 0.370 (0.370) | 0.172 (0.178) | 0.748 (0.275) | 0.678 (0.191) | 0.636 (0.020) | 0.494 (0.017)
Policy-based 0.818 (0.818) | 0.570 (0.588) | 0.866 (0.628) | 0.836 (0.560) | 0.754 (0.045) | 0.534 (0.044)
Policy-based w/ Semantics | 0.820 (0.820) | 0.440 (0.458) | 0.852(0.675) | 0.868 (0.672) | 0.594 (0.042) | 0.514 (0.039)

Table 8: Hyper-parameter set up for REINFORCE agent and ICM semantics regularization

Parameter Value
Entropy Coeflicient 0.05
Learning Rate 0.00025
Optimizer Adam

- Max Number of Steps 50
Random Seed 42
ICM Beta 0
ICM Lambda 1
ICM Hidden Size 128

Table 9: Heuristic conditions for determining whether the agent has enough information to answer a given attribute question.
We use “object” to refer to the object mentioned in the question. Words in italics represent placeholders that can be replaced by
any object from the environment that has the appropriate attribute (e.g. carrot could be used as a cuttable). Pass and Fail columns
represent how much reward the agent will receive given the corresponding command’s outcome (resp. success or failure). [41]

Attribute Command State Pass Fail Explanation
holding (cuttable) Trying to cut something cuttable
shar cut cuttable & uncut (cuttable) 1 1 that hasn’t been cut yet
P & holding (object) while holding the object.
‘ take object ‘ reachable(object) ‘ 0 ‘ 1 ‘ Sharp objects should be portable.
. holding (object) Trying to cut the object while holding
cuttable cut object & holding (sharp) ! ! something sharp.
‘ take object ‘ reachable (object) ‘ 0 ‘ 1 ‘ Cuttable object should be portable.
edible ‘ eat object ‘ holding (object) ‘ 1 ‘ 1 ‘ Trying to eat the object.
‘ take object ‘ reachable (object) ‘ 0 ‘ 1 ‘ Edible objects should be portable.
drinkable ‘ drink object ‘ holding (object) ‘ 1 ‘ 1 ‘ Trying to drink the object.
‘ take object ‘ reachable (object) ‘ 0 ‘ 1 ‘ Drinkable objects should be portable.
‘) ‘ on (portable, object) ‘ 1 ‘ 0 ‘ Observing object(s) on a supporter.
holder ‘ ‘ in (portable, object) ‘ 1 ‘ 0 ‘ Observing object(s) inside a container.
‘ take object ‘ reachable (object) ‘ 1 ‘ 0 ‘ Holder objects should not be portable.
portable ‘ - ‘ holding (object) ‘ 1 ‘ 0 ‘ Holding the object means it is portable.
‘ take object ‘ reachable (object) ‘ 1 ‘ 1 ‘ Portable objects can be taken.
holding (cookable) Trying to cook something cookable
heat source cook cookable | & uncooked (cookable) 1 1 that hasn’t been cooked yet
- & reachable (object) while being next to the object.
‘ take object ‘ reachable (object) ‘ 1 ‘ 0 ‘ Heat source objects should not be portable.
. holding (object) Trying to cook the object
cookable cook object & reachable (heat_source) ! 1 while being next to a heat source.
‘ take object ‘ reachable(object) ‘ 0 ‘ 1 ‘ Cookable objects should be portable.
. reachable (object) . .
openable open object & closed (object) 1 1 Trying to open the closed object.
. reachable (object) . .
close object & open (object) 1 1 Trying to close the open object.

Table 10: Answer distribution for location type questions

Map Type: | Fixed | Random
pantry 68 39
livingroom 87 34
shed 89 44
inventory 27 32
corridor 79 41
bedroom 75 32
driveway 75 38
street - 38
bathroom - 46
supermarket - 29
garden - 38
backyard - 51
driveway - 38

Table 11: Answer distribution for existence type questions.

Map Type: | Fixed | Random
yes 252 237
no 248 263

Table 12: Answer distribution for attribute type questions.

Map Type: | Fixed | Random
yes 242 236
no 258 264
1
AN RN M 2 DooN
AT 09 P V 07 A DON
0s 1 V 'JA,J |/ : i I Rainbow
n// A | Iy Mv"‘ Iﬂ,\l\i —— REINFORCE with Baseline
A 08 w\/ﬂj 0.65 M/"‘ " ‘ | |"‘ V REINFORCE with Baseline w/ Environment Dynamics
05 AN oL I
o 06 A/ N
J/ o1 o e‘“‘ f
¥ Al R [l
0.4 i N"‘Ih GSEU{ I\ \M |]
f [el Y
| 0.6'
02l 05 Y
05
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
0.8 - 0.85 . 075 .
A [d i
2 Al VWY N MW vl e M M
07 A Y 0.8 Mo VIV OO Y 07 N bl A
PN A \M‘ N, () I.l\‘ ff J I\
W) S RO o
06 JMM| 0% I 0.65 [w’ /
JY ., [V . N\\l"!l ‘ f
0.5 7 "fl” 08 ‘\‘ n 1 ﬂn,/
\
r/v ossil " |V |
04 | . J“'H'l A {l
r 06 0ss |ff «/ nV i W
03 | M /'
[/
odk 055 05 |
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

Figure 7: Training accuracy curves of policy-based agent and baselines on 500 games. Top row shows fixed map games and
bottom row shows random map games. Each column shows a different question type - location - existence - attribute

03 —— DDQN

DQN
0.25 4 Rainbow
noa of 1\ ~——— REINFORCE with Baseline
0z Mrl N - A Wi A A —— REINFORCE with Baseline w/ Environment Dynamics
. v

vl

Figure 8: Sufficient Information curves of policy-based agent and baselines on 500 games. Top row shows fixed map games and
bottom row shows random map games. Each column shows a different question type - location - existence - attribute

——— DDQN
DQN
Rainbow
—— REINFORCE with Baseline
~——— REINFORCE with Baseline w/ Environment Dynamics
—— DQN w/ Environment Dynamics

Figure 9: Training accuracy curves of policy-based agent and baselines on a single game setting. Each column shows a different
question type - location - existence - attribute

4 —— DDQN
VA A -
08 A ‘| VA, M1 DoN
Vi Rainbow
06 . { —— REINFORCE with Baseline
X ~——— REINFORCE with Baseline w/ Environment Dynamics
| —— DQN wi Environment Dynamics
04 o+
/

0z s

a

o 50 100 150 200

Figure 10: Sufficient Information curves of policy-based agent and baselines on a single game setting. Each column shows a
different question type - location - existence - attribute

	Abstract
	1 INTRODUCTION
	2 BACKGROUND
	2.1 Environments
	2.2 Policies and Value Functions
	2.3 Value-Based Methods
	2.4 Policy-Based Methods

	3 RELATED WORK
	3.1 Text-based Interactive Environments
	3.2 Visual Interactive Question Answering
	3.3 Environment Dynamics in Text-Games

	4 DESIGN AND IMPLEMENTATION
	4.1 Overview of QAit
	4.2 Agent Model
	4.3 Learned Environment Dynamics

	5 EXPERIMENT METHODOLOGY
	5.1 Evaluation Metrics
	5.2 Experiments

	6 RESULTS AND DISCUSSION
	6.1 Accuracy and Sufficient Information Results
	6.2 Sample Efficiency Results
	6.3 Effect of Increasing Training Games
	6.4 Replicability

	7 ETHICAL, PROFESSIONAL AND LEGAL ISSUES
	8 LIMITATIONS
	9 CONCLUSION
	10 FUTURE WORK
	11 ACKNOWLEDGEMENTS
	References
	A Full Results
	B Hyper-parameters
	C Heuristics For Attribute Questions
	D QAit Test Set Answer Distribution
	E Training Curves

